Feature Extraction and Connectionist Classification
of SODAR Echograms

Swati Choudhury and Sushmita Mitra, Senior Member, IEEE

Abstraci—Sonic detection and ranging (SODAR) systems are ef -
ficient and economical tool to probe the lower planetary hboundary
layer on a continuous hasis. The lower atmospheric patterns
{each depicting a different atmospheric condition) recorded by
this system can prove to be extremely useful if classified and
interpreted correctly. The manual identification of these SODAR
patterns is a laborious task and requires considerable expertise. A
connectionist system has already been developed by the authors to
automate the process to some extent. In this letter, we enhance its
generalization of performance, by incorporating feature extrac-
tion using the fast Fourier transform. The results are compared
with that in earlier work to demonstrate its effectiveness.

Index Terms—Acoustic remote sensing, classification, fast
Fourier transform (FFT), neural networks, sonic detection and
ranging (SODAR) identification.

L. INTRODUCTION

ONIC detection and ranging {SODAR) (or acoustic radar)
S plays a very significant role in probing of the lower plane-
tary boundary layer (LPBL). This 15 because the interacton of
sound waves with the lower atmosphere 15 stronger as compared
Lo the electromagnetic spectrum. It can be designed at a rea-
sonable cost and is capable of providing the three-dimensional
(height, tme, and intensity) view of the lower atmospheric
microstructures, appearing during different time, month, and
season, over a particular region. The observations are termed
as SODAR echograms, as the system records the backscattered
echoes (sound pulse) [2]. [3].

Potential use of SODAR data can be made, provided it can
be interpreted and identified comectly. Manual identification
of SODAR recorded observations is time-consuming  and
completely dependent on the knowledge and experience of
the experts in this field. Utilization of the full potential of
SODAR observations on a global basis calls for the existence of
automated technigues, developed preferably by incorporating
human expertise.

Arificial neural networks (ANNs) or connectionist models
[4] attempt 1o replicate the computational power of biological
neural networks and, thereby, endow machines with some of the
cognitive abilities that biological organizms possess. The Mul-
tilayer percepron (MLP) is a well-known feedforward ANN
model that is typically used in pattern classification problems,
involving supervised leaming in data-rich domains.

Efforts have been made 1o handle the analysis of voluminous
atmospheric data using standard statstical and mathematical

methods [5], like Bayes classifier, £-nearest neighbor classifier,
ele. MLPs have also been applied to the prediction of tornado
and damaging wind conditions [6], [7]. A fuzzy MLP has been
employed o successfully classify radio-refraction conditions
of the ropospheric environment, categorized as subrefraction,
normal-refraction, and superrefraction [8]. It holds promise in
tropos phence wireless communication, meteorology, and related
fields.

Realizing the utility of SODAR echograms, the Bayes
classifier and A-nearest neighbor classifier have been used
to distinguish between two classes of SODAR pattems, viz,
convective thermal plumes and temperature mversion [9]. An
elementary attempt o classily the SODAR patterns has been
done using fractal feature [10]. Fractal dimension (FD) has
been estumated for a few SODAR patterns, and it 15 shown that
FD values change between patlerns.

The authors have developed a connectionist approach Lo sue-
cessfully classify six different types of echograms recorded by
a 2350-He monostatic SODAR system [1]. Single-layer strue-
tures of the LPBL were categorized as: 1) convectve plumes;
2) inversion with flat top; 3) inversion with small spikes; 4) in-
version with tall spikes; 5) nising inversion; and 6) nsing inver-
sion with convective plumes. These are depicted in Figs. 1-6
part (a) respectively, and modeled as the six input classes of the
MLP The input consisted of random sets of 30 sequential ob-
servations from the corresponding echograms.

In this ketter, we attempt o extend the connectionist ap-
proach [1], by incorporating feature extraction from the
SODAR echogram using the fast Fourier transfomm (FFT) at the
input. Thereby, the generalization of classification performance
15 found to improve. The proposed system 15 able o jomtly
exploit the powerful signal processing capability of FFT and
parallelism, self-learning and fault tolerance charactenstics of
ANN models. [is effectiveness is demonstrated by comparing
the results obtained from the FFT-based MLP with those
obtained using only the standard MLP.

