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Simulated Annealing Using a Reversible
Jump Markov Chain Monte Carlo
Algorithm for Fuzzy Clustering

Sanghamitra Bandyopadhyay

Abstract—In this paper, an approach for automatically clustering a data set into a number of fuzzy partitions with a simulated
annealing using a Reversible Jump Markov Chain Monte Carlo algorithm is proposed. This is in contrast to the widely used fuzzy
clustering scheme, the Fuzzy C-Means (FCM) algorithm, which requires the a priori knowledge of the number of clusters. The said
approach performs the clustering by optimizing a cluster validity index, the Xie-Beni index. It makes use of the homogeneous
Reversible Jump Markov Chain Monte Cardo (RJMCMC) kemel as the proposal so that the algorithm is able to jump between different
dimensions, i.e., number of clusters, until the correct value is obtained. Different moves, like birth, death, split, merge, and update, are
used for sampling a candidate state given the current state. The effectiveness of the proposed technique in optimizing the Xie-Beni
index and thereby determining the appropriate clustering is demonstrated for both artificial and real-life data sets. In a pan of the
investigation, the utility of the fuzzy clustering scheme for classifying pixels in an |IRS satellite image of Kolkata is studied. A technigue
for reducing the computation efforts in the case of satellite image data is incorporated.

Index Terms—FPattern recognition, fuzzy clustering, cluster validity index, determining the number of clusters, Reversible Jump

Markov Chain Monte Carlo, simulated annealing, remote sensing.

1 INTRODUCTION

C LUSTERING [ 1], also known as unsupervised learning, is a
process of assigning labels to a set of n patterns in X =
{T1,%2,..., 7.} C IR such that patterns that are similar are
assigned the same label, while those that are dissimilar get
different labels. A c-partiion of X can be conveniently
represented by a ¢ x n matrix, called the partition matrix
7 = [ui], where u;; denotes the membership of the pattern
zi, 1 = k <n, to cluster 4, 1 < i < ¢. Different approaches to
partitioning the data into ¢ clusters are available in the
literature [1], [2], [3], viz. hard, fuzzy or probabilistic, and
possibilistic. For classification of unlabeled data, there are
three fundamental issues that must be addressed:
1} whether there is any cluslerlng tendency in the data or
not, 2) if yes, then what is a good method to find the
clusters, and 3) in what way can one validate the obtained
partitions.

Clustering tendency is an important, though little
researched, step in exploratory data analysis where it is
assessed whether the data is purely random in nature or
some inherent structure exists i it. Some appmaches to
assessing clustering tendency can be found in [1]. Selecting a
good and effective method to find dusters in data depends
on several factors, such as size of the data, match of the data
to the algorithm, choice of the parameters of the algorithm,
etc. Once clustering is done, a duster validity measure is
used to indicate the goodness of the obtained partitioning,
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The cluster validity criterion may be external, internal, or
relative. In the external validity index, the cluster structure
is matched to a priori information. Internal indices assess
the fit between the structures and the data using only the
data set. Relative index compares between two structures to
indicate the relative goodness of one over the other in terms
of stability or fit to the data. Many cluster validity indices
proposed in the literature may be found in [11: [4]. [5]. [6]-
In the present article, we deal with fuzzy partitioning of
the data. Fuzzy C-Means (FCM) [3] is a widely used
technique in this regard. However, it suffers from two major
limitations. First of all, FCM requires the a priori specifica-
tion of the number of clusters. Second, depending on the
initial cluster centers selected, the a]gﬂritl’u'n may get stuck
at locally optimal error values. Here, we aim to develop an
algorithm that will automatically find the fuzzy partitions
and will be able to escape from local optima. Since the
number of clusters is variable, the optimizing criterion of
the FCM algorithm camnnot be used in this scenario.
Therefore, the automatic clustering problem is posed as
one of optimization of a fuzzy duster validity index. Some
validity measures in the context of fuzzy clustering are the
partition coefficient, partition entropy, uniform data function,
Fukuyarm—ﬁugem: index, partition index, and Xie-Beni index
[6]. [7]. [B]. [9]. [10], [11]. In this article, we use the Xie-Beni
(XB) cluster validity index as the underlying optimizing
criterion since it has been shown to be better able to indicate
the correct number of dusters in several experiments [12].
The capability of simulated annealing (5A) is used for
searching in the space of fuzzy partitionings (represented
by the corresponding cluster centers) for one that is
associated with the minimum value the XB index.
Simulated Annealing (SA) [13], [14] belongs to a class of
local search algorithms. It utilizes the principles of statistical
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mechanics regarding the behavior of a large number of
atoms at low temperature for finding minimal cost solutions
to large optimization problems by minimizing the asso-
ciated energy. In statistical mechanics, investigating the
ground states or low energy states of matter is of
fundamental importance. These states are achieved at very
low temperature. However, it is not sufficient to lower the
temperature alone since this results in unstable states. In the
annealing process, the temperature is first raised, then
decreased gradually to a very low wvalue (T} while
ensuring that one spends sufficient time at each tempera-
ture. This process yields stable low energy states.

