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Ahstract

A sensitivity index quantifies the degree of smoothness with which it responds to fluctuations in
the wishes of the members of a voting body. This paper characterizes the Banzhaf-Coleman—Dubey—
Shapley sensitivity index using a set of independent axioms. Bounds on the index for a very general
class of pames are also derived.

Kevwards: Voting game: The Banehat-Coleman—Dubey—Shapley sensitivity index: Characterization: Bounds

1. Introduction

A sensitivity index 15 a4 measure of the extent of volatility in a decision rule (voling
body). It is an indicator of the degree of ease with which it responds w the fluctuations in
the wishes of the members of the voting body. It can as well be regarded as o democratic
participation index measuring sensitivity to the desires of the voting body members.

Dubey and Shapley (1979) considered the sum of the numbers of swings of different
vOLETS in 4 voling game as a sensitivity index, where the number of swings of a voter is the
number of winning coalitions from which the defection of the voter makes them losing.
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(A coalition 1 called winning if the sum of the *yea’ votes of the members of the coaliion
can guarantee the passage of a resolution. A coalition is called “losing” if itis not winning. )
Thus, this index gives the numbers of possibilities in which different voters are in the
critical position of being able to change the voting outcome by changing their voles. Since
a eritical voter's exit from a winning coalibon makes it losing, it gives an indication that
even a single voter could tp the scales. A normalized version of the Dubey—Shapley index
wits considered by Felsenthal and Machover (1998) for measuring sensitivity. We refer
o this normalized formula, which s the sum of one of the Banzhal (1965) and Coleman
(1971) indices of power of different voters in the game, as the Banzhaf—Coleman-Dubey-
Shapley (BCDS) sensitivity index.

Dubey and Shapley (1979) investigated several properties of their ndex, including
determination of lower and upper bounds. A feasible and desirable direction of research
along this line i o study additional/altemative properties of the BCDS index and
characterze it uniquely. This s the objective of this paper: More precisely, we first discuss
some properties and develop an axiomatic characterization of the BCDS sensitivity index.
It 15 shown that the set of axioms used in the characterieaton theorem 15 minimal, that 1s,
no proper subsel of this set can chameterize the index. Equivalently, we say that axioms
belonging to this minimal set are independent. Then using Founer transform analysis, we
denve some additional properties and bounds for the BCDS index for a class of games,
which 18 much more general than the class considered by Dubey and Shapley (1979). This
may raise the interest of mathematicians dealing with Founer transform in the theory of
voLIng games.

The next section of the paper sets out the background matenal. Section 3 defines the
BCDS index and discusses some of its properties. Section 4 derives the index axiomatically
and demonstrates independence of the properties employed in the axiomatization exercise.
In Section 5 we discuss some additional properties of the index, including derivation of
bounds, using Fourier ransform. Finally, Secton 6 concludes the paper.

2. The background

It is possible 0 model a voling situation as a coalitional form game, the hallmark of
which 15 that any subgroup of players can make contractual agreements among i1s members
independently of the remaining players. Let ¥ = {1,2, ..., n} be a set of players. The
power set of N, that is, the collection of all subsets of N, is denoted by 2% Any member
of 2% is called a coalition. A coalitional form game with player sel N is a puair (N; V),
where V2% — R such that Vigh) = 0, where R s the real line. For any coalition §,
the real number ViS) 15 the worth of the coalition, that is, this s the amouant that §
can guarantee o s members. For any set &, |5 will denote the number of elements
n 5.

We frame a voling system as a coalitional form game by assigning the value 1 1o any
coalition which can pass a bill and 0 to any coalition which cannot. In this contest, a player
15 8 voter and the set W ={1.2, ..., n} 15 called the set of voters. Throughout the paper
we assume that voters are not allowed to abstain from voting. A coalibon § will be called
winning or losing according as il can or cannot pass a resolution.
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Definition L. Given a set of voters N, a voling game associated with N is a pair (N; V),
where V 12 — {0, 1} satisfies the following conditions:

(i) Vig)=0;
(i) V(N)=1:
i) if ST, 8.7 2V, then V(85) < V(T).

The above definition formalizes the idea of a decision-making commitiee in which
decisions are made by vote. It follows that the empty coalition ¢ 15 losing (condition (1))
and the grand coalition N 15 winning (condition (ii)). All other coalitions are cither winning
or losing. Condition (iii) can be regarded as 1 monotonicity principle. It ensures that if a
coalition § can pass a bill, then any superset T of § can pass it as well. A game G = (N V)
is called proper if for 5.7 € 2Y_V(8) = V(T) = | implies that § N T # ¢. According
to this condition, two winning coalitions cannot be digjoint. The collection of all voling
games is denoted by F. For any G = (N V), we write W (Lg) for the set of all winning
(losing) coalitions associated with 7. Thus, for any § < N, V(§) = 1) & equivalent to
the conditon that § € WeiLg).

