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Design of Vector Quantizer for Image
Compression Using Self-Organizing
Feature Map and Surface Fitting

Arijit Laha, Nikhil R. Pal, and Bhabatosh Chanda

Abstract—We propose a new scheme of designing a vector quan-
tizer for image compression. First, a set of codevectors is gener-
ated using the self-organizing feature map algorithm. Then, the set
of blocks associated with each code vector is modeled by a cubic
surface for better perceptual fidelity of the reconstructed images.
Mean-removed vectors from a set of training images is used for
the construction of a generic codebook. Further, Huffman coding
of the indices generated by the encoder and the difference-coded
mean values of the blocks are used to achieve better compression
ratio. We proposed two indices for quantitative assessment of the
psychovisual quality (blocking effect) of the reconstructed image.
Our experiments on several training and test images demonstrate
that the proposed scheme can produce reconstructed images of
good guality while achieving compression at low hit rates.

Index Terms—Cubic surface fitting, generic codebook, image
compression, self-organizing feature map, vector quantization.

L INTRODUCTION

ITH THE advent of World Wide Web and proliferation
Wul' multmedia contents, data compression wechnigues
have gained immense importance. Dala compression has
become an enabling technology for efficient storage and trans-
mission of multimedia data. In this paper, we propose a method
for image compression by vector quantization of the image
[1] wsing the self-organizing featre map [2] algorithm. We
also propose refinement of the codebook using a method of
cubic surface fitting for reduction of psychovisually annoying
blocking effect.

A vector quantizer (VQ) [1] £ of dimension A and size 5
can be defined as a mapping from data vectors (or “points”) in
k-dimensional Euclidean space, B into a finite subset C of B,
Thus
g:RR = (1)
where & = {¥,.¥2.....¥5] is the set of & reconstruction vee-
tors, called a codebook of size §, and each y, £ O is called a
code vector or codeword. Foreach v, ¢ C T = {13, ... 9]
is called the index of the code vector and T is the index set. En-
coding a data vector x € ‘R* involves finding the index j of the
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code vector ¥y € Csuchthat ||x — ¥, < |lx—w Yi /4
and ¢, 5 < 7. The decoder uses the index ;o look up the code-
book and generates the reconstruction vector ¥, comesponding
to x. The distortion measure dix, ¥, ||x — ¥;|| epresents
the penalty of reproducing x with y,;. If a VQ minimizes the
average distortion, it is called the optimal VO of size 5.

Wector quantization has been used for image compression
successfully by many mesearchers [6], [8], [10]. [12[16].
The oldest, as well as most commonly used, method s the
generalized Lloyd algorithm (GLA) [3]. also known as the
k-means algorithm. GLA 15 an iterative gradient descent algo-
rithm that tries o minimiee an average squared emor distortion
measure. Design of optimal ¥V using GLA has been proposed
and swdied in [4]. However, GLA being a greedy algorithm,
is perdomance 15 sensitive o mitialization and converges 1o
the local minima closest to the initial point Furzy l-means
algorithms [5] and several other fueey vector quantization tech-
nigues have been studied and used for image compression in
[6]. Zeger et al. [7] proposed methods for designing a globally
optimal vector quantizer using stochastic relaxation technigues
and simulated annealing. Though these technigques can produce
nearly optimal codebook, they are, in general .computationally
mtensive and slow o converge.

A sell-orgamzing feature map [2] 15 a neural network clus-
tering technigque having several desirable features, and, conse-
quently, it has atracted the atiention of the researchers in the
field of vector quantization [8]-[10]. The leaming scheme of
the self-orgamzing feature map (SOFM) 15 an application of
the least mean square (LMS) algorithm where the weight of the
neurons are modified “on the f1y.” for each inpul vector, as op-
posed to the usual batch update scheme of GLA. Thus, the code-
book is updated using an instantaneous estimate of the gradient,
known as stochastic gradient, which does not ¢nsure monotonic
decrease of the average distontion. Consequently, the algorithm
has a beter chance of not getting stuck at a local mimima. GLA
can also mcorporate incremental update through purely com-
petitive learning. However, due to incorporation of neighbor-
hood update (opposed to the “winner only™ update in pure com-
petitive leaming) in the trainmg stage, SOFM networks exhibit
the interesting properties of topology preservation and density
matching [2]. The former means that the vectors nearby ininput
space are mapped to the same node or nodes nearby i the output
space (lattice plane of the SOFM nodes). The density matching
property refers to the fact that after training the distibution of
the weight vectors of the nodes reflects the distribution of the
traunmg vectors in the input space. Thus, more code vectors are
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placed in the regions with high density of training vectors. In
other clustenng algonthms, a dense and well-separated cluster
15 usually represented by a single cluster center. Though it s
very good if the clusters are subsequently used for pattem clas-
sification task, in case of vector quantization, where the aim is
to reduce the reconstruction error, this may not be that good.