Section 11 presents a brief description of different types of
SODAR echograms being dentified, and their comesponding
FFT spectrum. Implementation details and comparative results
with a related model [1], are provided in Section 111, Finally, the
letter 15 concluded in Section IV,

II. SODAR ECHOGRAMS WITH FFT

In real hife, a function f(!) is sampled at discrete, evenly
spaced intervals (A) in time. We can estimate its Fourier trans-
form, o obtain its amplitude IT{ ] in the comresponding fre-
quency domain, from & consecutive sampled points. For by,
Riip, dp = kA, for k 01,253 ..., — 1, and w
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Fig. 1. Comvective plumes. {0) Echogram and (b} its FFT.
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Fig.2. [Imversion with flat top. (o) Echogram and (b its FFT.
no 2.5 0008 1, the discrete Founer transform H,, 15 ex-
pressed as [11]
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with the corresponding FFT being [12]
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A 2350-He monostatic SODAR system installed at the In-
dian Statistical Institute, Kolkata (222N, 88°E), India. has been
used to record the formation of thermal plumes and different
types of inversion layers in LPBL. Interested readers may refer
o literature [ 1] for further details. In this letter (as in [1]), we
choose to concentrate on the six basic typesof single layer struc-
tures {each representing a different thermodynamic state of the
LPBL) that appeared at our site on more than 80% occasions,
dunng observations recorded over a complete year. The come-
sponding echograms are depicled in Figs. 1-6, part (a). Part (b)
of these figures represent the FFTs of 64 consecutive data sam-
ples, chosen from cach class.

In all the figures, in part (b) the amplitude of I 7 attained
high values at § = | and ¥ = |5 However, it 15 1o be noted
that these amplitudes at £ Land §  [# for classes 1-6 are,
respectively, 2700 and 3000; 2400 and 27(00; 2800 and 2600;
3004} and 3004y, 2500 and 2000; and 1400 and 1900,

Fig. 1(a) depicts the formation of a typical convective
boundary layer, representing an unstable atmosphenc condi-
tion, and 15 seen o appear on cloudless, clear sunny days of all
the four different seasons prevalent over the Indian subconti-
nent. Transfer of heat, momentum, and energy occurs between
the surface and the higher levels, thereby introducing in-mixing
within the layers.

Fig. 2(a) describes the formation of ground-based tempera-
ture inversion layer in the LPBL, approximately 150 m thick
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Fig. 3. Imversion with small spikes. {1} Echogrom and (b its FFT.
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Inversion with tall spikes. (1) Echogram and (h) its FFT.
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Fig. 5. Rising inversion. (1) Echogram and {h) its FFT.
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Fig. 6. Rising inversion with convective plumes. {a) Echogramand (b} its FFT,

with a flat top. This type of layer is generated on clear nights
(associated with very light wind condition) due to the emission
of infrared radiations from the ground, and is observed during
all the four seasons whenever the mechanical turbulence due to
wind is negligible.

Fig. 3(a) shows the formation of a lemperature inversion
layer with small spikes, due to small-scale mechanical turbu-
lence caused by wind of moderate speed. Sometimes, under
very high wind conditions, the temperature inversion layer
may be associated with tall spikes as observed in Fig. 4(a).
The strong mechanical turbulence leads o instability in the
atmospheric structure.

Rising inversion of Fig. 5(a) occurs throughout the year
during cloudless, clear sunny days, and 15 associated with
a drastic change in the thermodynamic state and pollution
density of the LPBL. Fig. 6(a) depicts the nising inversion layer
capping a convective boundary layer. The formation of thermal
plumes signify that transition of lower atmosphere from stable
Lo unstable state has been completed, and the tanster of heat,
momentum, and energy now takes place freely between the
earth’s surface and the higher levels.

1L IMPLEMENTATION AND RESULTS

In this SODAR system, a pulsed signal (obtained by a
tone-burst generator) is amplified in a commercial audio am-
plifier (135 W) and transmitied vertically upward through
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an acoustc transducer placed at the focus of a 6-01 diameter
parabolic fiberglass dish antenna. The backscattered signals
are recorded by the same antenna, and amplified by a remote
preamplifier. Amplified signal, after proper filtation of noise,
is fed to the receiver. Finally, a facsimile recorder is used to
record the backscattered energy on electrosensiive charl paper
as a function of height and time (%, £). The width of the paper
desenbes the height scale (the vertical length of the atmosphen:
probed by the SODAR, 1e., 1 km, for the system described
here), whereas the length of the paper denotes the tme scale.
The numerical value of the average height of the backscattered
sound energy at a particular stant can be obtamed from the
chart paper in height-time (M, 1) domain.