S5A has been used previously for optimization of the
K-means clustering model [15] in [16] (with the concept of
probabilistic redistribution of data points) and [17], [18] for
a fixed number of clusters known a priori. A similar
approach is used in [19], where 5A is used for the
optimization of the K-means squared error criterion. The
number of clusters is varied over a fixed range and the 5A
algorithm s executed for each fixed value of the number of
clusters. The correct number of clusters is considered to be
one for which the average value of the fraction of feature
vectors incorrectly placed in the same cluster reaches a
specified quantity. Here, two vectors are said to be
incorrectly placed in the same cluster if the distance
between them exceeds a threshold, which is computed
using reverse engineering experiments. In [20], the total
within cluster distance is used as the criterion to be
minimized using SA for a fixed number of clusters.
Moreover, the need to accurately estimate the number of
clusters is eliminated by using Barker's criterion, which
incorporates a user HpBCl[‘IEd threshold. The method is
found to be sensitive to the choice of the threshold. In [17],
[18], [20], the partition assignment of the individual data
points is taken as representing a state in 5A and the
perl‘urbati{m operator is defined as moving a randomly
chosen point from one cluster to another. Using such a
representation where the size of the encoded solution is
equal to the number of data points to be clustered is likely
to result in a slow exploration of the search space. Another
approach that has been adopted in this paper could be to
use the set of cluster centers as representing the state and
define the perturbation and other operators on the cluster
centers. This is likely to be beneficial in terms of a faster
exploration of the search space and, therefore, better
convergence of the algorithm. (This was observed in [21]
using genefic a]g{mthms as the underlying search strategy
where a comparison, in terms of the number of iterations for
attaining a desired objective value, was conducted between
such an encoding strategy and the one where the length of
the encoded solution is equal to the number of data points
to be clustered.) Other applications of simulated annealing
or deterministic annealing for dustering may be found in
[22], [23], [24], [25]. Some applications of SA in other
domains involving incorporation of fuzzy set theoretic
concepts are available in [26], [27].

In this paper, we propose an SA-based clustering
technique where a configuration or state encodes the
centers of a variable number of fuzzy clusters and the
XB index of the corresponding partition is used to measure
its energy value. Since the number of clusters is variable, the
search has to jump between different dimensions (number

of dusters). The Reversible Jump Markov Chain Monte
Carlo (RIMCMC) [28] perspective is used in the simulated
annealing procedure for solving the stochastic optimization
of the cluster validity index. This makes use of the
homogeneous Reversible Jump MCMC kernel as the
proposal, which is able to jump between different dimen-
sions of the state space until it finds the correct value. The
Hasting-Metropolis algorithm [29] is used for computing
the acceptance probability of a new configuration. The
RIMCMC algorithm has been used earlier for segmentation
of an image [30]. Another attempt using simulated anneal-
ing with the RIMCMC algorithm for model selection in
radial basis function networks is available in [31]. Moti-
vated bv this work, we use simulated annealing using
RIMCMC (SA-RJMCMC) for optimizing a cluster validity
index, thereby yielding a dustering algorithm that can
automatically determine the correct number of clusters as
well as the appropriate clustering. To the best of our
knowledge, use of SA-RIMCMC for clustering a data set
when the number of clusters is not fixed a priori by
optimizing a cluster validity index has not been attempted
earlier. The effectiveness of the proposed technique is
demonstrated for several artifidal and real-life data sets,
including a satellite image data, with the number of features
ranging from two to nine and the number of clusters
ranging from two to 10,

2 Fuzzy CLusTERING MODEL

In most of the real-life cases, cluster boundaries are not well
defined and unambiguous assignment of patterns to
clusters is difficult. In such situations, the principles of
fuzzy set theory, which permits an object to belong to a
cluster with a grade of membership, are applied to provide
fuzzy dustering algorithms [3]. One such widely used
algorithm, the Fuzzy C-Means (FCM), is first described in
this section. Thereafter, the Xie-Beni cluster validity index is
explained.

2.1 FCM Algorithm

Fuzzy C-Means is a widely used technique that uses the
prlnclple.a of fuzzy sets to evolve a fuzzy partition matrix
for a given data set. The set of all ¢ x n (where ¢ and n
denote the number of clusters and data points, respectively)
nondegenerate constrained fuzzy partiion matrices, de-
noted by My, is defined as

M —{UE Hexn | Zu.-;_. =1 Zu,-,;. =1, ¥i and

=1 =1
upe0,1;1<i<al< kﬂn}.