Definition 2. A voting game G = (N; V) is called

(i) decisiveif forall § €2V, V(§)+ VIN -5 =1,
(ii) balanced if |Wg| = |Lg| =271,

Clearly, a decisive game 1s balanced.

Definition 3. The unanimity game (M Uy) associated with a given set of voters M is the
game whose only mmimal winning coalition s the coalition N © M.

Definition 4. Given a set of voters N, let {N; V') be a voting game.

(1) For any coalition § £ 2""', we say that § € N s swing in § of V(5 =1 but
Vis—{iph=0.

(1) A coalition § £ 2% s said to be minimal winning il ¥{5) =1 but there does not exist
T < §suchthat ViTy= 1.

Thus, voter i is swing, also called pivotal or key, in the winning coalition § if his deletion
from § makes the resulting coalition § — {i} losing. For any game & = (N; V) € F, and
ie N, we wite m;(G) o denote the number of winning coalitions in which voter § s
swing. It is often said that m; () is the number of swings of voler i We will indicate the
total number of swings E;l:|| mi{Gyin G by m{G).

Definition 5. For a set of voters N, let {N; V) be a voling game. A voter i € NV is called a
dummy in (N V) if he is never swing in the game. A voter § € V is called & nondummy in
(N: V) ifhe is not dummy in (N; V).
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Following Felsenthal and Machover (1998) we have

Definition 6. For a voting game (N V) with the set of volers N, a voter i € N is called a
dictator if {i} 18 the sole minimal winning coalition in the game.

By definition, a dictator in a game is unigue. If a game has a dictator, then he is the only
swing voter in the game.
A very important voling game i$ & weighted majority game.

Definition 7. For a set of voters N = {1,2, ... .n}, a weighted majority game is a
quadruplet G = (N; V; w; g), where w = (ur, wa, ..., wy ) 15 the vector of nonnegative

s e e R AL S i g ? N
welghts of the 'Nl. voters in NV, g is a positive real number guota such that g < 3 7wy
and for any § € 2V,

Vis) = Lot EJ'F.':'.'”‘;“.;Eq‘
(}  otherwise.

That is, the ith voter casts w; voles and g is the quota of votes needed Lo pass a bill.
A weighted majority game will be proper if {%} E‘l.':ll wi = g. Note that a weighted
majority game satisfies conditions (i)—(iii) of Definition 1. (See Felsenthal and Machover,
19498 for further discussions on Definitions 1-7.)

3. The Banzhal-Coleman-Dube y=Shapley sensitivity index

Forany G = (N; V) e F, we call m;((7) the first Banzhal—Coleman index of volung
power of i € N. The second and third Banzhaf—Coleman imdices of voling power are given
respectively by m;(G)/2W1= and m; (G)/m(G).

Eardier, Shapley and Shubik (1954) suggested an index of voting power defined as the
number of orderings in which the concemed voter is swing divided by the total number of
orderings of the voters. (See Dubey and Shapley, 1979; Felsenthal and Machover, 1995,
and Burgin and Shapley, 2001, for further discussion. ) Allernatives and variations of these
mdices were suggested, among others, by Deegan and Packel (1978), Johnston (1978) and
Barua et al. (2002).

Dubey and Shapley (1979) suggested the use of

NG =mi) (1)
as a sensitivity index, where G € F is arbitrary. The Felsenthal and Machover’s (1998)
version of this index is given by
mis)
20M-1"

Bl = (2}

Since B((7) 15 the sum of the second Banzhaf—Coleman indices of different voters in
a game, we refer o B(G) as the BCDS index of sensitivity. It ‘reflects the “volatlity™ or
degree of suspense in the voting body” (Dubey and Shapley, 1979). Suppose in a voling
game each voler’s probability of voting for or against a bill 15 selected independently from
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a uniform distribution [0 1], Then m; ,-’2"“_' becomes the probability py that other voters
will vote such that the bill will pass or fail according as @ voles for or against it (Straffin,
1977). The index B(G) is simply 3" I"! p;.

The index B possesses the following interesting propertics.

(a) Anonymity. Let G = (N V) and G = (N"; V') € F be two isomorphic games. That is,
there exists a bijection h of N onto N such that for all § € N, V(5) = 1 if and only
if V(h(5)) = 1, where A(S) ={hix): x £ §}. Then B(G) = B(G").

(b) Increasingness. Let G = (N; V) and G= {F: F}l £ F be two games such that N = N
and m; () = H‘!"[(:I}I forall i e N with = for at least one § € N. Then Bi(7) = B{ﬁ}l.

(c) Dummy independence principle. For any ¢ = (N; V) € F and for any dummy & £ N,
B(G) = B(G_y), where G_ g i1s the game obtained from & by excluding 4.
Likewise, B{G) = B+ ), where (7 .4 1% the game obtained from ¢ € F by including
d a8 8 dumimy.

