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Abstract

This paper considers a class of combined (2r — l)-stage Nx N interconnection networks composed of two
#(= logaN)-stage omega-equivalent networks Mis) and M'(#). The two networks are concatenated with the last stage
of M{n) overlapped with the first stage of M'(n), forming a combined (2# — 1) stage network. Though both Benes net-
work and (2n — | )-stage shuffle-exchange network belong to this class, the former one is a rearrangeable network,
whereas the rearrangeability of the latter one is still an open problem. So far, there is no algorithm, in general, that
may determine whether a given (2n — 1)-stage combined network is rearrangeable ornot. In this paper, a sufficient con-
dition for rearrangeability of a combined (2n — 1)-stage network has been formulated. An algorithm with time com-
plexity O{Nn) is presented to check it. IF it is satisfied, a uniform routing algorithm with time complexity O(Nn) is
developed for the combined network. Finally, a novel technique is presented for concatenating two omega-equivalent
networks, so that the rarrangeability of the combined network is guaranteed. and hence the basic difference between
the topologies of a Benes network and a (2n — 1)-stage shuffle-exchange network has been pointed out.

@ 2004 Elsevier B.V. All rights reserved.

Kevworde Multistage interconnection network (MIN): Blocking MIMN's; Rearrangeable networks: Topological equivalence; Omega-
equivalent networks: Permutation routing

1. Introduction

For high-performance computing/communica-
tion applications, multistage interconnection nei-
works (MIN's) have been studied extensively
during the last two decades. With the advances
in optical technology, optical multistage intercon-
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nection networks are also emerging as a promising
networking choice [1] for connecting processors
andfor memory modules. A full-access unique-
path N = N multistage interconnection network
[13,14], consisting of n stages of 2x2 switches,
(N=27, 15 essentially a minimal structure that
provides full-accessahility with exactly one path
between any input—output pair. But these net-
works are Blocking by nature. Since, to route
any arbitrary N x N permutation P through the
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network, two input—output paths may require the
same link, causing conflict which indicates that
the paths can not exist simultaneously.

An N x N rearrangeable network is one which
can connect its N inputs to its N outputs in all
N! possible ways, by rearranging the existing con-
nections, if required. Hence, rearrangeability is a
desirable feature of MIN's that can realize all per-
mutations using minimal hardware. Benes network
is a widely studied rearrangeable multistage
architecture that uses the theoretically minimum
number of stages required for rearrangeable oper-
ation [2,16]. This network provides an equal path
length, low latency and low switch count. Its rout-
ing is also simple with a complexity O(Nn) in
general, though many important classes of permu-
tations like BPC (bit permute complement), LC
{linear-complement), etc. are found to be self-rout-
able in it [3-3]. 1t can be used as optical multistage
interconnection networks as well [7].

However, Benes network is essentially the con-
catenation of two unigue-path full-access bocking
MIN’s, each with n stages, namely the baseline
network fi{n) and the reverse-baseline network
B~ '(n) [13], overlapping the last stage of fi(n) with
the first stage of i~ '(n). Since then the study of the
interconnection topologies of (2n — 1)-stage net-
works formed by concatenating two unigue-path
Jull-access MIN's becomes a topic of high interest.
In [6], the authors considered a class of combined
(2n — 1) stage networks, represented as A @ A,
where both A and A" are omega-equivalent net-
works. They proposed an O{N*n) algorithm to
check the topological equivalence [8] of two such
networks. In [9], Lee proved that Q& Q' is
equivalent to Benes network, and, hence rear-
rangeable. But most interestingly, the rearrange-
ability of 24 2 still remains an open problem
[17.18]. A coding scheme was proposed in [10] to
check the equivalence of a limited class of
{2n — l)-stage networks with Benes network. So
far, there is no general algorithm to find whether
any given (2n — l)-stage combined nerwork is
rearrangeable or not. Throughout this paper, the
equivalence between networks means the topologi-
cal equivalence [14].

The topological equivalence of any (2n— 1)
stage network with Benes network proves that

the former one is a rearrangeable network. But
so far, it will need O(N"n) time to decide the equiv-
alence [6]. Moreover, still there is no result to show
how we can correlate the information of topologi-
cal equivalence with the exact routing algorithm of
a network. In [11,12] some routing algorithms
have been presented for symmetric (2n — 1) stage
networks, like Benes and @ & @' only.

In this paper, we focus on the problem of deter-
mining the rearrangeability of a combined
{(2n — 1)-stage network A5 A'. Here, a sufficient
condition for the rearrangeability of a combined
network has been established, and an algorithm
of O(Nn) time complexity has been developed to
check it. Next, given any such rearrangeable net-
work, and an arbitrary N x N permutation P, a
simple and uniform routing technique has been
developed that routes P in O(Nn) time. Finally, in-
stead of overlapping the switches in the same phys-
ical position, an elegant rule has been proposed for
concatenating two (-equivalent networks that
guarantees the rearrangeability of the combined
network, and hence points out the difference be-
tween the Benes network and the 2 & @ networks.

The paper is organized as follows. In Section 2,
some preliminary ideas have been introduced. In
Section 3, the concatenation of two -equivalent
networks has been considered. In Section 4, the
sufficient condition for rearrangeability of com-
bined (2n — 1)-stage networks has been proved.
Section 5 describes the new concatenation tech-
nique to guarantee the rearrangeability. Section 6
presents some concluding remarks.

2. Preliminaries

So far, a large number of blocking MIN%
have been proposed in the literature, e g, baseline,
omega, reverse-baseline, flip, etc. Here, we repre-
sent such an MIN with the following notations:

¢ inputs (and outputs) are labeled as: 0,1,...,
N — 1, respectively, and each is represented
uniquely by an » bit binary string x,_x,_2 ...
XXy

e the stages are labeled as: 0,1,...,(n— 1), from
the input side towards the output side;
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e the switches of each stape are labeled as:
0, 1,..., (N2 —1).

