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Improved Consiruetion of Nonlinear Resilient S-Boxes

Kishan Chand Gupta and Palash Sarkar

Abstract—We provide two new constroction methods for nonlinear re-
silient fundions, The first method is a simple modification of a construc-
tion due to Fhang and Zheng and constructs n-input, m-output resilient
S-lues with degree & > v, We prove by an application of the Gricsmer
bound for linear ermror<correcting codes that the modified Zhang—Z heng
construction is superior to the previous method of Cheon in Cry pto 2001,
Oursecond constroction uses asharpened yersion of the Maioranoa—MeFar-
land technigque to construct nonlinear resilient functions, The nonli nearity
obtained by our second construction is better than previously known con-
struction methods,

Index Terms—Algebraic depree, Griesmer bound, nonlinearity, re-
silieney, S-box, stream cipher.

I. INTRODUCTION

An {1, m ) S-box (or vectorial function) is a map # ¢ {0, 11" —
[0, By an (v, e 0 S-box (or (n, e, D-resilient function) we
mean f-resilient D, end S-box. An e, 100 -resilient S-box is a resilient
Boolean function. The cry ptog raphic properties (like resiliency, nonlin-
earity, algebraic degree) of Boolean functions necessary for stream ci-
pher applications have already been extensively studied. The resiliency
property of S-box was introduced by Chor ef all [7] and Bennett of al.
[1]. However, to be used in stream ciphers, several other properties of
the S-box, such as nonlinearity and algebraic degree, are also very im-
portant. Stinson and Massey (23] considered nonlinear resilient func-
tions but only to disprove a conjecture.

Camion and Canteaut |2] described a general method of con-
structing a new resilient function by composing a resilient function
and a bijection. A similar method for constructing resilient function
from {0,1}" — {0, 1} was described by Zhang and Zheng [25].
After that, serious efforts to construct a nonlinear S-box with high
nonlinearity and high algebraic degree has been made [13], [12], [17],
[6] (see Section H-D).

The current state of art in resilient S-box design can be classified into
the following two approaches.

1y Construction of {n. v, £-resilient functions with very high non-
linearity.

2y Construction of {1, v, #1-resilient functions with degree d = v
and high nonlinearity.

The first problem has been studied in [25], [13], [12], [17]. The cur-
rently best known results are obtained using the construction described
in [ 17], though in certain cases, for a small number of variables, the
search technique of | 12] vields better results. The second problem
has been less studied. To the best of our knowledge, the only known
construction which provides functions of the second type is due to
Cheon |6].

In this correspondence, we first prove that the correlation immunity
of aresilient function is preserved under composition with an arbitrary
Boolean function. This property is useful for possible application of
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resilient S-boxes in designing secure stream ciphers. Our main contri-
bution consists of two different constructions for the previously men-
tioned two classes of problems. In both cases, our results provide sig-
nificant improvement over all previous methods.

The construction for the second problem is a simple modification of
the Zhang—Lheng method [25]. To get algebraic degree o > wm, we
start with an [ve. o + 1.8 + 1 code. Then we apply the Zhang-Zheng
construction to obtain a nonlinear S-box. Finally, we drop £ 4 1 —
output columns to obtain an (#.0v, Eeresilient S-box (see Section IV).
This simple modification is powerful enough to improve upon the best
known construction with algebraic degree greater than wn [6]. This
clearly indicates the power of the original Zhang-Zheng construction.
Our contribution is to apply the Griesmer bound for linear error cor-
recting codes to prove that the modified Zhang—Zheng construction is
superior to the best known construction [6]. We know of no other work
where such a provable comparison of construction has been presented.

The Maiorana—McFarland technique is a well-known method
to construct nonlinear resilient functions. The idea is to use affine
functions on small number of variables to construct nonlinear resilient
functions on larger number of variables. We provide a construction
to generate functions of the first type using a sharpened version
of the MaioransMcFarland method. For Boolean functions, the
Maiorana-McFarland technigue to construct resilient functions was
introduced by Camion ef al [3]. Nonlinearity calculation for the con-
struction was first performed by Seberry, Zhang, and Zheng [21]. This
technique was later sharpened by Chee er all [5] and Sarkar—Maitra
[20]. For S-boxes, this technique has been used by [12] and [17],
though [12] uses essentially a heuristic search technigue. Here, we
develop and sharpen the technique of affine function concatenation
to construct nonlinear resilient S-boxes. This leads to significant
improvement in nonlinearity over that obtained in [17]. Thus, we
obtain better results than [ 17| which currently provides the best known
nonlinearity results for most choices of input parameters n, 1w, L

In arecent work [10], the applicability of resilient S-boxes to stream
cipher has been discussed. The work [10] also describes an efficient
representation and  software implementation method for resilient
Maiorana-McFarland S-boxes. It is shown that such S-boxes can be
implemented using very little memory and the output can be obtained
using very few operations.

The correspondence is organized as follows. Section 1 provides
basic definitions, notations, theory needed, and a quick review of
recent construction. In Section W1, we prove the composition the-
orem. Section I'V provides a modified Zhang-Zheng construction and
some theorems to prove its advantage over the Cheon construction.
Section ¥V provides some definitions and theory needed in that section.
It also provides a construction by which we get an (v, e ti-resilient
S-box with nonlinearity greater than the nonlinearity obtained in [ 17]
which has been known to be the best so far. In Section V1, we compare
the modified Zhang—Zhang construction with the Cheon construction,
and also compare Construction-1 of Section ¥V with the Pasalic and
Maitra construction | 17]. Section Y11 concludes this correspondence.

Il. PRELIMINARIES

This section consists of four parts. We cover preliminaries on
Boolean functions and S-boxes in Sections 11-A and B, respectively.
In Section [1-C, we mention the coding theory results that we require.
In Section 11-D, we summarize the previous construction results.