The total reconstruction emror of & V) is the sum of granular
ermr and overlpad ervor [1]. The granular emror is the compo-
nent of the quantization error due to the granular nature of the
quantizer for an input that lies within a bounded cell. Due to
the density-matching propery, the SOFM places several proto-
Lypes i a densely populated region and, thus, makes the quan-
tization cells small in such areas. This leads to the reduction in
the granular error component resulling in preservation of finer
details. This 1s a highly desrable property in a V. The over-
load error component of quantization error arises when the input
lies i any unbounded cell representing data at the boundary of
training sample distribution. Since the distribution of the code-
words replicate the distribution of the training data, the overload
errmoris also low when the distribution of the test data s well rep-
resented by that of the trammmg data.

In [11], Chang and Gray introduced an onling technigue for
V) design using the stochastic gradient algorithm, which can
be considered a special case of the SOFM algorithm, and it is
shown o perform slightly better than GLA. Nasrabadi and Feng
[8] also used SOPM for VI design and demonstrated perdor-
mance better than or similar to GLA. Yair eral. [9) used acombi-
nation of SOFM and stochastic relaxation and obtained consis-
tently better performance than GLA. Amerijekx er al. [ 10] used
Kohonen's SOFM algorthm to design a VQ) for the coefficients
of discrete cosine transform of the image blocks. The output of
WV encoder is further compressed using entropy coding. They
reported pedommance equivalent o or better than standard JPEG
algonthm.

In this paper, we propose a scheme for designing a spatial
veclor quantizer (SV0)) for image compression using Ko-
honen’s SOFM|2] algorithm and surface fiting. We use a set
of training images o design a generic codebook that is used for
encoding the raming as well as other images. The codebook
is designed for mean-removed (also known as residual) [1],
[15]. [16] vectors. The mean 1s added to the reproduced vectors
by the decoder. An initial codebook 1s generated by training
an SOFM with the training vectors. Then, to achieve better
psychovisual fidelity, each codevector is replaced with the
best-fit cubic surface generated by the training vectors mapped
to the respective codevector. The set of code indices produced
by the encoder is further compressed using Huffman coding. A
scheme of difference coding for the average values of the blocks
is used. The difference coding enables us to utilize Huffman
coding for the averages, which also leads w more compression.

In Section 11, we descabe the VO design scheme in detail
and report the experimental results in Section HI We use peak
signal-to-noise ratio (PSNR) as one of the performance mea-
sures of the V). The PSNR (in decibels) for a 256-level image
of size i x w is defined as

PEXTL
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Fig. 1. SOFM architecture.

where ;15 the value of the ijth pixel i the original image
and i'g_.,; 15 that of the reconstructed image. In addition, we also
propose two indices for quantitative assessment of psychovi-
sual quality in the context of blocking effect. We use them to
demonstrate the improvement of reconstruction gquality by the
surface-fitting codebooks over initial SOFM generated code-
books.

1. VECTOR QUANTIZER DESIGN

A. SOFM Architecture and Algorithm

The self-orgamzing feature map 15 denoted here by
ALY — VRN This is often advocated for visualiza-
tion of metric-topological relationships and matching density
property of feature vectors (signals) X = {xp,....x} in
¥, Usually, X is transformed into a display lattice of 1 = 3
dimensions. In this article, we concentrate on {1 % 1) displays
in M2

SOFM s realized by a two-layer network, as shown i Fig. 1.
The first layer is the input layer or fan-out layer with & neu-
roms and the second layer 1s the output or competitive layer. The
two layers are completely connected. There are lateral inhibitory
connections and self-excitatory connections between the neu-
rons in layer two, which enable the neurons 1o compete among
themselves o find the winner node given an input signal. An
input vector x < &, when applied to the input layer, is dis-
tributed to each of the fro % ) output nodes in the competitive
layer. Each node in this layer 1s connected o all nodes in the
input layer; hence, it has a weight veclor protolype w;; attached
Lo it

S0OFM begins with a (usually) random mmitialization of the
weight vectors ;. For notational clarity, we suppress the



LAHA eral.: DESIGN OF VECTOR QUANTIZER FOR IMAGE COMPRESSION

double subscripts. Now let x ¢ R enter the network and let
t denote the current itemtion number. The neurons in layer
two now compete among themselves o find the neuron whose
welght vector matches best with the input =, In other words,
il finds w,;—; that best matches x in the sense of minimum
Euclidean distance in R*. Then Wy 1 and the other weights
in it spatial neighborhood are updated using the rule