¢ the output links of any switch with label j,
0 = j< N/2, are marked as 2 (the upper link),
and (2 + 1) (the lower link), and each is repre-
sented uniquely by an n bit binary string
X Xy = o= Xy Xgs

¢ The path from an input link of a switch-f at any
stage-i, 0= i< (n— l)and 0 < j< (N2 —1), 10
its output is determined by the rowting hit r;. The
path goes to the upper link 2j, if r; = 0, or to the
lower link (2f+ 1), when r;= 1. This bit r; is
termed as the routing bit for the path at stage i.

An 8x 8 baseline network S(3), with a labeling
of the switches in fop-to-botiom order is shown in
Fig. 1. Also two paths 5 — 2 and 6 — 3 are shown
which follow the routing bit sequences 010 and 011
respectively. It is to be noted that here the routing
bit sequences are actually the corresponding desti-
nations (2) and (3), respectively, in binary.

Here, the interconnection between stages i and
(i+ 1), 0 <i<(n—2), is represenied as a unique
permutation of (n — 1) bits of any output link /
of stage i, appended by the routing hit r,, that
maps { to link ! at the output of stage (i + 1).

For stage-(}, the mapping of original inputs to
the outputs of stage 0 is considered.

It is to be noted that the labels here indicate
some logical names to identify the switches/links
uniquely, which help to formulate the ropology
describing rules in the form of permutation of bits
described below.
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Fig. I. An 8x 8 baseline network @3 with two paths 5 —2
and 6 — 3,

Example 1. For ji3) with the labeling of the
switches shown in Fig. 1, the interconnection
between stages 0 and 1 can be represented as a
mapping fi[xsx 3] — xpxary, Le, any output link
of stage (), represented as xs x| xy, is connected to a
link xgxary, at the output of stage 1, where ry is the
routing bit for the path at stage-1. Note that the
permutation f; is invariant for all the links at
the output of stage 0.

Definition 1. Given an MIN Min), with a labeling
of the links, if there exists a mapping
J{Xn—1 Xp-2 ... X1X0] = Yn—1¥n-2... 1115 for each
stage i, 0 < i< (n— 1), where, 1 Vp—a... ¥ i85 3
permutation of any (n — 1) hits of (x,_,x, s, ...,
x1,xp), and r; is the routing bit, such that any link
Ix, 1 X3 ... X Xy at the output of stage (i — 1) is
connected to link [, at the output of stage i, rep-
resented as f[l;] — [, where [, 3, 2.
¥y, the labeling of the switches is termed as a
basic labeling, and f's are defined as the i-mappings

for M(n).

For simplicity, we represent an i-mapping as
Ji— Va1 ¥u—a ... yir;, assuming that it is always
applied on [x,_1 6.2 ... xpxg).

Example 2. In Fig. 1, with the labeling of the links
shown, the i-mappings for the baseline network
Bi(3) are given by

Jo— xaxprg, fy — Xpxaty,  and fs — xaxen,
where, r; is the routing bit at stage-i. Since with
the labeling of 5(3) shown in Fig. 1, the i-mappings
exist for all § 0< i< 2, itis a havic labeling.

In general, for fiin), the i-mappings are

_.|'ru—> Xp—1 - -« X1Fp, _.|'r| LS TR A 5 _.Ilrl e
Xy 1 XX 2. - X2l oe s, and
_.Ilr.lr—l X =2 XN -

Remark 1. Given an MIN M{n) the basic labeling
is not unique.

Definition 2. Given an MIN Min), the labeling of
all the inputs, and the switches of each stage i,
0=i<(n—1), in top-to-bottom order (as shown
for f(3) in Fig. 1) is termed as top-to-bottom
labeling.
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Remark 2. For most of the well-known full-access
unique-path MIN’s Min), e.g.. baseline, reverse-
baseline, omega, inverse-omega, flip. cube etc.
[13]. the top-to-bottom labeling is found to be a
basic labeling.

Example 3. Fig 2 shows an 8 x 8 omega network
£X3) with top-to-bottom labeling.

It is to be noted that the i-mappings for (43) are
oiven as

Jo— xixrp, fi = txoixery, o — ixixers, where,
r; is the routing bit at stage-i, 0 < i < 2,

In general, for Q(n), f; — x,_ax,_ 3 ... xor; for
O<igin—1).

Given an MIN Min) with a basic labeling of its
links, any input—output path through Min) staris
from an input, selects either the upper link, or
the lower link of a switch, determined by the rout-
ing bit r;, traverses via consecutive stages i,
O i<(n—1), and reaches the final output.
Therefore, we may represent a path as a sequence
of links, starting from the input x (=x,_ %, ...
x1xp), and following the output link [, at stage
i, given by f[l], finally reaching the output y
{ S¥n—1¥n-2.--¥| _"’l]]-

Example 4. Given the labeling of the baseline
network f(3), as shown in Fig. 1, and correspond-
ing i-mappings fo — xaxrg, fi = xpxar,and f5 —:
Xaxors, (Example 2), the sequence of links followed
by the input—output path 5 — 2 are given by

Input 5 : 1015 10rg 2 rglr B yriss.

Mow, since the network follows destination tag
routing, and the destination is the final output 2
ie. 010 in binary, rpy=0,r1 =1, rn =0

F
| = |

=

5
]

5
[

ul|n|.l1||n l.-l||m LL,

=1

7 7

Fig. 2 An E=8& omega network @33) with top-to-bottom
labeling.

Substituting these values of r/’s on each link, we
get the path as the sequence 5 —4—3 —2,
shown in Fig_ 1.