(1)
The minimizing criterion used to define good clusters for
Fuzzy C-Means partitions is the FCM function, defined as

A
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Here, I’ € M., s a fuzzy partiion matrix, pe[1,0c] is
the weighting exponent on each fuzzy membership, V' =
[y, ..., 1] represents ¢ cluster centers, v; € R’Y, and 5 is
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the distance from ¢ to the ith cluster center. The Fuzzy
C-Means theorem [3] states that if S > 0 for all ¢ and &,
then (I7. V) may minimize J, only if when g > 1

1

Uif = =

for 1<i<ec 1<k<n i3

and

P i) T

iy Er=j|:.ul'.fr.]'” 5 1
A common strategy for generating the approximate solu-
tions of the minimization problem in (2) is by iterating
through (3) and (4) {(also known as the Picard iteration
technique). A detailed description of the FCM algorithm
may be found in [3]. Note that minimization of J,(I7, V) s
appropriate when the number of clusters is known a priori.
However, in case the number of clusters is variable, this
cannot be done since, in such cases, the minimum (= 0) will
occur when the number of clusters is equal to »n, the number
of data points.

2.2 Fuzzy Cluster Validity Index

The cluster validity index is often used to indicate the
goodness of a partiioning of a data set as obtained by a
clustering algorithm. Xie and Beni [11] proposed one such
validity measure, which is defined as the ratio of the total
variation « to the minimum separation sep of the clusters,
where o and sep can be written as

h

i =

(8

o 4]

&

alll,V; X) = Z Z u-,TJj.H:r.'L. - '4.'.-||2, (5

i=1 k=1

where X is the feature vectors and
sep(V) = min{|[u; — v;|[*}. (6)
i#]
The XB index is then written as

oU, Vi X) _ T Tk udllee — wil
n sep(V) n(ming{| v — vyl [F})

Mote that, when the partitioning is compact and good, the
value of ¢ should be low, while sep should be high.
Therefore, the Xie-Beni index (XB) should have a low value
when the data has been appropriately clustered. In other
words, if the XB index of a particular tuple (I3, V1) is XB,
and that of another tuple (T2, V2) is X Bz and if XB1 < X Ba,
then the partitioning corresponding to ({71, V1) is taken to be
better than that of (L%, V4.

There are several other fuzzy duster validity indices that
are available in the literature. Some such indices are
Bezdek's partition coefficient (PC) [7] and partition entropy
(PE) [8], partition index (SC} [10], and the Fukuyama and
Sugeno index (FS) [6]. As already mentioned, the XB index
has been found to be better able to indicate the correct
number of partitions in the data [12] for a wide range of the
choice of the number of clusters. Hence, the XB index is
used as the criterion that is optimized using a simulated
annealing strategy with an RIMCMC algorithm.

XB(U,V:X) = (7)

3 SIMULATED ANNEALING UsING THE RUMCMC
ALGORITHM FOR CLUSTERING

In this section, the utility of simulated annealing using an
RIMCMC algorithm (SA-RJMCMC) for the clustering
problem is described in detail. The SA-RJMCMC is
motivated by the approach in [31], where it is used for
finding the parameters of a radial basis function network. In
the present paper, SA-RIMCMC is used to find the
appropriate clustering parameters such that the overall XB
value ( = ¥, XB;, where XE; is the contribution of z; to
the overall XB index value) is minimized. In matrix
notation, this can be written as

[ XE
R

L XB,
Madry ) dxy, ) o @z, )
dra, ) xa, 1) o0 e, v)

1/ (nming; [lv — vy %)

| @@y 11) Bl va) oL @m0 e hmes
(8)
where
B, vy) = ugy| |z — i (9)
Or, this may be written as
XB = D(X,V) L, (10)

where I, is a vector of all 1s having length ¢, XB is the XB
vector, D is the n = ¢ matrix that s t© be learned for
clustering, and X and V are the feature vector and the
vector of the cluster centers, respectively.

In the SA method, a nonhomogeneous Markov chain is
simulated whose invariant distribution at iteration ¢, m;(z)
(where = is a configuration or state), is

mi{z) oo wh(2).

(11)
Here, T, is a decreasing cooling schedule with lim;_. .. T; = (.
With the Hasting-Metropolis [29] method and a proposal
distribution g(z*|z) {which implies that, given the current
state z, a candidate next state z* is drawn according to the
distribution ¢(2*|z)), the acceptance probability of =* (when
the model parameter space has fixed dimensionality)
becomes equal to

; rt VA gl 2]2*)
mm(l. Z-0(2)q(]2) ) (12)

When the dimensionality of the parameter space is variable,

the acceptance probability is written as (following the
deduction in [28]):

mini 1, | posterior distrilution ratio) T
® (proposel ratio) = (Jocolnan)). (13)
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Fig. 1. Simulated annealing using RJMCMC algorithm with several moves.