(dy Maximality. Forany G = (N: Ve F, B( ) attains its maximal value r {{I-’:Ij}le-’ﬁl—l
if and only if all coalitions with more than [N]/2 voters win and all coalitions with
less than [N /2 voters bose, where r = [[N] /2] 4 1, with [x] being the largest inleger
£ x (Dubey and Shapley, 1979).

(e} Duality. For any G = (N; V) e F, let G* = (N;V*) be the doal of G; that is,
V*S) = V(N = V(N — S) forall 5§ £ 2V _Then B(G) = B(G*) (Dubey and Shapley,
19749,

Anonymity says that a reordering of the voters does not change the sensitivity index B.
Thus, all charactenstics other than swings of the voters, eg., their living conditions,
are wrelevant to the measurement of sensitivity, Increasingness requines the index B o
be an increasing function of the number of swings, given that the voler set remains
unaltered. To anderstand increasingness, let us consider the weighted majority game
ﬁ;] =(N;V:1,2,2;4) obtained from Gg = (N; V: 1,2,2:3) by augmenting the guota
from 3 to 4. Given that the set of voters N = {1, 2,3} is the same in the two games, we
get ma{ Go) = ma(Go) =2, m3(Go) = ma(Go) =2 and m(Gg) =2 > m(Gg) = 0. We
thus have BiGg) = E{a:]}l. Since a dummy is notable to influence the voling outeome, we
cuan argue that B should sausfy the dummy independence principle. Given that the second
Banzhaf-Coleman voting power index m; (G)/2/Y~! remains invaniant under inclusion or
exclusion of a dummy (Owen, 1978; Felsenthal and Machover, 1995, 1998; Barua et al.,
2002), B also sabshies this mvanance condition. Maximality specifies the necessary and
sufficient condition for B 1o achieve the maximum value and duality shows that the values
of B for a voting game and its dual are the same.

Dubey and Shapley (1979) showed that forany G =(N: V) eF,

[IN] —log,8]

B(G) 26—

(3)
where & 15 the minimum of the numbers of winning and losing coalitions in 7. Hart (1976)
suggested a stronger but more complicaled lower bound for B{G). Dubey and Shapley
(1979} also noted that if G is a decisive game, then a lower bound of B(7) is L
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Examples of sensitivity indices other than Bi{(7) which satisfy properties (a)-{e) are
(B(GN , c= 0.0 1, andexp{ B{G)). However, because of its probabilistic interpretation,
expositional and computational ease, B{G) appears to be more attractive than such mdices.
Furthermore, in the next section we show that a characterization of B{G) can be developed
using a set of intuitively reasonable axioms, These therefore make B(G) a desimble mdex
of sensitivity.

4. The characterization result

In order to present the axioms that characterize the BCDS index, we need the following
definitions.

Definition 8 Given 7 = (N; V), G2 = (N2; Va) € F, where N and N2 need not be
disjoint, we define 7| v G2 as the game with the set of voters &) U N3, where a coalition
FS N UN2 s winning if and only if V(SN N =1or V(SN = 1.

Definition 9. Given G = (N; Vi), G2 = (N2; Vo) € F, we define G ~ G as the game
with the set of voters NV U N2, where a coalition § © Ny U N2 18 winning if and only if
ViIiSNN) ) =1 and Va{ SN N2y = 1.

Thus, in order to win in & v G2 a coalition must win o either GG or Gz, whereas Lo
win m 7] & G2 it has to win in both &y and G, Clearly, given &, G2 € F; G v G,
GianGrel.

Finally, we have

Definition 10. Given (N; V) € F, suppose that the volers i, j € N are amalgamated into
one voter i j . Then the post-merger voting game is the pair (N; V') € F, where

. w B ’ Y it § < N —{ij}.
N =N-—1{i, j}uUli and V&) = i .
th 7ot VIS —{ijpUli,j}) iijeS.

We are now in 4 position to present three axioms on a general sensitivity index
P:F — R that will uniguely isolate the BCDS index. The first axiom is taken from Dubey
(1975) (see also (Dubey and Shapley, 1979)). It shows how the sensitivity levels in the
games G v G2 and Gy A G are related to individual sensitivities in 7 and ;.

Axiom Al (Sum principle). Forany G, G2 €F,
Pl v G+ PG AGa) = PIG ) + PIG2). 4

This axiom, which is also referred to as lincanty/union-intersection property in the
literature, s quite similar to the condition chamcterizing additive measures (in measure
theoretic sense), such as probabilities. If 4 and Az are two events in a probability
space and v and A are the disjunction and conjunction operations espectively, then
PlA v A+ PlA) A Az)=PlA 1)+ PlA2), where P denotes probability.
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The next axiom captures the change in sensitivity levels under & merger of any two
volers in an unanimity game. In an unanimity game the number of swings of cach
nondummy voter 1s only one. Now, in a voling game the power of 4 voter s determined by
his swings only. Since the number of swings across volers in unanimily games is 4 constant,
an mmportant source of difference between the extents of sensitivity in bwo such games s
the number of nondummy voters. One way of reflecting this difference 1s to assume that the
mtio between sensitivity levels inoan unanimity game and a new game obtained by merging
twor volers in this game is proportional to the mbo of the numbers of nondommy voters in
them. The following axiom gives a formulation along this direction.