Mow, to set up paths from input to output on
an MIN, there would be a conflict at a stage-i, if
and only if two or more paths need the same link
at the output of any stage i.

Example 5. Fig. | shows that in f§(3), the path
5 — 2 conflicts with the path 6 — 3 in stage 1,
represented as:

S5—=4—-3—=2 and6—6—3—=171.

Both the paths require the same link 3 at the out-
put of stage 1, and therefore conflict.

The concept of topological equivalence of two
MIN’s was first introduced in [14,8], and has been
studied extensively thereafter. Given an MIN M
with k stages, its topology graph TG{M), is a graph
where each switch is represented as a distinct ver-
tex, and the links between switches are represented
by edges between corresponding vertices. Obwvi-
ously, the topology graph would be a level graph,
with /2 vertices at each level-i, referred as F{M)
representing the N2 switches in stage ¢ 0 < i< &
In [6], the topological equivalence has been defined
in the following way:

Definition 3. Any two f-stage Nx N MIN's M,
and M- are called topologically equivalent if and
only if there is an isomorphic mapping  from
TGIM) o TGIM,), such that i) € VM),
Voe V{M)i=0,1,... k- L

Given any n-stage N = N MIN M, by the Q- quiv-
alence checking algorithm presented in [6], we may
check its equivalence with {n) network in O Nu)
time. Example 3, shows a basic labeling for £2(3)
network, that results a set of i-mappings describing
the interconnection topology of the network.

Lemma 1. For any Q-equivalent MIN Min) there
will exist at least one basic labeling, resuliing a set
of i-mappings, Wi, 0= i< (n—1).

Proof. Let the network (Xn) s given with all its
inputs, switches and output links labeled according
to fop-to-hottom labeling. It has already been
shown that it is a basic labeling for (n).
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L

n

Fig. 3. An 8= 8 eequivalent network AI(3).

From the definition of equivalence, the topol-
ogy graph of M(n) is isomorphic with that of
) n) network. Therefore, the nodes of each stage
i of M{n) have a one-to-one correspondence with
those of stage i of in), for 0 < i< (n — 1). There-
fore, we can re-label the network inputs and the
switches of each stage i of Min) according to the
labels of those of stage { in £(n). Now it is evident
that this labeling of the nodes of Min) will result
the set of mappings, same as those of (n), as gi-
ven in Example 3. Therefore, this labeling of
switches of Min) comprises a basic labeling for
Min). Hence the proof. O

Example 6. Fig. 3 shows an 8x8 MIN M(3)
{equivalent to 2 network) with a labeling accord-
ing to its topology isomorphism with £2(3).

The corresponding ~mappings are given below.

Jor xyxore, i xxery, fan x xgra. Sinece [ exists
for Wi, 0= i< 2 the labeling shown is a basic
labeling of M(3). MNote that the imappings are
same as those of 2(3).

3. Concatenation of f2-equivalent MIN's

Given any n-stage N x N MIN M(n), by the Q-
equivalence checking algorithm in [6], we may check
whether it is equivalent to {n) network. If yes, we
can also compute a basic labeling of the links of M
and the corresponding i-mappings of Min) by the
algorithms presented in Section 4.

MNext, two 2-equivalent networks, each with a
basic labeling, are concatenated to form a com-
hined (2n — 1)-stage network A & A'. So far, con-
catenation meant the overlapping of each swiich
of the last stage of A with that at the same physical
position in the first stage of A’ But it does not nec-
essarily retain the topological equivalence of the
combined network, so formed.

Definition 4. Given two -equivalent networks A
and A’, each with a basic labeling, in the combined
network A& A', the labels of the network inputs
and the output links of stages {, 0 < i < (n — 2), are
kept same as they were in A, and for stages i,
(n—1)=i=(2n—2), same as those in A", This
overlapping actually causes a one-to-one mapping
of the final output links of 4 to the links at the
output of stage-) of 4", This mapping is defined as
the concatenation mapping.

Example 7. Fig. 4 shows the combined (2n — 1)-
stage network 2 & M, where M is the MIN shown
in Fig. 3. In stage-2, the corresponding swiich
labels x in £43) has been shown as (x). It s to be
noted that the concatenation mapping is given by

.,_{}123456?)
01 4 5 2 3 6 7

Fig. 4. The combined 8 =8 network 23 M.
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Fig. 5 An 8x 8 reverse baseline network i {3

Example 8. Fig. 6 shows a Benes network
fi(3) @ p~'(3), a concatenation of a baseline net-
work f(3) and a reverse-baseline network ﬁ'_'{EL
shown in Figs. 1 and 35, respectively. Here the
concatenation mapping C is an identity permu-
tation.

Remark 3. In [12] Feng et al. considered the net-
works, where the outside-in coding of the switches
of the center stage of a (2n — 1)-stage network are
identical from both sides. It corresponds to the
case where the concatenation mapping C is always
an identity permutation. But, in this paper, a more
general class of combined networks has been
considered.

Lemma 2. Given any combined (2n — 1)-stage net-
work A$ A, where both A and A" are equivalent
to 0 network, there exisi Emappings for all i,
O i< (20— 2), if and only if the concatenation
mapping is a bit-permute permutation.

N. Das ! Jaurnal of Systenms Architecture 51 (2005 ) X)7-222

Proof. Let us consider two €2 equivalent networks
A and A" with the set of imappings {01, -- -
foor}s and {f5.f1,....f1_,}, respectively. These
two are combined to form the network A4 & A",

ff pars. Let us first assume that the concatena-
tion mapping C is a bit-permute permutation.
Then obviously, with the labeling described in
Definition 4, for the combined network A & A', the
i-mappings are given by F; = fi for 0 < i< (n — 2),
Fi=f, for n<i<(2n-2), and F;= Cof; for
i=1(n—1), where Cof; is the composition of two
bit-permute permutations, ¢ and f, and hence
another bit-permute permutation. Therefore, it
is evident that for A & A', the i-mappings exist for
all i.