If the proposal distribution that ensures reversibility
property (explained later) is selected, the accep tance
probability can be simplified further. For details, the reader
may refer to [31].

The RIMCMC process consists of simulating a discrete
Markov chain which performs small jumps between spaces
of different dimensions (the number of clusters in this
article). The measure of interest occurs as the stationary
measure of the chain. This iterative algorithm does not
depend on the initial state. At each step, a transition from
the current state to a new state is proposed according to a
proposal kernel. The transition is accepted with a prob-
ability given by (13). This acceptance ratio is computed so
that the detailed balance condition is satisfied, under which
the algorithm converges to the measure of interest. A
characteristic feature of the algorithm is that the proposition
kernel can be decomposed into several kernels, each
corresponding to a reversible move, as has been proposed
in [28]. In order for the underlying sampler to ensure the
jump between different dimensions, the various moves
used are the birth move, death move, split move, merge move,
and perturbk move, each selected with equal probability (=
0.2} [31]. The simulated annealing using RIMCMC algo-
rithm is shown in Fig. 1. Here, @ is the cooling rate.

3.1 Birth and Death Moves

The birth and death moves form a pair of reversible
perturbations. In the birth move, a new center is selected at

random from within the box bounding the data points. If d
is the number of features and Max; and Min; represent the
maximum and minimum value of feature ¢, i=1...., d,
then a new center, v,,.., is selected as

1
e

Ve = T Min;, Max;) fori=1,2,....d i14)

Thus, if the current number of centers is ¢, it now becomes
c+1 after the birth move. Thereafter, the membership
values are computed using (3) and the centers are
recomputed using (4). The acceptance ratio for the proposed
birth move is deduced from the expression (13) [28]. After
some simplifications, this expression reduces to [31]:

f & n2 0 y
i XB' P.XB Jexp(—C) 3 (15)
XB'P. , XB c+1

where P} is given by

P! =L, — D(V, X)[D'(V, X\)D(V, X} ' D/(V, X),  (16)
& is the hypervolume of the feature space given by
o =11, (Max; — Min;) (17)

and C=p+1, p being the dimensionality of the output
space, which is 1 in this case. This follows from the
discussion in [31] for optimization using the AIC criterion
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[32]. Hence, the acceptance probability corresponding to the
birth move is:

An'.u'l'l.l'l — Illi.lll::]. s Thirth _:l- I: 18.:'

The death move is the reverse of the birth move and
consists of simply selecting one of ¢ centers from V at
random and deleting it. As a result, the number of clusters
will reduce from ¢ to ¢ — 1. The membership values are then
computed using (3) and the centers are recomputed using
(4). Similar to the case of the birth move, for the death move
[31], we have

XB' P:XB " | cexp(C)
Vdenth = F -
et XB' P. , XB 3

(19)

Hence, the acceptance probability corresponding to the
death move is:

A.u'ﬂm.l'l = mi I'.I.l: I:; Tibearth _:l- {zn.:l

3.2 Split and Merge Moves

The split and the merge moves also form a pair of reversible
perturbations. The split move involves randomly choosing
a center from V. Let 1; be the selected center. It is replaced
by two new centers, 1; and ws, which are obtained as
follows:

vy = v — rend(0, 00 )

(21)
Vi = +rend(0, ).

Both v, and u» are bound to lie within the feature
hypervolume and are adjusted if they happen to cross any
feature boundary. Moreover, the distance between 1, and
vi2 has to be shorter than the distance between them and all
other centers. Otherwise, the new centers are not accepted.
Here, * is a user defined parameter and it, along with the
criterion that the distance between the new centers should
be shorter than the distance between them and all other
centers, are important considerations for ensuring reversi-
bility. After splitting, the membership values are computed
using (3) and the centers are recomputed using (4). The
expression for ., is given by [31]

XBP.XB \"*| ¢ exp(—C) )
Teplit = — {2_.-:'
XB P,.+|XB c 1
and the acceptance probability is given by
Ay = min{ 1, i ). (23)

Similarly, in the merge move, a center is chosen randomly
from V. Let this be v;. Then, the center v; that is closest to v
is found. If ||; — vy < 2¢°, then the two centers v and v;
are replaced by a single center v}, where

v+
=1
i 2

(24)

The condition |[v; —vj|| < 2(* ensures reversibility in the
split and merge moves. After merging, the membership
values are computed using (3) and the centers are
recomputed using (4). Thereafter, ry,.,. is computed as [31]

? ( XB' ' XB ) cexp(C) (25)
“rnerge = B L A =i
” XBP'_ XB) |((c—1)
and the acceptance probability for this move is:
Ar.llﬂ'r_u-r — I1]IEI1|:1, i"r.llﬂ'r_q_u'_:l B {EEJ