A Boolean Functions

Let F; — GF(2). We consider the domain of a Boolean function to
be the vector space 11 5.7 over  «, where ] is used to denote the ad-
dition operator over both 1 » and the vectorspace | & . Theinner product
of two vectors 1w, v & B2 will be denoted by {u, v}, The weight of an
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ce-bit vector o is the number of ones in -+« and will be denoted by wiin].
The (Hamming) distance between two vectors & — (b, .., 0]
and ¥ — (4.3, ... W isthe number of places where they differ and
is denoted by o (r. o !, The Walsh transform of an re-variable Boolean
function » is an integer-valued function W, - JO, 17" [ 27,27
defined by (see |14, p. 414])

PATECR ] Ll ()

wiEL

The Walsh transform is called the spectrum of g The inverse Walsh
transform is given by

fit ] "

1 g i
Y W lu=1y e, 2

i
T wert

An ne-variable function is called correlation immune of order [ (J-C1}
it Weilwl = 0 forall v with | < wii(s] =0 ¢ [22], [24]. Further,
the function is balanced if and only if 7,01 — 0. A balanced #-Cl
function is called #-resilient. For even n, an n-variable function f is
called bent if TV (w) = £2% for all w = 7] (see [19]). This class of
functions is important in both cry ptography and coding theory.

A parameter of fundamental importance in eryptography is the non-
linearity of a function (see [ 14]). This is defined to be the distance from
the set of all affine functions. It is more convenient to define it in terms
of the spectrum of a Boolean function. The nonlinearity nli J'3 of an
re-variable Boolean function § is defined as

i i iy
nlifs =27 = 5w ],

2west
Foreven 7, bent functions achieve the maximum possible nonlinearity.

A Boolean function g can be uniquely represented by a multivariate
polynomial over .. The degree of the polynomial is called the alge-
braic degree or simply the degree of .

B. 5-Boxes
AN (ee, e S-box (or vectorial function) is a map
Fe(0.1" — 0,13,

Let f:{0,1}" — {1, 1}" bean S-boxand g {0.1}™ — {0.1} be
an re-variable Boolean function. The composition of jy and [, denoted
by o f.is an n-variable Boolean function defined by (g o Miel =
gl An fu,md S-box Fois said to be £-CLif g = § is +-C1 for
every nonconstant in-variable linear function 3 (see [25]). Further, if
J s balanced then [ is called #-resilient. (The function [ is said to be
balanced if g « [ is balanced for every nonconstant ne-variable linear
function ). By an (n.w. 1) S-box we mean f-resilient D1, o) S-box.
Let f bean in, ta) S-box. The nonlinearity of f, denoted by nli £, is
defined to be

nli ¢
— mindnlig 2 £1: g is a nonconstant m-variable linear function .

Similarly, the algebraic degree of |, denoted by Juw! 11, is defined to
be

degi #7
= winfdegi g o (1 g is a nonconstant pe-variable linear function }.

We will be interested in {u, ) S-boxes with maximum possible
nonlinearity. Ifn — v, the S-boxes achieving the maximum possible
nonlinearity are called maximally nonlinear [9]. If « is odd, then max-
imally nonlinear 5-boxes have nonlinearity 2* ' — 25 Foreven 1,
it is possible toconstruct {n, m 1 $-boxes with nonlinearity 2 ' — 2%
though it is an open question whether this value is the maximum
possible.

An {n.n) S-box with nonlinearity 2° 2% Uis called a perfect
nonlinear S-box, Nyberg [15] has shown that perfect nonlinear func-
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tions exist if and only if o is even and n > Do, Forodd « 2 2, it is
possible to construct S-boxes with nonlinearity & L

Ifwe fix an enumeration of the set {01, 1]™, then an (v ne) S-box [ is
uniquely defined by a 2" = o matrix My, Givena sequence of 5-boxes
f oo Fowhere 1;ois an Cngon ) S-box, we define the concaten aiion

of fi..... fi. to be the matrix
M
M
M=
LN
IE2 - — 2% = 2" for some n, then the matrix 14 uniquely

defines an {ve.ni1 S-box [, Inthis case, we say [ is the concatenation

C. Coding Theory Results

We will use some standard coding theory results and terminology
all of which can be found in [14]. An [w, %, 9] binary linear code is a
subset of Y which is a vector space of dimension & over .. having
minimum distance .. We here mention the Griesmer bound (see [ 14, p.
546]). For an [1r, k. d] linear code, let % (k. &) = length of the shortest
binary linear code of dimension & and minimum distance 2.

The Griesmer bound states (see [14, p. 547])

w1
Nikdiz Z Lil (3}

We say that the parameters n, &,
equality if

o satisfy the Griesmer bound with

There is a general construction (see |14, p. 550]) which gives a large
class of codes meeting the Griesmer bound with equality. Given o and
b, define s — [ and

ar =1
I
Homgifimlen E 2
a1
where & = oy = --- = u, 22 1o Given d and &, there is an

iu}:"" 1 ke
=1 i

code meeting the Griesmer bound with equality if

minl s+ L pl

=1

(see |14, p. 5352]). This condition is satisfied for most values of o/ and k.

I Nome Recent Constrictions

Here we summarize the previous construction results.

1} Zhang and Zheng [25]: This is the paper to provide an elegant
general construction of nonlinear resilient S-boxes. The same
idea was also present in Camion and Canteaut [2]. The main
result proved is as follows [25, Corollary 6], If there exists a
linear {ve. i L-resilient function, then there exists a nonlinear
fvep o, Meresilient function with algebraic degree (e — 17 and
nonlinearity = (2% —2* T,

341

2} Kurosawa, Satoh, and Yamamoto [13, Theorem 18]: For any
even ! such thatT = 2w, if there exists an (0 — T, rwe, #-resilient
function, then tllel'e exists an (n, in, #- resilient function, whose
nonlinearity is at least ' 2" 11

3} Johansson and Pasalic [12]: They use a linear error-correcting
code to build a matrix .4 of small affine functions. Resiliency
and nonlinearity is ensured by using nonintersecting codes along
with the matrix 4. The actual nonintersecting codes used were
obtained by aheuristic search technique. It becomes difficult to
carry out this search technigue for n = 12,

4) Pasalic and Maitra [17]: Pasalic and Maitra use the matrix A
of the method 3) along with highly nonlinear functions for their
construction. The nonlinearity obtained is higher than the pre-
vious methods, except in certain cases, where the search tech-
nique of 3) vields better results.