Wio = Wi gl — o) (3)
where v, 15 the learning parameter and 5, = oxp cih B
ik and &, both decrease with tme /. The wopological neighbor-
hood also decreases with time. This scheme when repeated long
enough, usually preserves spatial order in the sense that weight
vectors which are metrically close in ‘R¥ generally have, at ter-
mination of the learning procedure, visually close images in the
viewing plane. Also, the distribution of the weight vectors in &
resembles closely the distrbution of the training vectors X . So,
the weight vectors approximate the distribution of the raining
data as well as preserve topology of input data on the viewing
plane. These features make this algonthm attractive for VQ de-
sign because 1if there are many similar vectors, unlike a clus-
tering algovithm, which will place only one prowtype, SOFM
will generate more code vectors for the high density region.
Consequently, finer details will be better preserved.

B. Surface Fitting

Onee the SOFM 15 trained, the codebook can readily be de-
signed using the weight vectors as the reconstruction veclors.
Images can be encoded by finding out, for each image vector,
the code vector with the keast Euchidean distance. However, all
spatial vector quantizers produce some blockiness in the recon-
structed image [14], [17], [18], 1.e.. n the reconstructed image,
the boundarwes of the blocks become visible. Even though the
reconstructed image shows guite good PSNR, this effect often
has some adverse psychovisual impact. Often, transform and/or
subband coding is used o overcome this effect. However, this
adds substantial computational overhead, since the mw image
has to be ransformed into frequency domain before encoding
using the gquantizer, and, also in decoder, the image has o be
converted back into the spatial domain from the frequency do-
T,

In our method, we adopt a scheme of polveomial surface fit-
tng for modifying the codevectors generated by SOFM algo-
rithm that reduces the blockiness of the reconstructed image
and improves its psychovisual quality. In this case, the compu-
tational overhead oceurs only at the codebook design stage, not
during encoding or decoding of each image. Although, in com-
puter graphics, polynomial surfaces serve as standard tools for
modeling the surface of graphical objects [ 19], in image coding,
their application 15 mostly restricted o mmage segmentation and
representation of segmented patches. In [20] and [21], low-de-
gree polynomials are used for local approximation of segmented
patches, while in [22], Beaer-Bernstein polynomials are used
for image compression by globally approximating many seg-
mented patches by a smgle polynomial with local comections.
To the bestof our knowledge, there s no reported work that vses
polynomial surfaces in conlext of veclor quantization.
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For using polynomial surfaces, one has to decide on the de-
eree of the suface 1o be used. Lower-degree polynomials are
easier o compute, but they have less expressive power. On the
other hand, higher-degree polynomials, though have more ex-
pressive power, they end o replicate the raming data exactly
and lose the power of generalization, and, thus, unacceptable re-
sults may be produced when presented with animage not used in
the raining set. There is also the issue of solving for the coeffi-
cients of the polynomial. If a small block size is used, there may
not be enough points in a block to find a solution of a high-de-
gree polynomial.

In our work, we have experimented with block sizes 4 x4,
4 = 8, and 8 = 8 1t is found that for 4 = 4 blocks, biguadratic
surfaces give performances comparable to that of bicubic sur-
faces, while for larger block sizes, bicubic surfaces perform sig-
nificantly better. Surfaces of degree 4 do not improve the per-
formance significantly for test images. So, we use the bicubic
surfaces throughout our work.

In this scheme, we try o find for each reconstruction block a
cubic surface centered at the middle of the block so that the gray
value @ of a pixel at {o. 2% (with respect to the orgin set at the
middle of the block) can be expressed by the bicubic equation

1 . 2. L 1
a3 | e | g
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+ ag T 4 aed — gl 4 onane 4oy
pa ()
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Thus, for a whole block, we can write

il I (3)

I:‘..‘J.C L1

where p, is the p vector for ith component of feature vector x.