3.3 Perturb Move

Here, a cluster center, say v, is picked at random from
the string and its value (on each dimension) is allowed to
change (increase or decrease with equal probability) by at
most f percent to yield +f. Then, v, is replaced by «} and
the membership values are computed using (3) and the
centers are recomputed using (4). Thereafter, rup is
computed as [31]

XB'PXB\""?
Treriurh = e p— -
et XB'PFXB

where P! is the same as P, except that v; is replaced by +/.
The acceptance probability for this move is:

(27)

"q-llw'l'.l urh = I1]IH1|:1, T |'J|r|'-'.l,:|- {28.:'

4 EXPERIMENTAL RESULTS

The effectiveness of SA-RIMCMC in optimizing the Xie-
Beni cluster validity index and thereby determining the
appropriate number of clusters as also the proper partition-
ing is demonstrated for three artificial and two real-life data
sets. The data sets, along with the implementation
parameters, are first described in this section. Subsequently,
the XB index values provided by the proposed technique,
its comparison with FCM, and the partiionings obtained
are presented. Finally, the effectiveness of SA-RIMCMC for
automatically classifying the different landcover types in a
satellite image of a part of Kolkata (which is a metropolitan
city of India) is demonstrated. A technique for reducing the
time complexity while clustering the satellite image data is
also described.

4.1 Data Sets and Implementation Parameters

The three artificial data sets that have been used in this
paper are AD 10 2, AD_9 2, and AD_4 3N and the two
real-life data sets are Cancer and Kalanzar. Table 1 provides a

TABLE 1
Description of the Data Sets

Namer | potnks | 9F clustens | Lealumes | Polols per closter
A e s S0 Lo 2 00 por elusler
AN g g O 4 2 100 per eluster
A sn Al 1 A T, 100,101 1401
Caner GR 2 i 444,230
Kby & 2 4 20,45
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Fig. 2. AD_10_2

snapshot of the five data sets considered. These are now
described.

AD_10_2 is a two-dimensional overlapping data set with
10 clusters having 50 patterns in each cluster. AD 4 3N is a
three-dimensional data set with four clusters and 402 pat-
terns. Fig. 2 and Fig. 3 show the two data sets, respectively.
MNote that AD_4 3N has two noisy points, each situated
between a pair of well-separated clusters.

AD 9 2 is a two-dimensional, nine class data with
triangular distribution of data points, each class having
100 patterns. All the dasses are assumed to have equal
a priori probabilities (= 1/9). The X — ¥ ranges for the nine
classes are as follows:

Class 1: [-3.3, —0.7] x [0.7,3.3]
Class 2 : [-1.3,1.3] x [0.7,3.3]

Class 3 : [0.7,3.3] = [0.7,3.3]
Class4: [-3.3, —0.7] x [-1.3,1.3]
Class 5 : [—1.3,1.3] = [—1.3,1.3]
Class 6 : [0.7,3.3] x [-1.3,1.3]
Class 7 [-3.3, —0.7] = [-3.3,-0.7]
Class 8 : [—-1.3,1.3] = [-3.3, —0.7]
Class9: [0.7,3.3] = [-3.3,-0.7].

The form of the triangular distribution is shown in
Fig. 4. We have chosen the classes in such a way that
each class has some overlap with each of its adjacent
classes. In any direction, the nonoverlapping portion is
1.4 units and the overlapping portion is 12 units. The
data set is shown in Fig. 5.

The Cancer data is the Wisconsin Breast Cancer data set,
which is available at http://wwwics.uciedu/~mlearn/
MLRepository.html. Each pattern has nine features, corre-
sponding to cump thickness, cell size uniformity, cell shape
uniformity, marginal adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal nucleoli, and mitoses. There are
two categories in the data: malignant and benign. The two

e
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Fig. 3. AD_4_3N.

classes are known to be linearly inseparable. There are a
total of 683 points in the data set.

The Kalaezar data [33] consists of 68 patterns with
four features. There are two classes, diseased and normal /
cured, and four input features /symptoms. These symptoms
are the measurements of blood urea (mg percent), serum
creatinine (mg percent), urinary creatinine (mg percent),
and creatinine dearance (ml/min).

The parameters of the SA-based algorithm are as follows:
Tar = 100, Tryi = 0.0001, & = 0.8, and number of iterations
at each temperature = 30. The value of * is selected in the
range [1, 1(] after some experimentations with the data and
f s set equal to 10 percent. The number of clusters, « is
varied from 2 to /i (since ¢ is usually assumed to be less
than or equal to /i), where n is the size of the data set. The
average values obtained over five different runs of the
proposed algorithm are reported in the tables. The FCM
algorithm was sometimes found to get stuck in extremely
poor local optima and, therefore, had to be run repeatedly
to overcome this condition. The results reported here are
the average values over the five best runs of the algorithm.