Axiom A2 (Proportionality principle). Let G" € F be the game obtained from G =
(M; U'y) £ F by merging two volters i, j € N. Then
P |V

]
P(G') 2N

5)

The third axiom 15 a normalizaton condition that states the value of the index if the
game has a dictator.

Axiom A3 (Normalization). If G =(N: V) € F has a dictator, then P(G)= 1.

Since the BCDS index is obtained directly from the second Banzhal—Coleman index,
acomparison of our axioms with some existing axiom systems that charmcteriee the latter
will be worthwhile. Lehrer ( 1988) charactenzed the second Banzhaf—Coleman index using
the sum criterion Al and a two-voter superadditivity property, which is similar to, but
weaker than A2, along with Shapley’s (1953) dummy axiom and an equal treatment
principle. An altemative characterization of this index was developed by Nowak (1997)
using a version of Lehrer’s (1988) superadditivity property, equal treatment principle,
durmmy axiom and a postulate of Young (1985) which says that the power is (in some sense)
determined by the marginal contributions of voters. An important difference of Nowak’s
axiomatization with Lehrer’s exercise (and also ours) is that the former does not make use
of the additivity axiom Al.

We now have

Theorem 1. A sensitivity index P satisfies axioms A1-A3 if and onlv if it is the Banzhaf-
Coleman—Dubey-Shapley sensitivity index B given by (2).

Prool. We first demonstrate that 8 satsfies A1-A3. Let both &G = (N: V) and G2 =
(N2: Vo) e F. Assuming that Ny — Nz £ ¢, take i & N| — Na. Now, any coalition 5§
N2 — Ny can be appended to a swing coalition § © N fori € N to obtain aswing coaliion
SUS fori e Ny UN7z unless (5 US) M N3 is winning in 2. Hence the number of swings
of voteri e N| — Nais

mi(Gy v G2) =mi(G 2" M (G A Ga)
=mi(GAM 2N L (G2 M (G A Ga), (6)

since m;((r2) =10 for { € Nz, The same expression for m;(G) v G2) will be obtamed if
ieNa— Ny and i € Ny N N2, Therefore,
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| Ny |
m; (G v Gz)
BGivG)= ) W
=1 i 3
N (mi(G2 N (G2l (G A Ga)
o E NNz —1 AMUN =T " Wik -]
=l - B i
N mi(Gr) | mi(Ga)  mi(G A Ga)
= 2IWI=T T W= T T INUR
i=l
= B(G )+ Bl{G2) — B(G) ~G2). &

Thus, B satisfies Al.

To check satisfaction of A2 by B, consider the unanimity game Gy = (M:; Uy) € F.
Let Gy =(M"; Up) be the game obtained from & » by merging any two volers i, j € N.
Then,

IN| £ ———
STAT=1 and BlGy )= ST from which we have
BlGy)  1|N|
B(Gnx) 2N

Thus, B verifies A2,

Ifa game G = (N; V) £ F has a dictator i, then § 18 the only swing voter in the game,
that is, m; is maximized, which means that m; = 2I¥1=1 and m; =0forall j#i. Hence,

B(Gy)=

since [N’ =|N|—1.

mj 2N
B{G}_W_W_l' (8)
which shows that B fulfils A3,

We will now demonstrate that il a sensitivity index fulfils A1-A3, then it muost
be the BCDS index. Note that a sensitivity index P osatisfying Al is umiquely deter-
mined on unanimity games. This 15 becawse for any game G e F, G = Gg, v g v
=% g . where 8§, 82 ... 5 are mimimal winning coaliions of & and G5 s the
unanimity game corresponding o 5, f = 1,2, ..., k. Thus, by Al, P is determined
if P{Gg) P(Gs, v ---v Gg ) and P(Gs A (Gg, v - Gg ) are known, But Gg, A
(Gg, v -vOg)=05us v Ggus v Ggus, and hence by indoction hy pothesis
onk, both P{Gg, v - v Gg)and P(Gg, A (Gg, v - v Gg ) are determined. So PG
15 determined.