5} Cheon |6, Theorem 5]: Cheonuses linearized polynomial to con-
struct nonlinear resilient function. The nonlinearity calculation
is based on Hasse-Weil bound for higher genuscurves. The main
result is as follows. If there exists an [u, o, 1t linear code then
for any nonnegative integer I there exists an {n+ D41, i, ¢ —
1j-resilient function with al gebraic degree 12 and nonlinearity at

least
|21,

To date, this is the only construction which provides D, o, 1]
nonlinear resilient S-boxes with degree greater than ra.

(2,.+u 9 [Jé;;' g

1. A COMPOSITION THEOREM FOR S-BOXES

We consider the composition of an (n, %] S-box and an v -variable
Boolean function. The following result describes the Walsh transform
of the composition.

Theorem I: Let f:
Then for any w € =3

10,1} — {0, 1} and g : {0. 1} — {0.1}.

. — | R R o
et — T L i f

il S0

s fiiad — {u, Fialh

By (2}, we have

o X e

e 3-:-

where L, — {v, 2} andil.
Proof:

(| quies

Hence,

e
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By (1}, we have
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Corollary £: Let £ J0,1]%  [1,7}™ be abalanced 5-box. Let
# be an va-variable Boolean function. Then (g = £ is balanced if and
only if 7 is balanced.
Progft Since f is balanced, W, .sw) — [ for all nonzero
wiC LY, Thus,

Wopill — %H'.;[[]::E'“ S LR |

Remark: It is possible for g = 1 o be balanced even when either
only f is unbalanced or both " and j are unbalanced . We present ex-
amples for these cases. Let /' - {0, 1]* —= [0, 1}* be an unbalanced
S-box and £y, fe are component functions.

ab Let fim s ws! = o s s ey e mers oy and
Jalmp kg, ) = ma hapes O wgug D Rpey 00 orpeaey and
Aty eat — rpises, Here f is unbalanced but ¢ is balanced . Ob-
serve [go Fila oo, il = Frla, o, i) = e oaa, inl =
a1 ey s balanced.

by Let file. vz, myd = g g eakg and Fals o P
Fo i s Sy Sy and gy _.a:_-j = .21, Here
both § and ; are unbalanced. Observe Ly o f1{e- o0, 0m) =
Juveme g i fe Uy e i) = g, which is balanced.

Theorem 1 and Corollary 1 provide the following theorem.

Theorem 20 Let [ be a (-resilient S-box and p be any arbitrary
Boolean function then { = F is &-CL Further, {,y o 1 is t-resilient
if and only if ¢ is balanced.

Theorem 2 shows that correlation immunity of an (v ne 0 -resilient
S-box is preserved under composition with an arbitrary im-variable
Boolean function. This is an important security property for the use
of resilient S-boxes in stream cipher design.

IV, CONSTRUCTION OF (v, e M -RESILIENT 5-Box
WITH DEGREE = .

In this section, we modify an elegant construction by Zhang and
Zheng [25] to obtain high degree nonlinear resilient S-boxes. The
Zhang-Zheng construction shows that highly nonlinear resilient func-
tions can be constructed from linear resilient functions by applying
highly nonlinear permutations in the transforming process. We take
permutation to be an inverse function and then drop (4 — L — w1}
columns from the output. The following result is well known (see, for
example, [25]).

Theorem 30 Let O be a [w, 4w, — 1] binary linear code. Then we
can construct an linear [, m., £-resilient function.

Modified Zhang-Zheng (MZZ) Construction
1. Input: Number of output columns — o, degree — 4 2= o and
resiliency = £,

2. Output: An {n.oe f-resilient function with degree & and nonlin-

£

. 1 “w
earity 27 — 2

Procedure
1. Choose an . + 1,0 4 1] code to obtain a linear [, 4 1,13-
resilient function f.
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2. Define g = (o f,owhere (22 {0, 137 " — [, 1} ! is a bijection
L . i : sl -
and deg (&1 = nlidy) = 2% — 3l F ] then
iy 2 274t (29 gl Y ant v
and feglyl — 4,

3. Drop 4 1 el columns from the output of 5 to obtain
an (w,re deresilient function with degree o and nonlinearity
J e TEM.

In Step 2, we choose the function (7 to be the inverse function over
GFi2*'" 3 (with respect to a fixed irreducible polynomial). Then the
nonlinearity of & is 2% — 217 and is given in [16]. There are other
bijections by which we get the same value of nl{3; but deyi (7 = o
is achieved only for (7 obtained from the inverse map over GF (27"
i{see [4]). The fact that ¢ = o ¥ is Coresilient if § is f-resilient is given
in a more general form in [2] and also appears in [25].

The modification to the Zhang—Zheng construction is really simple.
If we want degree «f, then we start with an [ie.of 1.0 | 1] code.
Then we apply the main step of the Zhang—-Zheng construction to ob-
tain a nonlinear S-box, Finally, we drop 7 4+ 1 — w1 output columns
to obtain an [w, m, t)-resilient S-box. Though simple, this modifica-
tion is powerful enough to improve upon the best known construction
with high algebraic degree |6]. This shows the power of the original
Zhang—Zheng construction. Our contribution is to prove by an appli-
cation of the Griesmer bound that the MZZ construction is superior to
the best known construction of Cheon [6]. We know of no other work
where such provable comparisons of construction has been presented.

Ho—1

Theorem 4: Letn, o, &, be such that the following two conditions
hold.
1) Either a) & <2 veor by ed = om = log, it 4 10
2} The parameters w, of + 1,7 4+ 1 meet the Griesmer bound with
equality. Thenitis not possible to constructan {n. e, £-resilient
function f with degree  using Cheon’s method |6].

FProof: Recall the Cheon construction from Section -1, Given
any |, M, T41 andanonnegative integer I, the Cheon construction
produces an [ | Ld | T.AMLT jeresilient function with degree 1.
Thus, if ¥ is obtained by the Cheon construction we must have n. =
N+ D4Llm— M+t —T andd— I

This means that an [n — & — L, 4 1] code will be required by
the Cheon construction. Since the parameters n, o + 1, & + 1 satisfy
the Griesmar bound with equality, we have w = 7.7, | 52

Claim: I a) d < v orb)d = ow = log,# — 1) then

n of ]{.i ’V.I“j—].-‘

=]

Proof of the Claim: Since n = T°7_. [4£L] we have that

a1 =
t+1
i'l—ff—l{E %-‘

it and only if

>[5 -e-1< T[]
il = il !