Orndy if part. Let us assume that for 4 © A, the
i-mappings exist for all i. Hence for i = (n — 1), the
mapping rule from the output links of stage
{n — 2) to the output links of stage (n — 1) follows
a bit-permute rule. It will be true only if the
concatenation mapping O itself is also a hit-
permute permutation. Hence the proof. O

Example 9. For the network Q& M shown in
Fig. 4, the concatenation mapping C is a bit-per-
mute permutation given by: & x) xs v (Example
7).

The i-mappings for the network are given below.

For xyxgre. Fio xixgry (same as those of Q
network),

Fy: Co(x;xyra): xpxra, and

Fu: xpxgra, Fyo xpxgry (same as the i-mappings of
last two stages of M(3) as given in Example 6).

[n] a a 0 0 a
1 a a a 15 ESCE, |
— = s ] 2 1
r— — 2
—]1 1 1 1 1
2 L [ = [ T a LT = L L i
. L — . — 4 . — .
5 2 2 g 2 g 5
L s LI 5 L1 s L] 5 L
— G — 5 0 —1 B —

3 3
R 3 3 3 3 -
— 7 S b 7 e S

Fig. 6. An 8= 8 Benes network i3 & (3.
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Remark 4. For any network 4§ A’ where the i
mappings for A are f, and for A" are f] for
0« i< (n—1), and if the concatenation mapping
be the identity permutation, the i-mappings for
the combined network will be F;, where F;=f,
for 0<is(n—1), and F,_yy, =f: for 1 €7<
(n—1).

Example 10. For the network (3) & (3), it is to
be noted that the concatenation mapping is an
identity permutation. Hence, fmappings are given
as

Fooxyxor; Wi, 0 i< (2n— 2).

4. Rearrangeability of combined neiworks

An N = N network is called to be rearrangeable,
if all Nx N permutations are conflict-free on it.
MNow Benes network is a rearrangeable one,
whereas the rearrangeability of @ & @ is still an
open problem, though both of them are con-
structed by combining two (3-equivalent networks.
So, the question is that in the combined (2n — 1)-
stage networks, what factors actually determine
the rearrangeability of the network?

It is to be noted that in a combined (2n — 1)-
stage network A & A, two 2-equivalent networks
are concatenated by superimposing a switch of
the last stage of 4 to that in the first stage of
A’ which are in the same physical position. They
may be logically different according to the rela-
tion of topology isomorphism. Hence, first of
all, the i-mappings may or may not exist for the
combined (2n — 1)stage network. Also, even if
it exists, it may vary from network to network
depending on the physical positions of the corre-
sponding switches in A and A’ The most impor-
tant peint is that, even if the concatenation
mapping remains the same the behavior of the
networks regarding rearrangeability may differ.
As it is evident from the networks Q@ Q' and
Q@ Q. Given the imappings of a combined
{2n — 1)-stage network, here a sufficient condition
is formulated for rearrangeabhility of a combined
network, in general.

Definition 5. Given a combined (2n — 1)-stage
network A5 A', for a particular input-output
path, the routing bhits for stages {, (n—1)<
i = (2n — 2) are predetermined by the destination
tag, but the routing bits r, 0=£i< (n—2) are
arbitrary, and are referred here as arbitrary
routing hits { AR-bits).

4 1. Windows and reavvangeability

Here the notion of windows [15] has been
utilized to represent a path through the network,
and to correlate the characteristics of windows
with the rearrangeability of a combined net-
work.

Definition 6. For a given combined (2n — 1)-stage
network A & A’ with a set of i-mappings, [Fy,
Fi, ..., F5, 3}, an input—output path x — y, can be
represented as a  sequence of links x —
=l — ---fg,,_:—>_'l‘, where, {i 15 the link (in
binary), the path follows at the output of stage
(k—1), 1=k<(2n—-2), and is given by
lp = Fe_q[fe—1], & is the input x, and b, is the
output y. Now, given an N x N permutation, at
any stage k, the set of links followed by individual
paths is represented as an N xn matrix, called
window W, where each row L, 0<j< (N—1)
of window W, represents the link in binary),
followed by the path from input j, at the output of
stage k.

Remark 5. A permutation is conflict-free on a
combined (2n — l)-stage network, if and only if
there exist windows W, Wk 0 < k < (2n — 1), such
that all rows of each window are distinct.

It is to be noted that window W and window
Wi2,—1, are, respectively the N xn matrices of
inputs and outputs, i.e., for any Nx N permuta-
tion all rows of W), and W|.,_,, are distinct.
Definition 7. For a combined (2n — 1}-stage net-
work, Ag A", il i-mappings F; exist for all i
0=i=(2n—-2), each window W, 0<£k<
{2n — 1) can be represented uniquely as a string
Sp=Fi_1[8:-1), where &, is the input siring, ie.,
So= X, X2 .. X Xy 8, is defined as the charac-
teristic string of Wy.
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Example 11. For an 8x8 Benes network
fi3) @ pY(3), the characteristic strings for the
windows are given by

St xaxixe. S FolSo] — xaxire, S0 Fi[S)] —
roxary, Sat FS[Ss] — rarira, Si Fi[53] — rarars,
and S Fy[84] — rarary, respectively.

Definition 8. From a conflict-free window W, if
one column is deleted, the pair of rows having
the same hit pattern are called conjugate rows.

Theorem 1. fn o combined (2n — )-stage network,
Ag A, i Fmappings exist for ofl i 0=£i<
(2n — 2), and cach AR-bit v, 0 < f < (n — 2), vecurs
only in each S, for (j+ 1< k< (2n—2—)), the
network is rearrangeable.