In view of the above discussion we can say that it is enough w determine P{M; Uy ) for
any unanimity game (M Uy ). We will now show by induction on [N] that P{M; Uy) =
[N /2WI=L I [N = 1, then (M; Uy) has a dictator and hence by A3, P(M; Uy) =
1 = B{M: Uy). Therefore assume [N| = 1 and the result for all games (M Uy). where
IN| < |N|. Let (M"; U ) be the game oblained bjy merging two voters f and § in N. Then
by induction hypothesis, P(M"; Uy) = |N'|/2IV =1 = B(M’, U, ). By A2,

P(M; Uy) = %ll‘:ll El'u:i'rulﬂ_r - ETI“’TTLT since  [N|= N +1.
This demonstrates that P eoincides with B on any unanimity game and hence on all games
mF. O
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Theorem 1 specifies a set of necessary and sufficient conditions for identifying the
BCDS index B uniguely.

MNow, 1in order to illustrate how the BCDS index B can be calculated from minimal
winning coalitions, let us consider the weighted majority game G = (N; V; 1, 2, 3; 4) with
the voter set N = {1, 2,3}, The minimal winning coalibions in this game are 5 = {1, 3}
and §> = {2, 3}. Hence B(G) = B(Gs,) + B(G 5,) — B(Gy ). where Gy, is the unanimity
game corespondingto 5, i= 1,2 and Gy = (N: Uy). Then B(G) = 2/22"! 422271 —
3/23-1 =125,

We will now show that axioms A1-A3 are independent. Demonstration of independence
requires that if one of these three axioms is dropped, then there will exist a sensitivily index
that will satisfy the two remaining axioms but not the dropped one.

Theorem 2. Avioms Al-A3 are independent.

Prool. Let G =(N; V) € F be arbitrary. Then consider the sensitivity indices given by

V|

PG =Y mi [2M, (9)
i=l
IN| o

Pg{ﬂ}:Em;/2'"""+; (10)
i=l -

P(G) = Zi'r’lﬂ'l/zl""'"_'. (11)
iel

where W; is the set of winning coalitions containing i and D is the set of nondummies. It
15 casy Lo see that Ppovertfies Al and A2 but not A3, whereas P ovenfies Al and A3 but
not A2, One can also check that Py fulfils A2 and A3 but not A1, [0

5. Fourier transform analysis of the Banzhal-Coleman-Dubey-Shapley sensitivity
index

In this section we analyze voling games using tools from Boolean function literature,
Before embarking on the details of the analysis, we discuss the connection of games Lo
Boolean functions and the main results that we obtain,

An n-varable Boolean function is a map f 2 {0, 1} — {0, 1}, where {0, 1}" is the n-fold
Cartesian productof {0, 1}. With the conventional identification of n-bit sirings and subsets
of N, we can also take the domain to be 28, where N = {1.2,.. ., n}. Therefore, Boolean
functions can be regarded as indistinguishable from general games (NV; V), considered by
Owen (1978), where the domain and the range of Voare 2% and 0.1} respectively. We
denote the set of all such games by F*. Thus, if & = (V; V) £ F*, then V is a Boolean
function as well. Since F < F*, our analysis s also applicable to any game in F.

Boolean functions have been studied quite extensively in other areas such as computer
science and engineenng. Several analytical tools have been developed for this purpose.
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The most important of these tools 1s the Walsh transform, which is essentially the Fourier
transform of {—1}"' ) In this section we use the Walsh transform to obtain bounds on the
index. Since we will be performing the analysis on g general Boolean function (or game)
we first generalize the concepl mp((7) in the following manner.

Definition 11. For any game G = (N:; V) € F*, the associated complement game is
G =(N;V)e F*, wher for any § C N, V(5) = 1if and only if V{5) = 0. Further, G
is suid Lo be balanced if the number of winning coalitions in G and G are equal.

Forany G=(N; V) e F* and i € N, we wrile
MG =mi(G) +m; (G). (12)

Also we set M(G) =37 | M;(G). We first show that given a general game G € F*, it
becomes a simple voting game (i.e. G £ F) if and only if M{G ) =m (&), Then we go on
o obtain upper and lower bounds for M (G) which immedialely provide upper and lower
bounds for m (7). The main results that we obtain are the following.

(1) If G in F* is a balanced n-player game, then M(G) = 2"~!. Consequently, for any
balanced n-player game G in F, we have m( () = 2"~ Further, equality is attained if
there is a dictator,

(2) If 7 = F* is an n-player game and w = |Wg| is the number of winning coalitions, then

T - e R
wi? wlh < M(G)<n wi 2 w)

-1 -1

Further, both the upper and lower bounds are attained.

Consequently, for any n-player game G € F we have
w2 —w) wi2® — )

] —miGy=n

2n—1

Remarks. (a) From result (1) above, it follows that for a decisive voling game, a lower
bound of B{) i 1. As stated earlier, Dubey and Shapley (1979) derived 1 as the lower
bound of B for decisive voting games. Evidently, Corollary 16 presents a lower bound for a
more general class of games viz, balanced voting games. Moreover, Dubey and Shapley’s
(1979, p. 108) claim that the lower bound can only be denved by using Hart's ( 1976) bound
does not appear to be true.