To find the coefficients of the polynomials comresponding
to the codevectors generated by the SOFM, we divide the
trainmg vectors into groups such that a tmining vector be-
longs w #th group, if it is mapped w the ith codevector.
Let ¥ Ax. = Rk be the set of training vectors and
X o= IS oxst L xd Y © X owhere g =] X | s the

set of training vectors mapped to the ith code vector. We wrile
for the set ¥

[
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e
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Then, (4) can be written in a matnx fomm for all the vectors
mappéed o the ith code vector as

U = pliglt (6)
where
'
i o o
Preki= and =10 Yi=1.2,...,mn:
'H'"-. Loy 2 100

Thus, the total squared error due o reconsiruction of all
blocks comesponding Lo veclors in Xt using the Jth recon-
struction block generated by cubic sudface specified by the
coefficient vector a**! can be expressed as

o= G — pialtt 2 (7)
Differentiating (7) with respect 1o 27, we obtain

arDy

e =GR L, ()
[ R

Thus, the coefficient vector 1! corresponding o the minimum
of £ can be obtained by solving the equation

POYGH —PMAM) 0 9)
for a'. From (9), we obtain

n'fi-j' = [']1!.'5}1'_]1(!:}::—J.-I-_p:_'i:l]T(_}';i"_l A 'Plfé-,'—(_'}l_'!:j (107
where Plit = [PIETPU-1DWT jg the prendoinverse of
P,

We compute the coefficient vectors a's for all codevee-
tors obtained from SOFM. Once the a'™'s are available, the
codebook can be designed to contain the coefficients {a'**}. If
we do so, then for encoding, we have 1o do the following. For
each polynomial {a%!}, obtain the surface by computing the
piy real values corresponding 1o each pixel of a block. Round
these real values, subject 1o the constraint that all values lie in
0, 1,.... &L — |}, Notice, here, that given a coefficient vector
atf | the surface generated &; remains the same irrespective of
the spatial location of the associated block on the image. The
reason is that for every block we use the central point of the
block as the origin. So, we can avoid a lot of useless computa-
tion if, instead of storing a7 &, we store the %, 1 in the code book.
Let these generated surfaces be {%;,1 = 1.2,..., 5} Then, for
every block of size pyg of the image, we find the closest %, and
use its index 1o encode. Then, while decoding, we reverse the
procedure using %5 and the indices used to code the blocks. In
other words, we do not store the a'l &, but the code vectors re-
constructed using a5, We use the new codebook for encoding,
as well as decoding, subsequently. We have wested the effective-
ness of this method using several images. Although the gquality
improvement in terms of PSNR appears marginal, significant
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Fig. 2.

Original Lena image.

improvement in terms psychovisual quality is observed consis-
tently. Fig. 2 shows the original Lena image. Fig. 3(a) shows the
reconstructed Lena image using SOFM codebook (block size
8« 8 and codebook size 256), while Fig, 3(b) depicts the same
using surface-fitting codebook. Though the surface-fitting code-
book marginally increases the PSNR (0.3 dB ) for this image, re-
duction of blockiness and improvement of psychovisual quality
are evident. To demonstrate the effect more clearly, we show
in Fig. 4 enlarged portions (containing lips) of the images in
Fig. 3(a) and (b).

C. Construction of Generic Codebook

In mostof the experimental works on vector quantization, the
codebooks are trained with the test image itself. However, this
poses a problem in practical use of such algorithm for trans-
mission/storage of the compressed image. While transmitting a
compressed mage, both the compressed image and the code-
book must have to be transmitied. The overhead in transmit-
ting the code book diminishes the compression ratio largely. This
problem can be avoided if a generic codebook is used by both the
transmitter and the receiver [23]. Construction of such a generic
codebook poses a formidable problem, since, in general, if an
image is compressed using a codebook trained on a different
tmage, the reconstruction ermor tends 1o be substanually high.

Next, we explore the possibility of construction of a generic
codebook that can be vsed to encode any image (ie., images
other than those used 1o construct the codebook) with acceptable
fidelity. Such a codebook can allow us one time constroction of
the encoder-decoder and making the codebook a permanent part
of it. To achieve this, we select a set of images having widely
varied natures in terms of details, contrasts, and lextures. We
use these images together for construction of the generic code-
book. We prepare 2 768 = 512 training image (Fig. 5) which isa
composite of six smaller 256 « 256 images and train the SOFM
using this training image and then construct the surface-fiting
codebook for the V.
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(a)

Fig. 3.
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(B}

(1) Reconstrocted Lena image with VO using SOFM weight vectoms as reconstruction vectors. PNSE — 28,19 dB. (h) Reconstructed Lena image with

W0 using surface fitting. PNSR = 2849 dB. Here, the Lena image is used for training the Vo).

(a)

Fig. 4.

We emphasize that he generic codebook constructed by the
above-mentioned method can neither be claimed as universal
nor as the best possible generic codebook. Our aim is merely
to demonstrate experimentally that a generic codebook con-
structed from some judiciously chosen images can be used for
effective compression of other images having “similar charac-
teristics” 1f the images 1o be compressed are of a radically dif-
ferent nature, say containing texls or geometrc line drawings,
use of another generic codebook constructed with images of a
similar type will be appropriate. Note that, when we say images
of “similar” characiendstics, we do not refer w images which
are visually similar, bul images with similar distribution of gray
level over small blocks of size, say 8 < 8.