Proof. In a combined (2n — 1)-stage network
A @ A, let us assume that all the i-mappings exist
for 0= i< (2n — 2). At stage-0, the characteristic
string & is the input bit string x,_ x> ... XX,
and also the string S,,_; is the output bit string
Vel ¥u—2 - .. ¥ ¥p. Now from 5, 8§ is obtained
by applying the i-mapping Fy, ie., deleting one
bit x; and adding the routing bit r,, and permuting
the bits according to Fy In general, any &; is
obtained by permuting (n — 1) bits of §,_, accord-
ing to F;_, and adding the routing bit r;_;.

It is to be noted that the routing bits for the last
n stages, namely r,_, r,. ... ,ry,_» are the output
bits ¥, 1, ¥u—3, ..., ¥1, ¥o, respectively. They are
already fixed by the given permutation P. The
remaining routing bits, namely, ry, 1y, ..., Fu_3 Are
the AR-bits which are to be determined to make
all the paths of P conflict-free, i.e., to make all the
rows in each window W, 0£k<(2n-1),
distinet.

However, for any permutation P, W, is always
conflict-free. Same is true for W, .

Let it be assumed that for the given network,
the characteristic strings are such that any A R-bit
r, 0= (n—2), occurs only in each S,
(f+ 1= k<(2n—2—j). Hence, the first routing
bit ry which is an AR-bit appearing first in window
W, has to occur in each window W, for
l€ k< (2n-2).

Since W is conflict-free, and W) comprises of
the same (rn — 1) columns of W, with an additional

column for ry, it would be conflict-free, if and only
if complementary bits are assigned for the two
conjugate rows of Wy The same will be true for
window W5, s also. Let us start from any
arbitrary row-f of W with all bits fixed from WY,
except the bit ry. Let us put ry = 0, say, in that row.
Mow let us find the confugare row j', and put ry, = 1,
so that the two rows become distinct and hence
conflict-free in H/,.

Mext, in Ws,_s, [ the conjugate row of /' is
found, with all bits fixed from W', except the bit
Fy- Ty is assigned as ry = 0, so that rows-j’ and j*
become distinct and hence conflict-free in Ha,_a.
Mext the conjugate row of /7 is examined in W,
and is assigned as r, = 1. This process is repeated
unless a cycle is complete. Next it is to be started
arbitrarily again from any row lkft in W, and the
procedure is repeated unless ry is assigned for all
the rows. Hence, both the windows W) and W4, s
become conflict-free.

The same procedure is to be followed to assign
next AR-bit r;, making the windows W' and
H',_ 4 conflict free.

In this way, considering the (n — 1) AR-bits, we
necessarily can make all the (20 — 2) windows
conflict-free which completes the conflict free
routing of the given permutation P.

It is to be noted that for any arbitrary permu-
tation, the procedure always can find a conflict-
free routing. Hence, the network is rearrangeable.
It proves the theorem. O

Remark 6. Example 11 shows that Benes network
satisfies Theorem 1. Obviously, all the combined
{2n — l)-stage networks which satisfy Theorem 1,
are rearrangeahle.

Example 12. Fig. 7 shows an @ '(3) network,
with top-to-bottom labeling. The shuffle at the
output is ignored, since it just causes some relabel-
ing at the output. The corresponding i-mappings
are given by

Jor xaxyre, fit xoxary, 5 xpxars.

Figs. 2 and 7 show that for @& @', the
concatenation mapping is an identity permutation.
Hence the i-mappings for @ & @' are given as:
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o —1 il L 0o
1—t — 1
2
PR -
3 — 1 — 3
G — - |
B e 2 — &
5
[
G 3 — &
T — —
I -

Fig. 7. An 8= 8 inverse omeg network 273

For X1 Xk, Fiooxixpr, Bt xxprs, Fii Xpxars,
F.1: XpXaly.

Any path x — y in the network, where x and y
in binary are (xax, xo) and (y2y yo), respectively, is
represented by the sequence of links:

Fy F Fa i Fy
X2X Xy — XXy — Xglol™) — Fol" )2 — Falbgls — Falary.

Hence, the corresponding characteristic strings for
the windows are

St xaxxe, Si0x vpro, 83t xerary, Saorprg e, Sa
rargry, and Sgoryrsry. These strings satisfy Theo-
rem 1. Hence the network is rearrangeable.

Example 13. Fig. 2 shows that for Q& 0 net-
work, the concatenation mapping is an identity
permutation. Hence the i-mappings for Q& 0
are given as:

For xixore, Fit xixory, £50 xixers Faoxoxors,
and F4: XiXoplg.

Any path x — y in the network, where x and y
in binary are (x> x| x;) and {y. ¥y ¥y), respectively, is
represented by the sequence of links:

F Fa Fa Fa

Fiy
A2X X — X Xghy — Xofgly — Wyl Fm2 — PP — iy

Hence, the corresponding characteristic strings for
the windows are

Sot xaxxe Sicx vpro, 83t xerary, Saorpr e, Sa
rirsry, and Sq: raryry. These strings do not satisfy
Theorem 1. Hence the rearrangeability of the
network can not be guaranteed.

The networks f & . Q@ f, Q& g,
f~' @ @ are some more examples of combined
networks which satisfy Theorem 1, and therefore
rearrangeable.

4.2 Algorithms for checking rearrangeahility

Given any 2-equivalent network M(n), here fol-
lows the algorithm to label the switches and the
links, and to find out the corresponding i-map-
pings. As has been mentioned earlier, the equiva-
lence with 2 network can be checked in O Nn)
time using the algorithm presented in [6]. If M{#n)
is equivalent to 2 network, it is obvious that it is
also equivalent to baseline network fin). In the fol-
lowing algorithm, the switches are labeled accord-
ing to the one-to-one correspondence between the
nodes of Min) and fin).