(b} Itis known (Felsenthal and Machover, 1998, p. 56) thatfor G € F. m{ ) = n. Result
{2y above provides a lower bound on m{ 7)) for monotone games. This lower bound depends
on the number of winning coalitions. Though this can be lower than n, in general it s going
0y be a sharper lower bound. In fact, our lower bound w(2* — w);/2"~! is greater than n if

n

1|"II -1 = 3°

o

w 2Jr—l i 2Jr—l

To obtain these resulls, we first prove a relation (Lemma 9) between Mi(G) and the
autocorrelation function of the Boolean function associated with . (See Eq. (17) below
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for the definition of the autocorrelation function. ) Thus, autocorrelation function becomes a
helpful echnigue in studying swings in general voting games. Further algebraic analysis is
performed using the Walsh transform which ultimately leads w the desired results. This in
turn establishes the role of the Walsh transform in proving results in general voling games.
Since the Walsh tmnsform can be expressed in matrix form using the Hadamard matrix,
this motvates the vse of the Hadamard matnx.

Forthe sake of convenience, we divide this section into two subsections.

5.1. Bavics of Fourier transform analysis

In this subsection, we present the mathematical preliminaries necessary for understand-
ing the Fourier transform analysis of games.

Let £ be the field ({0, 1}, &, -}, where @ and - denote modulo 2 addition and
multiplication. We thus consider the domain of a Boolean function o be the vector space
{F &) over Fa, where, as stated, & is the addition operator on F> and also on FY. The
inner product of two vectors w = (u,..., B dstr= (s v vvys ve) € F is 31, w;v; and
will be denoted by (i, v}, The weight of an p-bit vector i 18 the number of ones in n and
will be denoted by wr {u).

The Founer ransform is the most widely used tool m the analysis of Boolean functions.,
In most cases it is convenient to apply Fourier transform to (—1)7™) instead of f{x).
The resulting ransform s called the Walsh ransform of f{x). More precisely, the Walsh
ransform of f{x) is an integer-valued function We {0, 1}* — [—2%, 27] defined by (see,
for example, Ding et al., 1978)

Wiu) = Z {_l}f[rll]&'-i":u.ul:-_ (13)
weff

The Walsh transform is called the spectrum of f. Note that the spectrum measures
the cross-comelations between a function and the set of lincar functions. Another way of
looking at the spectrum is via Hadamard matrices. Let Ay be the Hadamard matax of order
2" defined recursively as (see MacWilliams and Sloane, 1977)

H|=[i _1]] (14)

where H, = H) @ Hy—) forn = 1, and & denotes the Kronecker product of two matrices.
For example,
1 1 1

1
Hy  H I =k § =i

H‘I: —
: [H| —H|] I i =1 =i
1

-1 -1 1
Considering the rows and columns of Ay to beindexed by the elements of .I':‘lIr . we oblain
[yl = (—1)%4! Using this fact, the Walsh transform can be written as

L= =S

where u € Fy is identified with an integer in [0, 2 — 1].

2*

U Hy = [We0)...., We(2" = 1)), (15)
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Since HyH, = 2" hs, post-multiplying both sides by H, we get the inverse of Walsh
transform,

(1) =% Y Wetw)=n*, (16)

weff

Another commonly vsed ool in Boolean function analysis is the auto-cormrelation
function. The auto-correlation function is an integer-valued map C {0, 1} — [-2",27]
defined by (see MacWilliams and Sloane, 1977, for a related concept called directional
denvatve)

Crm =} (—nfmeswe, amn

we Fy

It i clear that © p(0) = 2 The auto-correlation is not a transform in the sense that it does
not unmguely determine the function.

For the weighted majority game G = (N:V:1,2.3;4) with minimum winning
coalitions {1, 3} and {2, 3} the corresponding Boolean function [ and Walsh ransform
Wy are given in Table 1. The variable x; in the table represents player i,

The next result 1s called the Wiener-Khintchine Theorem in continuous analysis
and has alko been obtained for Boolean functions (see Carlet, 1992 Prencel, 1993
Zhang and Zheng, 1995).

Theorem 3. Ler [ be an n-variable function. Then

[Cri.....Cp(2" — 1)]Hy = [WFHO). ... WH(2" —1)]. (18)

Applying the inverse transform gives } . e W}{n} = 2"Cf(0) = 2™, This is a
conservation law for the spectral values of f and is known as Parseval’s Theorem (see,
for example, Ding et al., 1978).

The next result states a useful property of Walsh transform (see Canteaut et al., 2000,
Froposition 5). For a vector space E. we define E— to be the vector space which is
orthogonalto E e, E- = {u: {u, v} =0,¥Yv e E}.