We selected 3-h duration of data from each of the six cat-
egones, as depicted m Figs. 1-6. These correspond 1o the six
output classes. The observation was digitized o get the no-
mencal value of average height of backscattered sound energy
at mtervals of 2 min. In this manner, 90 data points were ob-
tained from the chart of each category. The input data, here, cor-
responds o overlapping sets of 64 conseculive measurements
(height retums of SODAR signal) from each SODAR class. For
example, from the sequence of values provided for one SODAR
class, the set 1 o 64 fomm one pattern, 2 1o 65 the second pattem,
and so on. Next, one-dimensional FFT 15 applied o transform
the SODAR data to its frequency domain, using (2), and these
64 components are used as the imput features. A random training
set 18 selected from among this set of input pattems (64 consec-
utive values) for each class.

A three-layered MLF, with  standard  backpropagation
learning, was used for classifying the patterns. Sixty-four
nodes were employed at the input. Investigation wias also made
with 16 and 32 sequental observations from the frequency
domain, but the results were not satisfactory. Six nodes were
mvolved at the output layer, cormesponding o the six output
classes,

Various three-layered networks were vsed with different
numbers of hidden nodes (20, 25, 30, 35, 4)) and raiming
sets (20%, 30%, 40%, 50%). Results are provided in Table 1
in terms of recognition score (percent), for the training as
well as testing sets. The raming set siee % melers o random,
classwise selection of +% training data from the entire dataset.
The remaining {100 — 1'% data constitute the test set in each
case.

Howvever, results obtained here may be somewhal iased, as
any wo input pattern vectors are often overlapping by around 38
data points. This could be avorded by choosing the input pattern
viectors of a particular class from different SODAR echograms
belonging o that class. But this requires collection of SODAR
echograms on a larger scale. On the other hand, the preserva-
ton of SODAR echograms s fairdy expensive, as cach and every
echogram must be photographed to save s fading due 1o sea-
sonal changes. In the cumrent work, we have extended a pre-
liminary study [1] by using FFT 1o improve the generalization
of comnectionist classification for SODAR patterns. In the next
phase, we plan o extend the work by collecting more number of
SODAR echograms, belonging to different classes, for the pur-
pose of investigation.
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RECOGNITION SCORES { PERCENT) FOR SODAR Data
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Table I provides a comparative study on the recognition score
(percent) of an MLP, with and without the use of the FFT -based
features. Results demonstrate that features mepresenting iput
pattern vectors directly from the tme domain O, ) provide poor
generalization, as compared w0 incorporation of FFT based -
puts. The recognition score for the model in [ 1] varies between
66.11% and 75.52% over the test sel. The FFT-based model,
on the other hand, has classification performance over test set
ranging from 70.39% 10 91.32%. This leads us to infer that the
use of FFT atthe mput, provides overall improved performance
as compared o [1].
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IV. CONCLUSION AND DISCUSSION

The sound radar or SODAR system has emerged as a useful
and cost-effective ool that provides information about the
formation of different types of lemperature inversion layers,
thermal plumes, fog layer, elevated temperature inversion
layers, and various other types of lower atmospheric structures,
on a continuous basis. However, the identification of SODAR
echograms is time-consuming and can be performed only by
the experts having wide experience in this domain. Hence the
need for automated systems was evident, leading to the design
of an MLP for the purpose.

In thisinitial step, we observed that it was difficult o get good
classification and generalization with the raw dataset available
in the height-time (&, #) domain [ 1]. In order 1o improve the re-
sults, a sample of 64 consecutive data points from each class was
subjected to FFT for obtaining the inputs from the frequency do-
main. The improved results of Table 11 validate this claim.

It is conjectured that the design of such an automated system
may enable us o make potential use of SODAR data. Al the
same time, this holds promise for researchers working in the
areas of atmospheric sciences, meteorology, air pollution mete-
orology, civil aviaion, microwave propagation, remole sensing,
and various other related fields.
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