4.2 Comparative Results with FCM
Tables 2, 3, 4, 5, and 6 provide the comparative results of
SA-RIMCMC and FCM for AD 10 2, AD_9 2, AD_4_3N,

Fig. 4. Triangular distribution of data for AD_8 2.
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Fig. 5. AD_ 9 2

Cancer, and Kalaazar, respectively. Table 7 provides a
summary of the number of dusters provided by the
two techniques when the minimum value of XB index is
achieved for the five data sets. Recall the p is the weighting
exponent in (2). As can be seen from Tables 2, 3,4, 5, and 6,
the SA-RIMCMC technique generally provides lower values
of the XB index for all values of js for all the data sets, except
for AD_10_2 when p = 1.5 (where FCM performs better)
and AD_4_3N when i = 1.6 (where both are equal). (It may
be noted that the standard deviation of the XB values was
very small, being negligible for FCM and ranging between
[0.00001,0.0005], [0.0001,0.0008], [0.000002,0.00005],
[0.00007,0.0001], and [0.0004,0.0008] for AD_10 2, AD_9_2,
AD_4 3N, Cancer, and Kalaazar, respectively.) Moreover, as
can be seen from Table 7, the SA-based method provides the
correct number of clusters for all the data sets. In contrast,
FCM fails to provide this for AD_10 2 and Kalwazar, where
it yields nine and five clusters, respectively. Note that the
number of clusters provided by FCM for a particular value
of it was obtained by varying «, the number of clusters, from
max[2,¢* — 2] to ¢* +2, where ¢’ is equal to the actual

TABLE 2
Comparative Values of Number of
Clusters and XB Index for AD 10 2

weighting T SA-RINICAIC

exponent | 2= clusters . XB 2= chisters xH
Li ] L0 il (L0054
1.8 4 DOEETAG 14 0085451
1 4 (LOBEROG 10 . (07 EAT S
22 ] 00003465 14 0075333
2.4 ] [ R 10 : (LGNS

number of clusters present in the data. The value of ¢ for
which the minimum value of the XB index was obtained
was considered to be the number of clusters provided by
FCM (as presented in Tables 2, 3, 4, 5, and 6). Table 8 is
provided to illustrate the variation of the value of the
XB index with the number of clusters for different values of
gt for AD_10_2 when FCM is used for clustering,

It may be noted from Table 7 that, in general, the lowest
value of the XB index corresponds to p = 2.0, except for the
cases of AD_10_2 using SA-RIMCMC clustering (where this
is obtained for = 2.2), and the Kalaazar data set for both
SA-RIMCMC clustering and FCM (where this is obtained
for = 1.6). Fig. 6 and Fig. 7 demonstrate the clustered
AD_10_2 and AD_9 2 for the purpose of illustration.

This section focused primarily on the comparison of the
proposed technique with FCM for the different data sets
and for varying values of the weighting exponent .
Results obtained by a genetic algorithm-based scheme [34]
are now reported briefly for the sake of completion,
assuming p = 2.0. Note that the genetic algorithm-based
scheme also optimizes the XB index. The values obtained

TABLE 3
Comparative Values of Number of
Clusters and XB Index for AD g 2

wrighting F SA-HIMCMO

expanent 4 | #F clusters KH 7 clusiers b
L& 1 0085271 9 1 .{IRRGER
1. El O.0TE334 a 0TG4
FAL i OLIFFEROR 9 ILOTARAT
28 a 005173 a 007957
24 U OLIERAT Y 9 LI 5
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TABLE 4
Comparative Values of Number of

TABLE 7
Mumber of Clusters, u and Value of XB

Clusters and XB Index for AD 4 3N

Index Obtained by SA-RIJMCMC and FCM

wodpliing FCM SA-TLIMICMC
exponent g elusters A E] 2 clusters xn
1.4 4 0030721 4 D0Ga7a
1.4 4 118224 1 TLOA=TEY
24 4 [, 046901 4 006250
2 1 [IRIE LS i LOA=HSE
24 4 [, 053905 4 005360
TABLE 5
Comparative Values of Number of
Clusters and XB Index for Cancer
weip i ing Fx 34 ILI ML
wiponent @ 8 clusters XG A chistens Xb
1.5 2 0116757 2 (110537
1.8 2 0111636 2 (11056
20 2 0. 116321 2 [, LOEE23
A 2 0L.111721 2 TLTTHTIG
24 2 0115064 2 [ L1anns
TABLE &

Comparative Values of Number of
Clusters and XB Index for Kakazar

weighting FCM SA-RIMONC

expanent | 2= clusters xH = clustrrs XH
LG 5 (.20 P HR e
L& i 02006727 2 1G4 L
2 il (RN RE 4 HR il
2.2 il 0235390 2 O LE07 LS
24 it (L0351 o . {L.191887

for AD_10_ 2, AD 9_2, AD 4 3N, Cancer, and Kalaazar are
0.079711 for nine clusters, 0.071400 for nine clusters,
0.046895 for four clusters, 0.109099 for two clusters, and
0.165399 for two clusters, respectively. From Tables 2, 3, 4,
5, and 6. it becomes evident that, while for AD_9 2 and
Kalaazar, the genetic scheme performs better, for the other
three data sets, the proposed scheme performs better. For
AD_10_2, the genetic scheme i not able to indicate the
proper number of clusters. It may be noted that both the
proposed, as well as the genetic, schemes are stochastic in
nature and require proper tuning of several parameters.