Tahlke 1

The Walkh transtorm and autocomelation

13 ut 16 il ! Wi .
il i 0 i 2 g
il il 1 il 2 4
il | i i 2 4
] 1 1 i 2 4
I ] 0 i 6 —4
1 il 1 1 -2 —4
1 1 i 1 -2 —4
| | | | i) —4
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Theorem 4. Let f and g be n-variable functions and E be a subspace af F3. Then

Y Wi =|E| Y Cru). (19)

we £ weEL

See (Sarkar and Maitra, 2002) for a discussion of the above results in a more general
setting.

5.2. The results

In this section, we present the results mentioned at the beginning of Section 3 along
with complete proofs. First we generalize the notion of swing. The notion of swing is quite
generalin the sense that we do not reguire monotonicity (condition (iii) in Definition 1) for
swing to be defined.

Definition 12. Given a game G = (N; V) € F*, and i € N, number of negative swings of i
15 defined as

m (G)=|[SSN —{i}: V(5)—V(SU{ih=1}]
Forany G = (N; V) e F*, we wrile

m(G)=) m; (G). (20)

ieN

The following proposition, whose proof is very casy, states the relationship between
mj._{ﬂ'}l and m; (7).

Proposition 5. Ler G = (N V) € F* be arbitrary. Then forany i € N.m‘._{ﬂ'}l =m,-{li_]'}l.

Proposition 6. Let G = (N; V) € F*. Then m(G) = 0 if and only if G satisfies monotonic-
itv, that is, condition (i) in Definition 1.

Prool. The sufficiency part of the proof is easy to verify. We therefore establish the
necessity., 1F m{('_s}l =), then m;{ﬁ}l =0 foralli e N. Let § and T be two coalitions in
(7 such that Vis)= 1 and § < T. Then we need to show that V(T)y= 1. This is shown
by induction on r = |T'| — |§]. For r =0, we have T = § and the result follows trivially.
Assume that the resultis true for r — 1. Let T besuchthat S 2T C T and [T ) =r — 1.
By induction hypothesis V{(T') = 1. Let j € N be such that T = T U{j}. If possible,
let V(T) =0. Then V(T') =0 and V(T) = 1, which in tum implies that m;(G) # 0.
This contradicts the assumption that m; (G) = 0 for all § € N, Therefore & will fulfil
monotonicity. [

Corollary 7. Let G = (N, V) € F*. Then M{G)= E;;_N MG =m(G) if and only if G
iy monotone.

Corollary 8. Let G = (N: V) € F*. Then B(G) + B(G) = B(G), that is B(G) =0 if and
only if G meets monotoniciiy.
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Remarks. (a) Propositions 5 and 6 show that a game does not have negative swing if and
only il it 1s monolone.

(b) Since miG) = M(G)— m{ﬁ}l and m{l‘._?}l 20, m{G) 15 maximized if and only if &
satisfies monotonicity,

{c) It is evident that M{G) can be regarded as a sensitivity index on the set F*.

Given G = (N: V) € F*, we now express m; () in terms of the autocorrelation values
of V. Fori € N, let g be the n-vector, which has 1 in the ith position and 0 elsewhere.

Lemma 9. For any n-plaver game G = (N; V) e F* and i € N, we have

1
Mi(Gy=2""— ZCvien (21)

Proof. Let (V) = IS N: VI(SAi}) & V(5 =1}], where for any two sets A and
B, AAB=({A— B)U(B — A). Then it 1s casy to verify that

__—
mii(7) +m,-{ﬂ'} = ;,u,-{'lr"}l.
We now compute
Cvigi) = Z {_1}1" (x)BVxde))
xefy
=|{x: Vix)=Vix@a)}| — |[{x: Vix) &£ Vix D e}
=2"—2|{x: Vix) £ Vix @ el
=2" — 2 V)y=2" —4[:?1;{6'} + m,-{ﬁ”_

This gives us the desired result. 0O

Corollary 10. For any n-plaver game G = (N; V) € F*, we have

L

]
M(G)=n2"""— 3 ZCV{&‘;}I. (22)

i=l
Thus the problem reduces o compuling E-r=| Cy{g). We nse algebraic wchnigues 1o
tackle this problem. The first two steps are the following.

Fortwo n-bit vectors ¢ and v we denote i < vif u; = v; for eachi € N. Also by i we
denote the bitwise complement of .

Lemma 11. For any n-plaver game G = (N; V) € F*, we have

L3 1 M )
D Cvle)=—n2"+ =537 Witw). (23)

=1 =l w=Ej
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Proof. For 1 <i < n, let E; be the subspace of FY' defined by E; = {u e Fj': u < &}.
Then E;- = {u € F3': v <&} = {0, &}. Itis easy to see that |E;| = 271 We now apply
Theorem 4 Lo get

|
E Cyin) = — Z 'I-'I-'}:", (o).

W £ WEE]

Mote that
Y Cv@) =Cv(0) +Cvlen = 2"+ Cylen).