Let any switch of M{n) be identified as S{i, /),
where i is the stage, and j is the physical position
of it in stage i, 0<i<(n—1), and 0= j< (N
2 — 1). The input links of S(i ) are represented
as Idi, /), and [,(i, j), and the corresponding output
links as I5(i, /) and I, (i, /), respectively, such that if
the switch is set straight the link /(i) is connected
to Ioli, ), and link [}(1, j) is connected to [,(i, f).

The following algorithm marks the nodes S{i, /)
of each stage uniquely by the labels (0,1, ... N/
2—1) and the two input (output) links of each
node are marked as 0" and ‘1", respectively. The
node connected by the output link marked as ‘¥
(*1" of S(i. /) in the next stage is called the u-child
{d-child). Similarly, the node connected by the in-
put link marked as ‘0" (*17) of 5{i,/) in the previous
stage is called the w-parent (d-parent).

Algorithm (Label-Switch)

Input. The n-level graph of M{n) with nodes S(i, /),
O<igin—1),and 0 <7< (N2 -1).

Output. The set of nodes {5(i, )}, each with a label
X=X, X, 3... X 0= x<(N2-1), and two
input {output) links marked as 0" and °1°,
respectively.

Seep 1. Mark S(0,0) as 07{0,0) = 50,0y = 0, and
£(0,0) = 1,(0,0) = 1.

Step 2. Fori=0to(n—-2) do

{for j=0to (N2 —-1)do

{if S{i,f) is marked as x = x,_s%,_1...X

then mark w-child of &(i/) as x =x,.s...
.I"_,:_lﬂ.\f"_,:_:. e Ky and

mark dchild of S() as »x"=x,.....x,_;

]-I.lr—f—i- ce X
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If x is even, the connecting input link and corre-
sponding output link of both w-child and d-child
are marked as 0", and the other pair of input-out-
put links are marked as *1".

else the marks on links are reversed.}}

Step 3. Fori=(n—1)to 1step (—1) do

{for j=0to (M2 - 1) do

{for S(i, /) marked as x = x,_2x,_3..xg, if any par-
ent of it is unmarked

then for w-parent mark it as x' = x, 2. %,
Xp_i—r.. . xgl), and

for d-parent mark itas x" = x,_»x,_;
If x,,—;— bit in x is "0,

the connecting output link and corresponding
input link of both w-parent and d-parent are
marked as ‘0f, and the other pair of input-output
links are marked as *1".

else the marks of links are reversed.}}

Step 4. Terminate

Xp—i-3-+:Xpl.

The above algorithm assigns a unique label x,
0= x < (N2 — 1) to each switch S{i, j) of any stage
i, 0= i< (n—1), and marks the two input {out-
put) links of each switch as m=0 and m=1,
respectively.

Example 14. Fig. 8 shows the switch labels and m
values on links of the MIN M(3) as derived by
Algorithm Label Switch.

Mote that Fig. 3 shows the same network with
labels according to its topological isomorphism
with €(3), whereas in Fig. 8 the Algorithm Label
Switch labels the switches according to §(3).

Here follows another algorithm that runs on the
output of Algorithm Label Switch, and assigns un-
ique label to each input of M{n), and to each out-
put link of any stage i, 0 < i< (n— 1). Hence it
computes the i-mappingsof the network.

Algorithm (i-Mappings)

Input. The network M(n) with nodes 5(i, ),
O0=£i(n—1), and 0« j< (N2 —1), each with
a label x, 0< x < (N2 — 1), and two input {(out-
put) links marked as m = 0 and m = 1, respectively.
tpui. The set of i-mappings i, each an array of
size n, representing a permutation of (0,1, ...,
=10, 0=i={n— 1)

o1 L .-a
1 —o 1 el — 4
a a i a 0 B
P o B
L 2 EcPy Dy IS | 1 |
o — g 0 0 L o
] — 2 3 - 5 ]
1 1 d 1 l:
0 == 0 1
0 1
2 3 2 3 p
L1 3 1= 9 [ —

Fig. 8. M3 with switch labels and link labels as derived [rom
algorithm fabel switch.

Step 1. For each input switch S(0,/) label upper
(lower) input link as 27 (2/+ 1).

For each output switch S(n—1,/) label upper
{lower) output link as 2f (2j + 1).

Step 2. Fori=0to(n—2)do

{for j=0to (M2 — 1) do

{for each switch S(i /) label output links as
(2 dabel of SUL 7))+ m)}}

Step 3. fol0) :=ry

For j=0to (N —1)do

ifor any input link of 8(0,7) with label 2%, k=0,
L., {mn — 1), if the label of corresponding ocutput
link of 5{0,/)is 27, p 5 0, then fi(p) = k&, else ‘'no
mappings” and terminate. }

Step 4. Fori=0to(n—2)do

A0y =,

for j=010 (N—-1) do

fif the label of the link [, of S(i.j) is 2%
k=0,1,...(n—1), and the label of connecting
link at stage (i + 1) is 27, p # 0, then fi(p) =k,
else ‘no i-mappings’.}}

Step 5. Terminate

The above algorithm finds f;, 0 < i< (n—1) as
an array of size (n—1), where fip)=4£&,
O k=in—1), 1< p=(n—1) denotes that in
the mapping f; the £th bit of input string is mapped
to the pth bit of output string, and f{0) =r;

Example 15. Fig. 9 shows the link labels of the
MIN M(3) as derived by Algorithm - Mappings.

The algorithm also outputs the following set of
i-mappings for M(3):

Jor xaxyrg, fit xexary, and f5 xs xgra

Mote that these are same as §(3).
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1
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mn
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e
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Fig. 9. M{3) with switch labels and link labels as derived [rom
algorithm -mappings.