IfT < 9, then the last mentioned condition is wivially true. So suppose
& = rn 2= log,(f 4 13 Then the above inequality holds if and only if

i _fj—l-‘ < d4+ 1.

RIIR)

Since i > log 08 4+ 11,

W —?l 1
Z -; -‘ = —rm+1d+1, for e = 1.

i

This completes the proof of the claim.
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Since

m—1
~ |t
r.t—-".l'—l{l"';-—‘l-‘

the parameters « — o — 1 0w, 7 4 | violate the Griesmer bound and
hence an [n — 4 — L.m. f + 1] code do not exist. Thus, the Cheon
method cannot be used to construct the function §. =

The following result is a consequence of Theorem 4 and the MZZ
construction.

Theorem 5: Letw, e, o, § be such that the following two conditions
haold.

1) Eithera)o < niorbhd = o 2 logadd — 17,

2y An n.d 4 1% — 1] code meeting the Griesmer bound with
equality exist. Then it is possible to construct an (n, me, $i-re-
silient function | with degree o by the ML method which
cannot be constructed using Cheon’s method [6].

Remark: Asmentioned in [14, p. 550 ] there is a large class of codes
which meet the Griesmer bound with equality. Further, the condition
o Fone = b 00 1) B8 quite weak. Hence, there exists a large class of
fu, e, Pleresilient functions which can be constructed using the MZZ
construction but cannot be constructed using the Cheon [6] construc-
tion. See Section VI for some concrete examples.

MNonlinearity in the Cheon method is

— oo 10
.-'2.\+J.J—1| 2 1,-'

{see item 5of Section H-D) whichis positive if D = N 1 for V= 2,
So, for 3 < %, the Cheon method does not provide any nonlinearity.
Thus, the Cheon method may provide high algebraic degree but it does
not provide good nonlinearity. Infact, in the nexttheorem we prove that
nonlinearity obtained by the MZZ method is larger than nonlinearity
obtained by the Cheon method.

lr A O

Theorem 6 Let £ be an (.o, €-resilient function f of degree d
and nonlinearity v, constructed by the Cheon method. Suppose there
existsa linear [ie.of 1,0 | 1] code. Then it is possible to construct an
D, e, Pleresilient function  with degree 4 and nonlinearity 2 using
the MZY method. Further, va = .

Proof: Sincean |n. d41, £+ 1] codeexists, the MZZ construction
can be applied to obtain an {we. e { J-resilient function i with degree o
and nonlinearity nlig) — ng — 27 12" “F . It remains to show
that 1, = n, which we show now. Recall that

n, =2 _gn il II_'I,-":E"J _ g X .‘,.
Hence.
we — g o =27 L T I|_1'I"—’_J _yn i

Thus, we have wy = oy if

[ GELATIE Y e
2T e WU e

o ] E 1.

The last condition holds if and only if

Lyl R N8 1 1
[v2] =2 (E‘le—_z)

ot 2w VI L et g st oty
Again, the last condition holds for 1 <2 4 < »n — 3. Hence, ne = m
for 1 < o < n — 3 The maximum possible degree of an S-box is
n 1.Ford=n 1landd = 2 theCheon construction requires
[tk b4 1and [1, e, b4 1] codes, respectively. Clearly, such codes
do not exist. Hence, vy > n, holds for all d. T
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Lemma 1@ Let § be an (v, ne, ! -resilient function 7 of degree o >
w1 constructed by the Cheon method and v > Ing.it 4+ 11, Then the
parameters , 4 + 1, # + 1 satisfy the Griesmer bound.

Progf: Since [ has been obtained from the Cheon method, there
existsan [wr  «f  l.wn.t | 1 code. Hence, the parameters w1,
e, and £ 4 | satisfy the Griesmar bound. Since v — o — | e and L4 1
satisfy the Griesmar bound , we have

=1 -
- I
w—il—17= fi l -‘

i.e, we have

ELTI

n :_w!+1+Z

il

Tk
2 !

= 1 fori = m. Hence,

Asm = loga(t 4 1) we have

e |

i

¥ el 1
nzidt i —id—mt ity \f+l\+z

iy

L 1 =

This shows

and consequently

Thus, the parameters «, 4 4+ 1,0 4 | satisfy the Griesmer bound.  _J

Remark: Since the parameters o, o + 1, and * 4+ 1 satisfy the
Ciriesmer bound, in most cases it is possible toobtain an [re, 0 | 1,01 1]
code (see |14, p. 550]) and apply Theorem 6. In fact, we do not know
of any case where a function can be constructed using the Cheon
method but not by the MZZ method. Theorems 5 and & prove the clear
advantage of the MZZ method over the Cheon construction. Thus,
the MZZ method is the cwrently known best method to construct
[i. v, ] -resilient function with degree d == 1.

V. A CONSTRUCTION TO OBTAIN HIGH NONLINEARITY

In this section, we concentrate on obtaining (n, e, #l-resilient
S-boxes with high nonlinearity only. We present a construction
method which improves the nonlinearity obtainable by the previously
known methods, We start by mentioning the following result which is
restatement of Lemma 7 in [12].

Theorem 70 Let €7 be a e ne.d | 1] code. Then it is possible to
construct {27 — 17 % e matrix £ with entries from ), such that

{":1 (L A SO M et 2™ — I] = I'-._ {lrU- ---.':]_:l}

for each nonzero vector o, ... ) 155

Let I be the matrix in Theorem 7. For {1 < / < 2™ — 1) and
L1 <0y <7 ne), define a a-variable linear function

L i
it censinid S g weseisra

Given thecode (7, wedefine a 12" — L x oo matrix i 7 whose entries
are w-variable linear functions by defining the 7, jthentry of L0077 to be
Faglirp oo} We have the following result which follows directly
from Theorem 7.



4

Proposition 1@ Let~ £ & be anonzero row vector. Then all the
entries of the column vector L0 ' are distinct.