W E

Hence summing both the sides from | o 7 we obtain the desired result. 0O
The next sk 15 to simphfy the right hand side of Eq. (23).

Lemma 12, For anv n-plaver game G = (N; V') € F*, we have

E Z W3 (u) =n2? — Z wi () Wi (1) (24)

i=1 w%f weF?

Proof. Let w € FY be arbitrary, The number of times W% (1¢) oceurs in the left-hand side
of Eq. (24015 {n — wr{n)). Henee the lefi-hand side 1s equal o
Z (n —JIII{H}I}WL;:{I!}I:J'! Z W%{u} — Z 1::r{n}W5{u}l.

ne FF we £ we FF

Using Parseval’s Theorem, we have Z"Fj._-;f W%{u} = 22" This gives us the desired
result. O -

Let (N: V) be a n-player game. For 0= i = n, we define
W (1)

Kyli) = Z 12

weFE wirin)=i

Note that using Parseval’s Theorem, we have Z}r:“ Kvi(i)= 1. We rewrite Lemma 12
in the following manner:

Lemma 13.
L3 1
33 Wil =n2™ 2™ " iKy (). (25)
i=1 wZE i=(

Combining Corollary 10, Lemma 11, and Lemma 13, we obtain the main result.

Theorem 14. Let G = (N; V) e F* be an n-plaver game. Then

i
M(G) =2"" Zf.‘fp{i}. (26)
=il
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Remark. We make some observations on the complexity of computing M{G ). Theorem 14
relates MG to the Walsh transform of V. Using the fast Walsh ransform algonthm,
the Walsh transform of an r-varable function can be computed in time {n2") (see
MacWilliams and Sloane, 1977). From this we obtain the K; in 2{2") time. Hence the
vitlue of M{(7) can be computed in time G{r2").

Recall that an n-player game (N; V) is balanced if the number of winning coalitions
fi.e., the weight) of V is 27~

Comollary 15, Ler G
halanced. Then M((7)

(N V) e F* be an n-plaver game. Assume further that G is
i—1

Wl

Prool. If & is balanced, then Wy () = 0 and consequently Ky (0) = 0. Thus

i d
Kv(D+--+Kym)=1 and M(G)=2""YiKkv()z2""". 0O
=i

Corollary 16. Ler G = (N V) € F be an n-plaver game. Assume also that G is balanced
and monotone. Then m(G) = 2~ Further, equality is attained if there is a dictator.

A class of Boolean functions called resilient functions has been extensively studied
for eryptographic applications. These were introduced by Swiegenthaler (1984) and were
charactenzed n terms of Walsh transform (see Xiao and Massey, 1988). An n-variable
Boolean function f is called k-resilient if Wy (n) =0 for all 0 < wi(x) < k. We can prove
improved lower bound for games corresponding o resilient functions. The proof is similar
o that of Comllary 15.

Cormollary 17. Let G = (N; V) € F* be an n-player game which is k-resilient. Then
M(G) = (k+1)2"1,

Let X be a mandom wariable on {0, ... n} such that P[X =i] = Kvii). Then
P iKy(i) is the expected value of X. Bounds on this expected value provide bounds
onmilr).

Theorem 18. Let G = (N V) € F* be an n-plaver game and w = |Wg | is the nionber of
winning coalitions. Then

w2 —w)
-1

wi2" — w)

MG =m(G)+m(G)<n -1

(27)

Further, both the upper and lower bounds are attained.

Proof. We have

i i n
Y Kv(i) <Y iKvli)<ny Kvii).

=1 1= =l
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Using Z:;l Kyiiy=1— Ky (0), we oblain
"
1 — Kyi) = ZFKVU} = n{l - Kp{(]'}l}. (28)
1=l
By definition,

Wi 0) (2" —2w)?

32 32

KE{lh=

Putting this value of K{0) in mequality (28) and using (26) we obtain the desired resull

The lower bound s attained if any one player becomes the dictator. The upper bound s
attained if G is the parity game, ie., V(x) =wt(x) mod 2 for all x € FJ. (Note that for a
parity game the number of swings of any player i in both G and G is 2" 2. Therefore, for
such a game m{G)=m(G)=n2""2) 0O

Corollary 19. [f G = (N V') € ¥F* is monotone, then

w2 —w) wi2® — )

5] —m(F)=n i1

6. Conclusion

Dubey and Shapley (1979) argued that in a voling sitwation the sum of the number of
witys in which each voler can affect a *swing’ in the outcome 15 a measure of the sensitivity
of the situation. Following Felsenthal and Machover (1998), we consider a normalized
value of this sum and refer to it as the Banzhal (1965)-Coleman (1971 -Dubey—Shapley
(1979} sensitivity index. This paper investigales some of 18 properties, the main topics
being a characterization from a set of independent axioms and derivation of bounds for a
very general class of games.
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