Therefore, given any two (2-equivalent net-
works A and A’ the i-mappings of the networks
can be found along with a basic labeling of the
links by the algorithms described above.

Mow let us consider the combination of two
such networks A and A’ to form the network
A@ A'. The following procedure will check
whether this network satisfies Theorem 1 or
not.

Algorithm (Check-rearrangeability)

Step 1. For each network A and A', apply Algo-
rithm Label Switch, and then Algorithm i-Mappings
to obtain a basic labeling and corresponding i
mappings {fi} and {f'}, respectively, O0<i<
{n—1).

Step 2. For each output switch S(n — 1,/) of A4,
if the input switch of A" is switch S'(0,k),
C2:= 2k and Q2+ 1):=2k+1for0=js N/
2-1.

D

217

Step 3. 0 C27)=2" forall p, 0 < p, m < (n — 1),
andforanyi=x,_ | x, 3...% X, 0£i N —1,if
Cli) = ExpClg), for all j, 0 < f < N — 1, go to next
step, else report success := () and terminate.

Step 4. Foi=f, for 0si<(n—-2), Fi:=f], for
ne i (2n—2), and F;:= Cof, fori=(n—1).
Step 5. Spi=x, Xy a. ... XX Sp:=F ([Si_i]
forl =k <2n— 1.

Step 6. For i=01to(n—2) do

if ,€8, for all j, (i+1)<j<(2n—2—1i) and
re @8 forall j, (2n—1 — ) <l j < (2n — 1), report
success 1= 1 else success := () and terminate

If the procedure reporis success := 1, we know
that the combined network satisfies Theorem 1,
and is therefore rearrangeable.

Example 16. Fig. 10 shows the network M(3) &
£(3). The switch labels and the i-mappings for
M(3) are same as given in Example 15, whereas for
B(3) those are given in Example 2.

In this case, the concatenation mapping C is an
identity permutation.

The characteristic swings for M(3) & B(3) as
obtained by the above algorithm are

So X2 X X0, 510 XaX Fo, Sat rpxar, Su ror e, Sy
FalFglFy, and 55: FalFqly.

Here the AR-bits are ry and ry, respectively. It
satisfies Theorem 1. Hence the network is
rearrangeable.

Each of the three algorithms mentioned above
is of complexity O{Nn). Therefore, given any two
(-equivalent networks A and A’, it can be checked
whether 4 & A’ satisfies Theorem | and hence is
rearrangeable, in O{Nn) time.

5

] [&] =

7

Fig. 10, Combined network M3 & fi(3).
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4.3 Routing in combined networks P (ﬂ' 1 2 3 4 5 6 '.-')
A3 1 4 7 2506

By the technique presented here, if it is found

that a given combined network satisfies Theorem

1, and hence is rearrangeable, we can easily assign

the AR-bits deterministically to route any permu- fe— Wg — W — Y

the input and output windows Wy and W are as
follows:

tation without any conflict, following the same X2 x w0 yalra) w(rs) wlrd)
procedure, as has been described in the proof of 0 0 0 _{} 1 |
Theorem 1. Here follows the algorithm.
o 0o 1 0 0 1
Algorithm (Routing) o 1 0 1 0 0
o 1 1 1 1 1
Input. The characteristic strings S§; (an n-bit array), 1 0 0 0 | 0
for each window W, 1 < j < (2n — 2), and the win- i 0 i i 0 i
dows Wy and W5, o, ie., the input and output
windows, respectively, derived from the given per- 1 10 0 0 0
mutation P. 0 S B 1 1 o

Catput. (n— 1) AR-hits ry, 1y, ..., r,_3, each rep-
resented as an  A-hit  array, where rul)),
O ksin—2), 0<j<(N—1) represents the
routing bit for input j at stage k. fen, Wy = 3
Fork =01t {n —2)do — Wy —
{For any row f, 0 < j< (N — 1), rg(j) :=0; find the
conjugate row j', in W

re(f") :=1; find the conjugate row ;" in W5, _g.
rulf'y = 0.

Repeat it until ry bit of a conjugate row is found to
be already assigned.

If all r,’s are not filled up, start from any arbitrary
unfilled row and repeat the procedure until all
rows are filled up.

The windows Wiy and W5, s p are formed
defined by 8.4 and 85, _»_g, respectively.}

MNow, the Rowting Aleorithm determines the AR-
bits in the respective windows as shown below

g
=
=
kg
[
—
oF
—
]
ey
=
"
—

P T e T T e

R e = T S S T

-~

I
1

This algorithm will determine the AR-bits for
each path for routing through first (n — 1) stages, — Wy =
for the rest each path is self-routing, i.e., the desti-
nation tag itself will determine the route. As has
been explained in Theorem 1, the above procedure
will always be successful to find conflict-free paths
for any arbitrary permutation through a combined
network A & A', if the network satisfies Theorem
1. It is evident that the time complexity of the algo-
rithm is O(N#n) only.

g
=3
i)
bt
I
=
e
—

Example 17. Consider the combined network
M3 & Bi3) shown in Fig. 100 Given any
permutation

I e = = = =T

—_ D D e D e e
L == R~ I T R e e

-
.
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a 1] 2 v} Q a
1 0l 3 1l 3 0 1 ] 1
2 2
2 nﬂ = — 2
3 _.1: 3 1T = I__3
i i [ 4 4
5 2 — 5
5 L1 5§
— F— B B —
& &
= it 2| * 3 e
R s > kil e ]

Fig. 11, Paths through M{3) & #3) for realizing £

For the remaining stages the paths follow the des-
tination tag routing. The complete paths are
shown in Fig. 11.