1I. EXPERIMENTAL RESULTS

We study three vector quantizers using block sizes 8 % 8§
(VD) 4 =8 (VQ2), and 4 x4 (V(Q3), respectively. Each
of the Vs uses o codebook of size 256 and is trained with
mean-removed vectors. Thus, o represent each block in the
encoded image, 1 byle is required for the index and another byte
is required for the block average. This makes the compression
ratios (.25 bpp (bits per pixel), 0.5 bpp, and 1 bpp for V31,

(b)

() Enlarged portion of Lena image shown in Fig. 3a). (h) Enlarged portion of Lena image shown in Fig. 3(h)

V2, and V3, respectively. To achieve more compression,
lossless Huffman encoding is applied separately to the indices
and the block averages. Codeword assignment for the indices is
based on the frequency distribution of the codevectors in the en-
coded training image. Because of a strong correlation between
neighboring blocks, the absolue differences between average
values of neighboring blocks are found to have a monotonically
decreasing distribution and codewords are assigned exploiting
this.

Each V(3 is trained with the image shown in Fig. 5. The
raining image is a composite of six 256 x 256 images. The
individual images in the training set are Blood cell, Peppers,
Keyboard, Lena, Cameraman, and Chair. We report the test
results for six images, of which Lena, Barbara, and Boat are
of size 512 = 512 and Bird, House, and Mattface are of size
256 = 256. Please note that the Lena images used in training
and test sets are different. The former is of size 256 x 256 while
the later has the size 512 » 512, The performances of the veclor
quantizers for the training images are summarized in Table Land
those for the test images are summarized in Table 11 In Table 11,
we also present the performances of standard JPEG algorithm.
For every image, while using the JPEG algorithm, we tried to
maintain the same compression rates as achieved by our scheme.
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Fig. 5. Training image.
TABLE 1
PERFORMARNCE OF THE VECTOR QUANTIZERS ON TRAINING IMAGES
Imam= mize W [ Hlmrlizizg B o« #) VX TRInekzize 44 3] VA T Hlnekesize L2 A
Fas o1y | R Chpnd | PANI (A1) | CR (eppd | PSR A | O (b
Dluwad el A3ow 206 | 252 0.2l STH 44 xR ()
Counvezanan | 230 = 256 [ 22,382 AT 24,1534 034 36,51 (L5
Chair DG o« 256 | A1.20 N 2230 M35 AL .34
ey bl D 250 | NN Nz H1.00 NI Ad.H2 N.GT
lena B0 T R B n.21 2T.ED n.1: kR MN.f2
Fipes ENIE S A [ A7.0F .15 2 [0, 1

We used the routines available in Matlab 5 software 1o generate
the JPEG mmages.

Our results for the test images show that the proposed algo-
rithm consistently performs better than the JPEG in terms of
PSMR for the lowest bit rate studied. In this case, the difference
of PSNR value between the images produced by our scheme
and JPEG varied between 0.23 dB for Lena image to 5.10 dB
for the Bird image. For the higher bit rates, JPEG shows con-
sistently higher PSNR values than the proposed algorithm at
similar compression rates. To compare the psychovisual quali-

ties, we display in Fig. 6 the Lena images compressed using the
proposed algorithm and JPEG algonthm. The images Fig. 6(a),
(e, and (¢) are compressed using the proposed algorithm with
block siees 8 = 8, 4 = 8, and 4 = 4, respectively. The images
Fig. 6(b), (d), and (f) are compressed using the JPEG algorithm
with bil rates similar 1o the corresponding images in the lefi
panels. It is evident from the images shown in Fig. 6 that, de-
spite a small difference in PSNE values at the lowest bit rate
(023 dB), the image compressed by the proposed algorithm
is quite superior o the JPEG image in terms of psychovisual
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TABLE 11
PERFORMANCE OF THE VECTOR QUANTIZERS ON TEST IMAGES AND THEIR COMPARISON WITH BASELINE IPEG