[Jate Set Fiind SA-RIMONC
2 clusters | RAE 2 clusters | g xG
AD_fi 2 1 200 DEERGE 1k 2.2 | LUTAES
A a2 1 200 | DATERGE 9 200 | LOTAG4T
AD 4 5N 1 200 0G0 1 200 | (LGSR0
Cancor 2 200 o 11i2 2 XY R LR
Kelpazar 5 LG | 0203420 2 1.6 | 0160120
TABLE 8
Variation of XB Index with the Number
of Clusters in FCM for AD 10 2
mn XEB index for 28 clusters =
H G 1 i 12
LG | 0115006 | 0u009873 [ O.L00554 | 0205030 | (.AG3325
1.5 | ILTOLASE | LOEATAG | LIS | 118006 | .1 7e510
T DCAAGED | L0BPE05 | QLDSEGGH | DL1T0353 | 0167
E2 ) LCAGITT | 00I036E | 01127a7 | 01TEI0V | 0161483
2 [ LTORGDG | 03909 [ 140655 | DLASER | (VER121T

They demonstrate similar performance for the given data
sets, though the exact results may change with a different
parameter setting.

The FCM is also dependent on the choice of the initial
c{mfigural‘i{m and sometimes gets stuck at local optima.
As mentioned earlier, it was run repeatedly so that it was
able to overcome this condition and results were taken
for such runs.

4.3 Classification of Satellite Image

In this section, we describe the application of the
SA-RIMCMC technique for classifying landcover types
from an IRS satellite image of a part of the city of Kolkata.
The data used here was acquired from Indian Remote
Sensing Satellite (IR5-1A), LISS1I sensor with a resolution
of 36.25m = 36.25m. Four bands of the image are consid-
ered, namely, blue band of wavelength 0.45-0.52um, green
band of wavelength (.52-0.59m, red band of wavelength
0.62-0.68tm, and near infrared band of wavelength
0.77-0.86pm.

Fig. Ba and Fig. 8b show the histogram equalized Kolkata
image in the blue and green bands, respectively. Some
characteristic regions in the image are the river Hooglly
cutting across the middle of the image, several fisheries
observed toward the lower-right portion, a township,
SaltLake, to the upperleft-hand side of the fisheries. This
township is bounded on the top by a canal. Two parallel
lines observed towards the upper right-hand-side of the
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Fig. 7. AD_8 2 clustered using SA-RJMCMC with the XB index when nine clusters were obtained labeled 1-9.

image correspond to the airstrips in the Dumdum airport.
Other than these there are several water bodies, roads etc. in
the image.

The image considered in this article is of size 512 = 512,
having 262,144 pixels in four bands. Therefore, the data to
be clustered, in essence, consists of 262,144 samples in four-
dimensional space. Clustering the entire data set using the
proposed method requires a large amount of ime. How-
ever, it is observed that, in general, a large number of
samples are often repeated (e.g., pixels that belong to the
same region generally share the same spectral property).
Clustering using samples that are repeated leads to a
wastage of computational resources. In order to alleviate
this prnblem, the approach adopted in this paper is as
follows: Let there be n samples, x1, xa, ..., 2, Of these, let
there be m distinct samples, ., 2a... ., Tum, Such that there

are yn; occurrences of .1, ma occurrences of .o, and so on.
Mote that m; > 1, j=1,2,...,m, and E_'I.”:I m; = Let us
now rename the m distinct samples as oy, 12, .., T for the
sake of convenience.