For positive integers &, f with & </, we define L{O0 & 1) to be the
submatrix of (7] consisting of the rows & to & Thus, L 1,27
y— LI Let Clyyea - et bea (poni) S-box whose component
functions are &y, ... 5. We define &G L R Do bean (7 - 1+
L3 = e matrix whose ¢, fth entry is

LY T TTRR F X0 T A DS WY 3 SR |

forL=tdisT—%+4landl =2 f < IFf—&k—1=2" for some
#othen &7 Lo BT definesan S-box 2 {0,117 — {01}
in the following manner:

d b A O SR L |
= Gl la) & Ly 1l ol
where 1 <0 § <0 wn, 1 < [ < 27, F ..., F, are the component

functions of # and =_ -+ =~ i the binary representation of £ — 1. By
F— & LI0 kL T we will mean the above representation of the S-box
E'. Note that the function F is t-resilient, since each L, Lo, 00,2000
is nondegenerate on at least (¥ | 13 variables and hence /-resilient.

In the matrix W = Gy ..ocomed (0 L0 E L) we say that the
row L;. of L{C) is repeated 2 times. Let iy, ., 7,0 and
Hiwoooovp, be ipom) and (g, m1 S-boxes, respectively, and
A =G Lo B, AL, = H O LG KT Then we say that the
row L.,y of L0C, (8 = 7 < 1) is repeated a total of 27 | 27 times
in the matrix "4, A1,

Proposition 1 has also been used by [17] in the construction of re-
silient S-boxes. However, we improve upon the construction of [17] by
utilizing the following two ideas.

1y We use all the 2" — 1 rows of the matrix L ¢} In contrast, [ 17]

uses at most 27" yows of £

2} We allow a row of £¢"1 to be repeated 2°' or 2'' + 2% or

2T 42T fimes as required. Onthe other hand, the number
of times a row of L) canbe repeated in [17]is of the form 2",

It turns out that a proper utilization of the above two techniques re-
sults in significant improvement in nonlinearity. We will require (+. )
S-boxes with very highnonlinearity. For this, we propose to use the best
known results which we summarize in the following definition.

Definition 10 Let (7 bean {r. v} S-box satisfying the following.
1y Ifr < ree, (7 I8 & constant S-box,
2y I ne v o 2o, 0I5 a maximally nonlinear S-box [9].
3p Ife = 2moand v is even, {7 is a perfect nonlinear S-box [16].
4y If v = Zimoand ¢ is odd, G is concatenation of two perfect
nonlinear 5-boxes (see Section 11-B).
Then we say that €7 is a PROPER S-box.

The following result summarizes the best known results on the non-
linearity of PROPER 5-boxes.

Proposition 2 Let £ bean {r, s} PROPER S-box. Then

I}y Ifv < =, nliGh = 0.

2} Ifve < ov < 2o then nlici = 20 ' = 27% if v is odd and
Rl = 2777 — 2% 0f r is even.
3y If ¢ = Zin, then r||[_G';- — 2t — 23T ¢ s even and

nlicys — 270 — 277 if r is odd.

MNow we are ina position to describe a new construction of resilient
S-boxes. The construction has two parts. In Part A, we compute the
number of rows of D7) to be used and the number of times each
row is to be repeated. The output of Part A is a N« of the form
el = im0 b Figho oo Dy M1 which signifies that o,
rows of L0071 are to be repeated £, times each. Part A also computes a
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variable called effect which determines the nonlinearity of the S-box
(see Theorem 8). In Part B of the construction, we choose PROPER
functions based on Hst and describe the actual construction of the
S-box,

Construction-I
1. Input: Positive integers . m 1 and ¢,
2, Output: A nonlinear | r, e, t1-resilient S-box F.

Part A
1. Obtain minimum % such that [u, e, # + 1 code £ exists.
2, Case: o — 1 5 U, then function cannot be constructed using this
method. Hence stop.
3Casern —w =00
(0= — =y Baf — {02 7, Lib and effect — L
(b me = — o= B — L Jist — {2 —t v memmeslny
and effect = wrmemmol
fehve —we = T sl = {2100 and eftect =
o]+
(dh 2ne = on— 0o«
(i —aw — 2 4+ 2eomoeven (0 = & 4 22
list = {1,277 -], {3 — 3, 57
effect = 20F-+7%
(il e — =D 4 2o lmeven ) e < 52—
sl 2 Rl ig g g mee el
+2!’:.-.—'| E'Jn::l I:g'r-. e 31 2.1-..4.-5.-—1 + 2?-4_- ]'\: and
effect = 2% 4 2% — pemlbs
1wk = i2™ 0 029 and effect = 2™,
iy n—u=Sw42e4 Limodd 0= 2 |52 — 1,
Het — (L2 e — 2.2 1 "3 and
effect — 2=

(ivin—o — 3m —2erm odd, O = e < ’.ﬂ:lésr—

",

+

[
=

i
»o=
#

rum — g ym=Re g ogrebl) 1), 020 and effect =
wie—l ._af—l-—

(viwn W= Iy odd:; st = {[2::1 _.?'IW i and
cffoct = 2

(eh i —u = 3m.
fibn —uw=%m —2e4 1o = list =
frmelopdmAled 2y gnd effect = gretetl
(il e — w = oo 4 20 im eveny = > Fhor (omoodd,
0 e L_ T e R O i e
et T g2 R e e g
pffect = wmits - e o
Gi)e w="Thn  Deiwceven:l) < e < I Uikl =
fiae — a3 afe ho g ey g bde Uy g
elfecl = 2+ — 21+ %
{ivin — 0 —dm+ Zecmodd: e = [T list —
v ipdmekie g ame2ebly e pmtE=20 and
effect = o te