limage AT esaiom VT T Blocksize & 2 3 WOE CnelEize 1w w6 VRS B Incksize 4w )
Algarithan PEnIL GIRY | O (o [Re= Y L R o I Sl L= N ER N L R A RTEE
Lema Frioncaed A8 AT [T AR (RS EEN{E 171
(514 = 518 JPEAG 2504 (140 X 1 AnlA N.o7s
Durbmrs T'ropesod RS .28 1000 41 230 LT
(512 = 314 JETG R (.24 276 111 A1.12 LT
Tuoial. T'ropesel 2611 [ 35011 A SL1L N RsH]
(512« 312 J0TAG 24700 [ WS bk 4414 L1t
Binl 1ol 3027 [V 3260 (30 REXH] 0.a7
(80 - 2860 | JPE 2517 1,_4 3112 L 38403 &l
House PP ropessied 25,59 [V 215,30 33 28.41 LT
(286« 2861 | JIPEQ 24,21 0,8 30,15 33 34,36 0754
Medilare Propoaecd 25404 [E] EAN 137 A [N
G0 w23 | JITHG 2704 Q.4 465,45 0aT S840 i

quality. For higher bit rates, though the JPEG images have sig-
nificanty higher PSNR values, their psychovisual qualities are
similar o the corresponding images compressed with the pro-
posed algorithm. Similar results are obtained for other images
studied in this paper. For all other test images, the original im-
ages and the images reconstructed wsing the proposed algo-
rithm for three VQs are shown in Figs. 7-9. The PSNR and the
compression rates for these images [panels (b)), (c), and (d) of
Figs. 7-9] are reported in Table 11,

A plethora of studies on the Lena image are avalable in the
literature. Many of them can be found in the excellent survey
paper of Cossman ef af. [25]. However, they have concentrated
exclusively on vector quantization of image subbands and the
results reported cannot be readily compared with those of the
SV technigues. Instead, we compare our results with other
works using SVQ techniques. Zeger er all [7] developed a
varant of simulated annealing for VI design and compared
it with GLA. They used Lena and Barbara images of size
512 % 512 1o test the algonthms, They vsed 4 % 4 block size
and a codebook size of 256. The reported PSNRs are 30.48
and 2580 dB, respectively, for GLA and 30.59 and 25.87 dB,
respectively, for simulated annealing. Thus, the results reported
in this paper are comparable for Barbara image and significantly
superior for the Lena image. Karayiannis and Pai [6] developed
several variants of a fuzzy vector guantization algorithm. They
also reported results for VQs using traditional k-means algo-
rithm and fuzzy k-means algorithm. They used the 256 = 256
Lena image for both training and testing. In their study, they
used image blocks of size 4 % 4 and considered codebooks of
different sizes. For a codebook of size 256, they reported the
PSNRs 27.06 dB using f-means algorithm, 2991 dB using
fuzzy E-means algorithm, and 29.60, 2993, and 29.95 dB for
three different variants of fuzzy vector quantization algorithms.
These results are similar w the results reported in this paper
for the Lena image used in trmiming the set. In [ 10], Kohonen's
SOFM algorithm s used for designing a V. Here, SOFM 15
trained with the low-order coefficients of discrete cosine trans-
form (DCT) of 4 = 4image blocks. The output of the encoder is
further compressed using a differential encoding scheme. The
result reported for the Lena image shows a PSNR of 24.7 dB
with a compression rate 25.22 (1e., .32 bpp approximately ).
In a recent work, Schnader er af. [17] swdied wavelet-based
lattice vector quantization methods, For the same image, they

reported a PSNR 3206 dB at a compression ratio 24:1 (e,
(.33 bpp approximately ). All other images studied in this paper
also show high PSNR with good compression rates.

A. Quantitative Assessment of Preservation of Pavehovisual
Ouality in Terms of Blockiness

Or goal 15 w devise a simple scheme of designing VO that
can compress images with good perceptual fidelity. It is a well-
established fact that the mean squared error (MSE) based distor-
tion measures, such as PSNR, are not very good for measunng
perceptual fidelity. However, there is no universally accepted
quantitative measure for psychovisual quality. We presented a
surface-fitting method for quantization that smoothes the recon-
structed image resulting in a reduction of the blocking effect.
Sometimes, it may imtrodoce some blurnng of sharp features.
However, moderate bluming 15 not considered annoying by a
human observer since it is a “natural™ type of distotion [ 18].
The effectiveness of the proposed scheme for preserving psy-
chovisual guality in the reconstructed images has been demon-
strated visually in Figs. 6-9. The increased ability of reducing
the blocky effect by surface-fitting scheme is also demonstrated
visually in Figs. 4 and 5. Fig. 5 depicts enlarged views of some
portion of the images shown in Fig. 4. The portion is selected
in such a way that it contains fine detail as well as smooth non-
linear intensity variaton.

Now, we define two guantitative indices that can assess the
preservation of psychovisual quality with respect to the blocking
effect. The development is based on the following observations
made by Ramstad er al. [18].

1) The blocking effect is a nawral consequence of splitting
the image into blocks and independent processing of each
block. The quantzation errors will lead o appearance of
the blocks that the image 15 split into.