For a state of the SA-RJMCMC-based method which is
comprised of ¢ cluster centers, the XB index can now be

computed using the f{rll{ming equation:

XB(U.V:X) = ¥ EEII_-l uimg| |z _, v 3
n{mingd || — v ° 1

It may be noted that w;., i =1.2,.... c,and E=1,2,...,m,

the membership value of the h sample to the ¢ cluster

depends only on the distances of the kth sample from the

cluster centers, including the ith cluster center. Hence,

samples that are the same will have the same degrees of

(29)
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Fig. 8. (a) Band 1 and (b) Band 2 of the IRS image of Kolkata with histogram equalization.

memberﬁhips to the different dusters. Equation (9) is now
rewritten as

e, 1) = uamg e — | I3

and D is now an m » emafrix. In order to update the cluster
centers using repeated patterns, (4) needs to be modified as
follows:

Yy (e )M

U = = i R

: — ci= (31)
E::..I |"”I'|:_‘“|i'_:|. fe B % .-I

Using the above equations, the SA-RJMCMC-based cluster-
ing algorithm [:lerfﬂrrm-: the computation on m points
instead of n points, where, in general, m << n. This is
found to greatly reduce the computation time when used in
the case of satellite images. For the Kolkata image under

Fig. 9. Kolkata image clustered using the S&A-RHJMCMC algorithm when
five clusters were cbtained.

consideration, the values of n and m are found to be equal
to 262,144 and 20415, respectively, which is a substantial
reduction of about 92.2 percent.

Fig. 9 shows the image classified using the proposed
method. It is automatically found to yield five cdusters,
which, according to our ground knowledge, correspond to
two types of water bodies (pond water and turbid water),
concrete, habitation, and open space. The river Hooghly, Salt
Lake area, its bounding canal, the fisheries, etc., have all
been properly differentiated. It is interesting to note that
one bridge across Hooghly has been dearly distinguished
from the large body of water underneath. A small part of
the other bridge is also visible as a few dots.

In order to compare this result with the one obtained
using a genetic algorithm-based scheme [M], Fig. 10 is
provided. Here, four landcover types were found which

Fig. 10. Kolkata image clustered using the genetic fuzzy clustering
scheme [34] when four clusters were obtained.
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correspond to the two types of water bodies (pond water and
turbid water), concrete, and open space. As can be seen from
Fig. 10, nome of the bridges over the river Hooghly could be
differentiated, even partially, from the water body beneath.
Detecting the bridges has traditionally been a difficult task
for this image with both supervised and unsupervised
approaches. Moreover, parts of the bodies of water corre-
sponding to the fisheries (which appear on the bottom right
of the figure) have erronecusly gone into class turbid water
(that corresponds to the river water). The value of the XB
index provided by the genetic clustering scheme is (.236703
[34], while that for the proposed method is 0.210183, which is
smaller (and, hence, better) than the former.

5 DiscussioN aND CONCLUSIONS

In this paper, an unsupervised fuzzy classification algo-
rithm has been proposed that minimizes the Xie-Beni
cluster validity index for automatically determining the
number of clusters, as well as the proper partitioning of the
data. Operators are defined which can make jumps between
different number of clusters. Simulated annealing with an
RIMCMC algorithm that uses the Hasting-Metropolis
kernel for computing the acceptance probability of a new
configuration is utilized as the underlying search technique.
The sampler uses reversible moves, such as birth and death,
split and merge, and a symmetrical perturbation of the
cluster centers for sampling a candidate state given the
current state, such that a jump between spaces of different
dimensions is made pm;:-:ible. Experimental results demon-
strating the effectiveness of the proposed algorithm has
been provided for several artificial and real-life data sets.

The FCM algorithm is a standard and popular fuzzy
clustering technique when the number of clusters is known
a priori. This method is based on the optimization of
Ju(7, V) (see (2)). However, FCM solves the minimization
problem through an iterative process to provide the local
minima of J,([7, V). We have attempted to tackle both the
problems of FCM by developing a solution strategy that
does not require the a priori assumption of the number of
clusters, ¢, while providing near-optimal solutions in
practical cases. The performance of the proposed fuzzy
clustering technique (that incorporates automatically evol-
ving ¢) is compared with that of FCM for several artificial
and real-life data sets. The number of clusters is varied over
a given range in the FCM algorithm and the minimum
value of the XB index and the corresponding number of
clusters is noted for the different runs. It is found that the
SA-RIMCMC technique is not only able to determine the
appropriate value of ¢ automatically, but also provides
better values of the XB index in almost all the cases.

Results are also provided for a satellite image of Kolkata,
where the proposed method is found to be able to
distinguish the different landcover types reasonably well.
Comparison with a recently proposed genetic clustering
scheme also demonstrates this fact. Moreover, a technique
for reducing the computation effort for data sets where the
same pattern appears more than once is suggested. This s
found to be particularly effective for the image under
consid eration.

There are several directions in which this work may be
extended further. Firstly, a detailed comparative analysis
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can be carried out with other ways of computing the validity
indices, e.g., the resampling scheme discussed in [35], as
well as other similar search techniques (including SA) in
order to justify the use of a particular index and an
underlying search tool for a given problem. Next, a detailed
time and sensitivity analysis of the developed technique can
be performed and the use of other distance metrics may be
investigated in the future. Finally, the algorithm developed
here may be suitably modified and tailored so that it can be
applied to data mining problems where the size of the data
to be clustered may be huge.
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