Lot t—

Part B
L If list = {027,270
e Obtain L3001, 27) from Lid7) by selecting first 2° rows of
i,
o Let £ be an (v, v ) PROPER S-box.
e Define F' = &' 4 L{C, 1, 2%
* This covers cases 3.(a)i{byic)d)iii) second item, (d vy
and eli) of Part A,
2, Case: 3(d i) of Part A
o Let )y and Oy be (i 4+ 2¢ — Lo ) and (e + 2e,m)
PROPER 5-boxes.
# Define ' =G 0 L0 1010, Fy = G B0, 209 — 10,
w ! is the concatenation of #* and f5.
3. Case: 3(dpii) first item of Part A and = — 0
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e Let ) and 2 be Do 4 Lomdand {1 e PROPER
S-boxes.
e Define I — & S LiC Fo— & = Lic By —
Fi,1.2).
#F i5the concatenation of £, A& and Fy.
4, Case: 3(dyii) first item of Part A and ¢ £ 1]
elet &0 Cloand &y be (m 4 2e 4+ Lo, (2e + Lo and
(2e,m ) PROPER S-boxes,
w Define F, =7 < Ly, Fu = e .irlf-v:I Fy =
G i 1.3,
/" i5 the concatenation of £, % and Iy,
5. Case: 3(d)iii) of Part- A
w Let G0 oand (3o be G — 2+ 2o and (en + 2 — 1oen)
PROPER S-boxes.
e Define 1 = €0 5L L0 1y = 60 0 L0, 2,27 — |
o[ is the concatenation of &\ and F..
6. Case: 3(d)iv) of Part A
w Let (3, 67 and (re be b | 2eamh, e |2 and
(% lon) PROPER S-boxes.
e Define 1 — ) & L0, 1,27 — 20, 0% — &0 = L0, 27,
=12t =1L By - Gy = R L2t = 2
#«F isthe concatenation of Fy, £ and Fy.
7. Case: 3(e)ii) of Part A
® Let £, e and €0 be {20 4+ 2o e, Jvo 4 2eoved and
[ 4+ 22 — L) PROPER S-boxes.
& Define Fy — &7 0 L{C) B — & B,
Fo= Fa0: L7100,
» ! i5 the concatenation of {7, M5 and fy.
&, Case: 3{epiii) and 3(eWiv) of Part A
o Let &, Gooand Gy be (2 + 2e,m ), Jin 4 2e 4 2o
and {re 4+ 20 — 1, ) PROPER S-boxes.
w Define £ = (5 20 L{01L2™ 25, o = (5 o0 LI 2™
S R e N Tl L Ly
[ i5 the concatenation of I, I and I,

Theorem & Construction-1 provides anonlinear |, .t -resilient
S-box with nonlinearity = 12"~ — 247! » effect;. where effect is
as computed in Part A,

Proof: There are several things to be proved.

a) The output function F is an (#.mm S-box. by F is t-resilient. ¢}
nlify =i~ — 237 s affert,

Proof of a): The output of Part A isa

Lot = {fvwey . 0 1. I"r.'-'_.;:_ PR T T ff.l_-l':::l.

Part B ensures that for 1 <2 ¢ << &, w; rows of L1C) are repeated F.
times each. It is easy to verify that in each case of Part A we have

L

l:‘”-.i.llli_; = 2-"- W

i=1

Since each row I.; , of L{C) defines a (». ne] S-box, ultimately 1 is
an [ ] S-box.

Proof of b): Each row L, . of LI} defines a t-resilient (=,
S-box. F is formed by concatenating the rows of L{(7) one or more
times. Hence, ' is t-resilient.

Proof of ¢} The nonlinearity calculation is similar for all the cases.
As an example, we perform the calculation for Case 3(e)ii). In this
case, Part A computes

lial =

{ (2. .)Elr-+'_':e

+ zm—l:'-r + 2:h+'_':e—_]1 I:2r'| _ -':|-._ 2'_':'.L+E< + Tl:—E‘:]}‘

345

Let ”-l 2L .-_;.J:-:'- Ly .2|‘-= | & + j:-:« LT | and HZ i :2_'m | 2 + 21:*. | J::.
Rows L. . and fo. of L0027 are repeated 1, times each and each of
the rows Dy o to Lyw . is repeated Fe times each. Part B uses three
PROPER functions (7v. €7, and (7, to construct 5-boxes F2 | Fo, and
Fi, respectively. £ is the concatenation of £, #5, and f5. We have to
show that if » is anonconstant »i -variable linear function and A is an
we-variable linear function, then 3o F, ) = 12771 =2 " wallecli
We write A as

AW o tnm s Py VA Wt A e,
Let sz e St = flEnae ey Bae b L8 w0 e vy 50 1) fOr S0IME noNZero
vector ¢ = {rp, ... ) C 155 The Boolean function » = F is a
concatenation of Boolean functions » = /7, » o F5,and » = 15, For
L=q7=2

i

o o =lrald o et
and
poFy—{roG)=iLith L2

Using Proposition 1, we know that all the entries of the column
vector £{¢7«" are distinet w-variable linear functions. Let
Lit%e" — Tuoo oo pee q]" . The function v o F is a concatenation
of the p1,"s and their complements. Further, o and e are repeated -
times and oz, ..., grpmo are repeated [ times in the construction
of vo FOIEAE T e ) then didg, sl = 2 for each
1 =i« 2 —1and hence dip ¢ FL A = 2777271 = 2777
MNow suppose Ay — p; forsome§ = {1,...,2'" — 1}. In this case,
aiae s FLA will be less than 27 74 and the actual value is determined
by the repetition factors 1) and £z, There are two cases to consider.

Case {: Ma — oy or prr. Without loss of generality, we assume
As — i, the other case being similar Since A — p . we have
dldL ) = P for 2 0 27— 10 The function g is re-
peated ¢y times and each of the functions peg. ... . rz=—, is repeated
f¥: times. So the total contribution of fra. jra. . e - todivaf, 4]
i 27N — (27 — 31, We now have to compute the contribution
of g todiea F, ). The function g is repeated in 2 o F; by XORing
with e = (7., Hence, the contribution of - to ol FL A} is equal to

A

kv e &= nlir e &0 + nle o £040)
="l G 4+ nliG ) 4 nliGsa)

since nlie = G1 = nlid;). Each O is a PROPER function whose
nonlinearity is given by Proposition 2.
Hence,

dipa =277 (ff, P WM = 20l

+nliG: 4 nlis, )

=% " Y B = 2inliG
+ nliCaT 4 nliGsnm
ar—l _ au-—l

=

wonliedy s 1 onlicdag 1 nlidFain
From the given conditions, it is easy to verify that

effect — 8, — 2inli? 1+ nlidr ) —nlidyn
and so

dies AT — (27— 20w offect).
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TABLE 1
CoMPARISON OF NONLINEARITY OBTANED BY MZZ COMSTRUCTION TO THAT OBTAINED BY CHEON [6]