2) Blocking effects are visible in smooth image areas,
whereas in complex areas, such as textures, any under-
lying blocking effect is effectively masked.

Thus, the degradation of psychovisual quality is contributed
by 1) the reduction of smoothness, due to the difference be-
tween an image block and the quantized block that replaces
it, and 2) the additional discontinuity imposed across the block
boundary due 1o quantzaton. So, we develop a pair of gquant-
tative indices. The first one measures the loss of smoothness per
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{c) PSNR = 30.14 dB, CR = 0,38 bpp

(d) PSNR = 33.28 dB, CR = 0.38 bpp

{e) PSNR = 33.03 dB, CR = 0.74 bpp
(a), (c), {e) Compressed Lena images using proposed algonthm. (h), {d), (f) compressed Lena images using IPEG.

Fig. 6.

pixel across the block boundary due to vector quantization. We
call it the boundary smoothness mismatch index (BSMI). The
second index deals with the difference of smoothness per pixel
between the original image and the reconstructed image for the
nonboundary pixels {i.e., all pixels in a block that are not on
the boundary of the block). We call it the inner smoathness dif-

() PSNR = 36.43 dB, CR = 0.73 hpp

Sference index (1SD1). Evidently, for both indices, lower values

imply better preservation of psychovisual guality.
The development of these indices is based on the fact that the

second derivative, i.e., Lapfacian of a surface at a point, can be

used as a measure of the lack of smoothness at that point. This
fact is often used for detection of edges inan image [26], where



LAHA eral.: DESIGN OF VECTOR QUANTIZER FOR IMAGE COMPRESSION

1299

(e}

id)

Fig.7. Results on 512 % 512 harbara image. (a) Original image. (b) Reconstructed image for VO with 8 = 8 blocks. () Reoonstrocted image for W0 with 4 = 8

blocks. {d) Reconstructed image for VO with 4 20 4 hlocks,

the pixels showing abrupt varation of intensity with respect to
their neighbors, aredetected. In our approach, we use the Lapla-
cian to measure the lack of smoothness in intensity variation.
The discrete realization of the operator in form of a convolu-
tion mask is shown in Fig. 10. Henceforth, we shall denote this
mask as £, 71, where {v, J) denotes the coordinate of the pixel
on which the mask is applied.

Now, we present the formulae for computing the indices. Let
Fipand Fy denote the set of pixels at the block boundaries and
the set of nonboundary pixels in an image respectively. Then,
the BEMI of an image is defined as

¥ [mge £GP
(3.5 )0 Py

RaM | =

(11)

Nuruber ol pixels in Pg

The computation of the 1SD1is computed for a reconstructed
image with respect 1o the original image and defined as

E [ru - ,.C{_.' : JI :|

WIEDY
Nwmber ol piacls in £

— g r Ll )
ISTH

(12)

where g and #;; denote the intensities of the (4, §1th pixel in
the original image and the reconstructed image, respectively.
MNote that, for both measures, the lower the value, the better the
performance. We report the results of our study using the pro-
posed indices in Table 111,

As shown in Table L, for all 18 cases, the suface-fitling
codebooks show better performances in terms of BSML. This
cleardy indicates that for the surface-fitting codebooks the block
boundaries maintain better continuity. Table 111 also reveals that
for 13 {out of 18) cases, the 1SD1 values for the suface-fit-
ting codebook are smaller than the corresponding 1SDI values
using the SOFM codebook. This means that, in these 13 cases,
the similarity of the blocks reconstructed by the surface-fitlting
codebook is more like the original image than the similarity of
the SOFM V) reconstructed images with original ones. The re-
maining five cases involve three images with small block sizes
{Barbara and House images with block sizes 4« 8 and 4« 4
and Boat image with block size 4 3 4). These results can be at-
tributed to the fact that each of these images (original) contains
substantial portions covered with complex texture-like areas,
and, for smaller block sizes, the gain due to surface fitting over
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Fig. 8. Results on 512 = 512 boat image. () Original image. (b) Reconstructed image for VO with 8 = 8 blocks. (o) Reconstrocted image for VO with 4 » 8

blocks. {d) Reconstructed image for VO with 4 = 4 hlocks,

the SOFM is not reflected in ISDI values. Owverall, Table 101 in-
dicates that the replacement of the codevectors obtained directly
from SOFM with the codevectors oblained by least square-error
surface fitting results in Vs preserving the psychovisual fi-
delity 1o a better extent.