5. Concatenation for rearrangeability

With the ideas developed so far, given two (3-
equivalent networks 4 and A’, if they are concate-
nated by superimposing the switches according to
their physical positions only, as has been consid-
ered so far, the rearrangeability of the combined
network A & A’ can not be guaranteed. If 4 & A’
is found to be equivalent to Benes network, it is
obviously rearrangeable. But so far it needs
O(N'n) time to check it. More interestingly, many
combined networks would not be equivalent to
Benes network and hence their rearrangeability is
not guaranteed.

By our technique. if the concatenation mapping
be a BP-permutation, we can determine whether
the network satisfies Theorem 1, and hence rear-
rangeable, in O(Nn) time. However, again, the
rearrangeability of any such A4 & A is never as-
sured, even when the concatenation mapping is a
BP permutation.

But most interestingly. if we modify the combin-
ing procedure a little bit, we can guarantee the rear-
rangeahility of the combined network always.

3.1 Concatenation technigue

Here, the # & § network is taken as the stan-
dard example of combined network which is
rearrangeable.

Given two (-equivalent networks 4 and A’ the
steps followed for concatenation are stated below:

e Label the switches of each network according to
the one-to-one correspondence with bhaseline
network fSin) by Algorithm label-switeh. These
labels are logical 1Ds of the switches at each
stage. Find the i-mappings for each.

¢ Concatenate the two networks by superimpos-
ing the switches with same logical 1D's. The
concatenation mapping would be the identity
mapping.

¢ Find the i-mappings for the combined network
by Algorithm - Mapping. It would be similar
to that of filn) & filn), except some relabeling
at the final input and/ or output links. Hence
it will satisfy Theorem 1, and will be
rearrangeable.

The new network is represented as A @ A’ It is
to be noted that the whole procedure would be
completed in O Nn) time.

Example 18. We know that @ & @ does not sat-
isfy Theorem 1. But the combined network @
satisfies Theorem 1, and hence is rearrangeable.

Fig. 12 shows the one-to-one correspondence of
the switches of 3) with S(3), as given by
algorithm Label Switch. Fig. 13 shows the logical
combination £23) @ 4 3). In the combined net-
work, any path x — y, where xax) x, and yay yy
are the hinary representations of x and y, respec-
tively, can be represented at different windows w,
for 0 < j< 5 as:

XXy — XgXyfg = FaXgFy = FaF Vs —

¥aro ¥ — ¥a¥1 Vo
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Fig. 12, &4 3) with swich labels and link labels according o
3.

It satisfies Theorem 1, and hence the network is
rearrangeable.

Theorem 2. The combination of any two Q-equiva-
lent network, say A © A" always can be made rear-
rangeable, if" we label the switches of A and A’
according to the isomorphism with two known fopol-
ogies, say M and M, respectively, and it is known
that M @& M is rearrangeable.

Proof. If the swiiches and links of A network are
labeled according to its isomorphism with network
M, the imappings of A network will be same as
those of M network. Similarly, the i-mappings of
A" will be same as those of M’ network. The super-
position is done according to the logical-1D%s of
the switches. Hence, the concatenation mapping
is an identity permutation. Therefore, the i-map-
pings, and hence the characteristic strings of the
windows for network A @ A" will be the same as
those of M @ M. It proves the theorem. [O

3.2, Difference between Benes and 3 0 networks

With the ideas developed so far, finally the dif-
ference between the topologies of Benes and Q 4 @
networks can be pointed out which actually causes
the behavioral difference of the two.

The switch labels and link labels of the £2(3) net-
work according to  Algorithm  labelswiteh  are
shown in Fig. 12. When another €2(3) is concate-
nated with it superimposing the switches in the

0
X
= _—
— .
5
[
T

9 A 1 W ] g

Fig. 13 Metwork M{3) @ fi(3).

3

7

Fig. 14.

T

w

T
o[l

k3

[

Lfrl
=1 ™

Two 43) networks to be combined to form 23] 5 43,
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Fig. 15, Combined network (43 @ £y 3).

first stage of (X(3) with the corresponding one in
the last stage of (3), at the same physical posi-
tion, it is evident that switches merged are not with
the same logical-1D. Fig. 14 shows the concatena-
tion of two £2(3) networks to form 2(3) & €(3) net-
work. Here, switch with logical-1D 2 is merged
with switch labeled as 1, and vice versa. But from
Fig. 6, it can be noted that in Benes network which
is the concatenation of two (-equivalent networks,
the switches with same logical-ID are superim-
posed. In fact, this difference in the topologies of
Benes network and Q& @2 actually causes the
behavioral difference of the two networks. Exam-
ple 13 shows that the Q& € does not satisfy The-
orem 1. Hence, the rearrangeability of 2402
network still remains an open problem.

More interestingly, Fig. 15 shows the concate-
nation of two (3) networks to form (3) = (3)
network. Here, the switch pairs merged have the
same logical-1D, according to the topological iso-
morphism with £(3). Hence by Theorem 2, this
network would be a rearrangeable network.

6. Conclusion

So far, a lot of research has been reported
on {2n— l)-stage combined networks M & M,
formed by concatenating two n-stage (-equivalent
networks M and M, respectively. But there is no
algorithm, in general, to check whether a given
combined network is rearrangeable or not
Though both Benes network and @ @ belong
to this class, the former one is a rearrangeable net-
work whereas the rearrangeability of the latter one
is still an open problem. In this paper, a sufficient
condition for the rearrangeability of a given com-

bined network has been established. An O{Nn)
algorithm has been presented for routing in such
a rearrangeable combined network. Moreover, a
novel scheme has been presented for concatenating
any two Q-equivalent networks that always results
a rearrangeable network. Finally, it points out the
exact difference between the topologies of Benes
network and @ & Q network.
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