Farerich (10,8, Lol | & A, 2107 | (2, &5 5,107 | (21, 7. 5. 127 | (386, 1. 11
Chewim [6, Theorem 5] H ELL T wRE T T 2T 212
MZEE g oav alT ol 921 ald a2l glv ET 20
TABLE 11
CoMPARISON OF CONSTRUCTION-1 MONLINEARITY WITH THE NONLINEARITY OF [17]
Cane Sooclieiwivy of (LT Congriction-I oo ety
_ : S g gl s 1 A 1
in T —d e — b even | 2% ot it =1 'j_':-'-'_u—u-—'-_l-'E.:s_x!r:—E..u Ez:::
G- 3 — &, ¢ooded | 37T — giemwe T an bge w miE(3)
fi— = —3 g1 gl 1) =t — Mglemm—tl (g)
] s e 1 PR ﬂ:_:_-'zr_l |, l..- =
no—a = e, woadd PR E S s b L P Byt (5)
an i |r.l.|_|;§ + —tl iﬁ}
TABLE 111
ComparISON OF CONSTRUCTION-T NONLINEARITY WITH [17] FOR orn = 4 AND RESILIENCY = 1 i 2.3
n=13 n=14 =17 p=T14
PRk L T - B T F e Iy [ = T = I
n=1a n= 16 W= 10 n=12L
(2l il rallo gty pads Al pala 1:32”"1 (8 plly vglé Mally | gk aldy [pdd :1213'1
n=T§ n=17 W= =122
I-_;_||.J_-‘;_,||-:_.:.2|~._._;.|r_|] T _z ':.:[2"]_%2' ] -_;_.l'_:-__,|-z:1::2|9_§2|2:: ['2'2' _2|3:|:|.2._| _%uls}
Case 2: de = p, forsome < 2 [3,....%" 1], In this case, we by & = 2,02 < e oo, (o) o= (L ITOSRL N 40000,
proceed as in the previous case to obtain (LA ST Ineach case. an [o. & =+ 1.0 + 1] code exists.
HraF A =228, 412" — LIRS+ 27 nlic 3+ nlic ot=232=<m=dind = (7,2),{83)11.6).0112,7),

=% Ry 0 — R 2nl Sl
=27 i 20l ) = nli )
= A O A T [T

w2t el effact

2! e
since
effect=10 =200l nlC e -0l e e e = 20nl 0 4 nlisiz i,
By Cases 1 and 2, it follows that
nlige By =2°
Hence, nli 4% — 2% ' — 2*

2 1w effect.

"o effect.

W1, RESULTS AND COMPARISONS

Here we compare the construction methods described in this corre-
spondence to the known construction methods.

A Degree Comparison Based on MEL Construction

We present examples to show the advantage of the MZZ method over
the Cheon method. The Cheon method cannot construct {n, re, #i-re-
silient function of degree o > 1o = 2 if the following two conditions
hold:

1)
t 1 2ol dto¥ Zto 13 léto 31
Tl e | L7 TR i =l WS

2} The parameters n, & + 1, § — 1 satisfy Griesmer bound with
equality.

We next present some examples of », ne, o, and # satisfying condi-
tion (1) and (2) such that the MZZ method can be used to construct an
Do, fleresilient function with degree d.

o

apt = 1,2 < e o= o 4+ 21t is easy to check that a
W2 — 1. 2] code exists,

(1587 In each case, an [o. ol + 1,8 4 1] code exists.

In aj}c), an [, m,t-resilient function with degree J can be con-
structed using the MZZ method, but cannot be constructed using the
Cheon method (see Theorem 5). Now we present some examples where
both the MZZ and Cheon methods construct (., 1w, #i-resilient func-
tions with degree o and compare their nonlinearity using Theorem 6.
AN (nve 1] S-box is an (e, e, Deresilient S-box with degree A,
We see in Table | that in each case the nonlinearity obtained by the
MZZ method is far superior to that obtained by the Cheon method.

B Nonlinearity Comparizon Based on Construcfion-{

We compare the nonlinearity obtained by Construction-1 to the non-
linearity obtained in |17, Theorem 4. The nonlinearity obtained in [17]
is better than the nonlinearity obtained by other methods. Hence, we do
not compare our method with the other methods. [tis to be noted that in
certain cases the search technique of [12] provides better nonlinearity
than [17].

Onur first observation is that the nonlinearity obtained by Construc-
tion-1 is at least as large the nonlinearity obtained in [17]. The intuitive
reason is that we use all the rows of the matrix L{C") and hence the rep-
etition factor is less than that of [17]. The detailed verification of the
superiority of Construction-1 over [17] is straightforward but tedious.
In Table 11, we summarize the cases under which Construction-1 vields
higher nonlinearity than [ 17]. We list the different cases of Part A cor-
responding to the different rows of the table.

1} Case 3{dWiiMirst itemn: 2) Case 3(dpiv): 3} Case 3(dMi) and Case
Jdpiii); 4y Case 30dW i Mirst item; 5) Case Jepiii). v > 2 and Case
HeWii), v o 2 6) Case edivy, v o 1.