IV, CONCLUSION

We presented a comprehensive scheme for designing vector
quantizers for image compression using generic codebooks
that produce reconstructed images with good psychovisual
quality. The scheme exploits the special features of SOFM
for codebook generation and inroduces a novel surface-fitting
scheme for refinement of the codevectors generated by SOFM
algorithm for reducing the blockiness in the reconstructed
images. 1t also puts together some well-known concepts, such
as mean-removed vectors and entropy coding of indices and
difference-coded mean values. The proposed scheme, as a
whole, achieves compression at low bit rates with good quality
reconstructed images.

Due to the density matching and topology preservation prop-
erties of SOFM, it can be used o generale a good set of code
vectors. Use of mean-removed vectors reduce the reconstruction
error significantly, but they necessitatedoubling of the amount of
the data to be stored or tansmitted. However, lower reconstruc-
tion error allows us to use larger image blocks with acceptable fi-
delity. The use of cubic surface fitting for refinement of the code-
vectors enables us o decrease the unpleasant blocking effect
that appears in spatial VQs at low bit rates. The improvement
due to surface fitting is demonstrated visually, as well as gquan-
titatively, using two indices proposed in this paper. The compu-
tational overload due to surface fiting as proposed here is re-
stricted o the codebook generation stage only, unlike the trans-
form or subband-coding technigques, where every image has to
be transformed into the frequency domain at the encoder side
and inverse transformed into the spatial domain at the decoder
side.

The use of generic codebook not only enables us to construct
the codebook only once, but the knowledge of distribution of in-
dices for the training images can also be exploited as the a priori
knowledge of distrbution of indices for the test images. This
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Fig. 4.
blocks. (d) Reconstructed images for VO with 4 % 4 blocks.

) (d]

Results on 256 » 256 images. (1) Original images. (b) Reconstructed images for VO with 8 » § blocks. (¢) Reconstructed images for VO with 4 = 8

TABLE II1
COMPARISON OF PERFORMANCES REGARDING PRESERVATION OF PSYCHOVISUAL FIDELITY BETWEEN

THE VECTOR QUANTIZERS UsiNG SOFM CoDE BOOKS AND SURFACE-FITTING CODE BOOKS

Toasingzr: oo bowls Blockalar 8 = 2 Blockzrar 4 = 8 Blocksie: 4+ x4
Nzl NELIT T TETH TISRAT ToTT TioRAT T=ToT
Luuu ST NIRRT AT Q0 433,72 33T
(al% -~ 5L | Sl L A8 5 | 500 Al5.8d A0k S0 33005
Harbara ST [E e BT TR I 1THE T [
(61% s 51 | Barfuge il | GT0LT3 [ 006.G0 | TO3.03 L5156 | 2177890
Hrar LT TI 10 TEHT.TH TN AT EETEA
(a2 = -'Tll"_?':l B fann Tl g G GAnsa onv.ay EilALL ST A8
14T =LabM AT A2 THA RN 2TILRD 13017
I:'_:'.':-I"; # E-'li‘i:l surface Tt TRE 11 L EE ALER 2714 147 i
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Mal Lace ST 200 AT 40010 | 10010 ALEET LizL g
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Fig. 10  Convolution mask corresponding to the Laplacian operator.
is used for devising an entropy-coding scheme for the index
values. Further, the difference coding of the means of the image
blocks also leads to Huffman coding of the average values.

We have reported results with three Vs using block sizes
Bx 8, 4x8 and 4 » 4. Among them, as expected, V1 gives

the highest compression rate, but PSNR is comparatively low.
On the other hand, V3 produces excellent quality of the recon-
structed images with the lowest compression rate. VQ2 paves a
middle path by achieving nice reconstruction fidelity at good
compression rate. We have compared our results with standard
JPEG algorithm. V1 isfound to be superor to JPEG at compa-
rable bit rates both in terms of PSNR and psychovisual quality.
V2 and V3 scored lessthan the corresponding JPEG in terms
of PSNR, but produced comparable psychovisual quality. We
have compared our method with some published works and
found that our results are superior or comparable 1 other spa-
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tial V(s Further, we compared our results with two recent pub-
lished work using DCT and wavelets, respectively, and our re-
sults for the Lena image are comparable to them in terms of
PSNR.

We proposed two indices for guantitative assessment of
blockiness introduced in the reconstructed images by the VQ
process. The first index, BSML, measures the lack of conti-
nuity/smoothness at the block boundaries in the reconstructed
images. The other index, 1SDI, measures the deviation of
the reconstructed image from the orginal image in terms of
smoothness property of the nonboundary pixels. We have com-
pared the images reconstrucled using the codevectors generated
directly from SOFM and those using the codevectors obtained
by sudface-fiting method. We found that the surface-fitting
codebooks produce images with betler psychovisual guality
with respect o the blockiness.
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