In Tables M-V, we provide some concrete examples of cases where
the nonlinearity obtained by Construction-1 is better than that obtained
by [17]. Each entry of Tables I1I-V is of the form {«. b)), where « is
the nonlinearity obtained by [17] and ¥ is the nonlinearity obtained by
Construction-L.
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TABLE 1V
COMPARISON OF CONSTRUCTION-l NONLINEARITY WITH [17] FOR 972 = 3 AND RESILIENCY = 1,2, 5
i — LB n—17 T— 18 - 21
fglt 5 E-J]I :21:\ _ ;2“_} I:Eld _a EJ.L"]! I:'EJ.H b 2*:'!] fgl'r e EJ.U:I! I:'gl'. _ iéﬂml | I:’zzu e 2_1;“ [22’0 _ 2211 i
ii= 10 1= "™l =21 =124
e Aty ::-ZIR o %‘-’m'l 2 :{}: LS {2'*" o 2|.~::|_ [z-z‘n m %-_;I.-t'l - 4}: P - %-JH:I
i — L& n—14 1 — Hl =23
5 [-21- 211]1 :'21'." 3211] fz.!’. ' ..':'fg.:‘ 211] 3 II?EJ.II" ?uﬁ_l: 'I:EJ.I.I fézlz] | I:EH: A \ [2.3. E'zl.‘u':l'
TABLE WV
COMPARISON OF CONSTRUCTION-1 NONLINEARITY WITH [17] FOR 7 = & AND BESILIENCY = 1,2, 3
i — I 1 — 20 i — 21 no— 22
PN A I N e T I e N e e N ¥ 1|
At | 2L W ] : 4 at M 3
n— &l 1n— &4 n— & n— 45
(231 2.-] :.: [221 2..I": l:?;"; ?1'1_]: I._E_J‘ :I!: 21 l] Il‘gd.l 2-.: :I: |~22.I 21-]": I:?H' 21:’.-}: I:E_-'-J ::.{Ii -21.:]
n— 32 n— 23 n— 3 n—2
fzil - 1:;'.[2‘“ -1 3.: I:'g?"- _EM:I!I:'E'}" e ,II:E“] fgﬂﬂ - ":::[2’:3 _2|1; I:'E'M —'_’-Ibtlll:'zm 2 :;2"3]
TABLE ¥I1
COMPARISION OF CONSTRUCTION-1 NONLINEARITY OF {36, &, 2]-RESILIENT 5-BoxEs UsinG DNFFERENT METHODS
t T fi G 4 a 2 1
[13] 2—3!: = 22': 2‘&-.:5 = 22'." 235 o 2% 1 332:\ =R 225 2:-.:\ £ 25". 2—35 = 323 23-:\ R 222
9] 25 _oF ) OE T oW 0¥ | o T ¥ ¥ [k
1? z{ﬂ- o 2‘.‘E 2.-!-: o 2!-1- U -__:'H 2{..- L. 2‘1.{- g EI‘M z-ﬂ':‘ i zilil 2.{.: o 21H
Cmrs 2% s ;‘.32”" AT e T Lo .‘:. PR I L
Condes [20,8,8 1m AT (17,21 [ [16. 5, 3] [13,2,4] [12.5,3] [m2,2]
The linear codes used in Table 11 are [3.4.2], [7.4.3], and REFERENCES

[#.4.4]. The second. fourth, and sixth rows give the nonlinearity
of (i, re, Firesilient functions corresponding to the codes [3. 4.2,
[7.1,3], and [3, 1, L, respectively, for different values of n. The linear
codes used in Table IV arve [§, 5. 2], 9. 5. 23], and [14, 5. 1].

The linear codes used in Table V are [7.6.2], [10LG.4], and
[11, G, 4], Nonlinearity of (56, 2,1 resilient S-box has been used as
very important examples in [12], [13], [17]. Now we compare our
nonlinearity with results in Table V1. The results of [12] are not con-
structive. They show that a resilient S-box with such parameter exists.
MNote that, except for resiliencies of order 1 and %, our nonlinearity is
better than nonlinearity of [17]. It should also be noted that in all the
cases we provide construction with currently best known nonlinearity.

VIL. CoNCLUSION

In this correspondence, we considered the construction of nonlinear
resilient S-boxes. We proved that the correlation inumunity of a re-
silient 5-box is preserved under composition with an arbitrary Boolean
function. Our main contribution has been to obtain two construction
methods for nonlinear resilient S-boxes. The first construction is a
simple modification of an elegant construction due to Zhang and
Zheng |25]. This provides (w. e, fr-resilient S-boxes with degree
o ore. We prove that the MZZ construction is superior to the only
previously known construction [6] which provided degree < > 1, Our
second construction is based on concatenation of small affine func-
tions to build nonlinear resilient S-boxes. We sharpen the technigue
to construct (e, oe. & -resilient S-boxes with the currently best known
nonlinearity.

Algebraic attacks [8] are a new type of attack on stream ciphers.
These attacks exploit the fact that even if a function may have high de-
gree, it may have a low degree multiple. In this correspondence, we
have not considered algebraic attacks. A possible future work is to
identify the possible subclass of functions which can resist algebraic
attacks.
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The Maximum Squared Correlation, Sum Capacity,
and Total Asymptotic Efficiency of Minimum
Total-Squared-Correlation Binary Signature Sets
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Dimitris A. Pados, Member, IEEE

Abstract—The total squared corrdation (TSC), maximom squaned
correlation (MSC), sum capacity (O, . ), and total asymptotic efficiency
(TAE) of underlosd od signature sets, as well as the TSC and ., of over-
loaded signature sets are metrics that are optimized simultaneously over
the realfcomplex field. In this present work, closed-form expressions are
derived for the MSC, €2, ., and TAE of minimum-TSC binary signature
sets, The expressions disprove the general equivalence of these perfor-
mance metrics over the binary fidd and establish conditions on the number
of signatures and signature length under which simuoltaneous optimiztion
can or cannot be possible, The sum-capacity loss of the recently designed
minimum-TSC binary sets is found to be rather negligible in comparison
with minimum-TSC meal/com plex-valued { Welch-bound-equality ) sets.

Index Terms—Binary sequences, cod e-division multiple access (CDMA),
code division multiplexing, codes, signal design, spread-spectrum commou-
nications, Wadch bound.

I INTRODUCTION AND B ACKGROUND

In direct-sequence code-division-multiple-access (DS-CDMA) sys-
tems, individual user signals use distinct signatures {also known as
spreading codes) to access a common, in time and frequency, com-
munication channel. In conjunction with channel and receiver design
specifics, the overall system performance is determined by the selection
of the user signature set. Signature set metrics of interest include the
total squared correlation (TSC) [1]-]6], maximum squared correlation
(MSC) [T, 2], sum capacity Coum [ 2], and total asymptotic efficiency
(TAE) [T], [8]. We recall the definitions of these metrics below.

If
5%me.oxl, @€t |mll=1i=12...K
is an £ ® A matrix that represents a set of X normalized (complex-
valued in general) user signatures of length (spreading gain) L, then

i} the TSC of § is the sum of the squared magnitudes of all inner
products between signatures

LT
TSCiS 2% 7% 35'3_.-| :

=1 /=l
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