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Abstract

In this article, we propose an efficient technique for classifying amino acid sequences into different supedamilies.
The proposed method first extracts 20 features from a set of training sequences. The extracted features are such
that they take into consideration the probabilities of occurrences of the amino acids in the different positions of
the sequences. Thereafier, a genetic fuzzy clustering approach is used o automatically evolve a sel of prototypes
representing each class. The charactenstic of this clustering method is that it does not require the a priod information
about the number of clusters, and is also able o come out of locally optimal configurations. Finally, the nearest
neighbor rule is used 1o classify an unknown sequence into a particular superfamily class, based on its proximity to
the prototypes evolved using the genetic fuzzy clustering technique. This results ina significant improvement in the
time required for classifying unknown sequences. Results for three superfamilies, namely globin, trypsin and ras,
demonstrate the effectiveness of the proposed technigque with respect Lo the case where all the raining sequences are
considered for classification using the same set of features. Comparison with the well-known technique BLAST also
shows that the proposed method provides a significant improvement in terms of the time required for classification
while providing comparable classification performance.
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1. Introduction

Bioinformatics [5,21,27], a modern science, is basically conceptualizing biology in terms of macro-
molecules and applying ‘informatics’ techniques to understand and organize the information associated
with these molecules. It primarily deals with the application of computer and statistical techniques to the
management of biological information. Bioinformatics has emerged as a forefront research area in the
recent past since biological data is accumulating at an accelerating rate. This is as a result of the Human
Genome Project and other similar efforts, along with dramatic evolution of technology for information
storage and access. In genome projects, bioinformatics includes the development of methods to search
data bases quickly, to analyze DNA sequence information, and to predict protein sequence and structure
trom DN A sequence data. These have necessitated the development of algorithms which can extract usetul
information from these data bases. In response to this problem, a number of researchers have developed
techniques to analyze and interpret the data, and discover concepts in the DNA, RNA and protein data
bases. Classification of protein sequences into superfamilies is one of the important problems in this
regard [32].

Proteins are essentially polymers of 20 different amino acids that can occur in any order. The problem
of superfamily classification can be formally stated as follows [30,31]. Given an unlabeled protein (or,
amino acid) sequence 5 and a set of known f superfamilies F = F, Fa, ..., Fy, we are to determine with
certain degree of accuracy whether the protein S belongs to one of the superfamilies F;, i = 1,..., f
or not. Here, a superfamily is a group of proteins that share similarity in structure and function. Similar
protein sequences will most probably have similar biochemical functions. Therefore, given an unknown
protein, the first task is to classify it into one of the known superfamilies. This will help in predicting the
protein function and/or structure of the unknown sequence; thus saving, to a large extent, the expenses
incurred on expensive biological {wet) experiments in the laboratory. Perhaps, the most important practical
application of such a knowledge is in drug discovery. Suppose we have obtained sequence § from some
disease D and by our classification method we infer that 5 belongs to F;. In order to design a drug for the
disease I we may try a combination of existing drugs for F;.

Different approaches exist for protein sequence classification [31]. Until recent days, alignment al-
gorithms (e.g., BLAST and FASTA) [1,2,22] and Hidden Markov Models (HMM) [19] have been the
major tools to help analyzing the protein sequence data and interpreting the results in a biologically
meaningtul manner. BLAST returns a list of high-scoring segment pairs between the query sequence and
the sequences in the data bases. This is done after performing a sequence alignment among them. In one
of the recent works [30,31] Wang et al., have tried to capture the global and local similarities of protein
sequences in extracting features to be used as inputs to a Bayesian Neural network (BNN) classifier. A
2-gram encoding scheme, which extracts and counts the occurrences of two consecutive amino acids in
a protein sequence, i1s proposed. They have also compared their technique with BLAST, SAM and other
iterative methods. Although the 2-gram encoding scheme is shown to perform reasonably well, its major
limitation is that it does not consider the positional significance of'the residue pairs, an important consider-
ation in superfamily classification. The number of features extracted by this scheme is also relatively large
{ =62). This poses a serious limitation for many classification schemes. Moreover, in some recent works
[30.31] the authors deal with essentially a two class classification problem, where the query sequence is
classified as either belonging to a superfamily, or not. However, the importance of extracting numerical
teatures from protein sequences has its own advantage in that it thereatter allows for the application of
several low-complexity analysis algorithms like classification and clustering. Although clustering in the
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sequence space has been used earlier [2(),23,29], these have generally been hierarchical, graph theoretic
or set theoretic in nature, that have taken into consideration the pairwise scores returned by alignment
techniques. The corresponding clustering algorithms generally have high-computational complexity of
the order of {}{HJ_‘J where n is the number of sequences. In contrast, with extracted numerical features,
lower complexity clustering algorithms become applicable.

In this article we propose another feature extraction scheme that overcomes some of the limitations of
[30,31]. The number of extracted features is limited to 20), and a weighting scheme in the lines of profile
analysis [ 16,18] is adopted. This helps in incorporating, to a large extent, the positional information of the
individual amino acids. Once the features are extracted, atfuzzy genetic clustering strategy [24] is adopted
to first evolve a set of prototypes for each superfamily under consideration. Note that hybridization of
fuzzy systems and genetic algorithms (GAs) have gained widespread interest in recent years [7].

In clustering {also known as exploratory data analysis) [9,10,12,15,17,28], a set of patterns, usually
vectors in a multi-dimensional space, are organized into coherent and contrasted groups, such that patterns
in the same group are similar in some sense and patterns in different groups are dissimilar in the same
sense. The aim of any clustering technique is to evolve a partition matrix [/ (X) of the given data set X

(consisting of, say, n patterns, X = {xj, x2, ..., xp}) into a number, say ¢, of clusters (Cy, Ca, ..., C,)
such that some measure of goodness of the clusters is maximized. The partition matrix U (X) of sizec x n
may be represented as f = [u;].i = 1,...,candk = 1, ..., n, where u; is the membership of pattern

xj to clusters C;. In fuzzy partitioning of the data, the following conditions hold:
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Fuzzy c-Means (FCM) [6] is a widely used technigue that uses the principles of fuzzy sets to partition a
data set into a fixed number, ¢, of clusters; thereby providing the appropriate ¢ = n partition matrix such
that the above conditions hold good. However, FCM has two major limitations: it requires the a priori
specification of the number of clusters, and it often gets stuck at suboptimal solutions based on the initial
configuration of the system.

The searching capability of GAs has been exploited in [24] to evolve automatically the fuzzy partitions
of set of prototypes representing each class. GAs [8.14.25] are randomized search and optimization
techniques guided by the principles of evolution and natural genetics. They perform search in complex,
large and multimodal landscapes, and provide near optimal solutions for objective or fitness function
of an optimization problem. The characteristic of the clustering method [3] is that it does not require
the a priori information about the number of clusters, and is also able to come out of locally optimal
configurations.

After application of tuzzy clustering, a number of centroids are evolved corresponding to each super-
tamily. Finally, the nearest neighbor (NN} rule [4,28] is used to classity a set of unknown/query sequences
into particular superfamily classes, based on their proximity to the prototypes evolved using the genetic
tuzzy clustering technigue. This results in a significant improvement in the time required for classitying
unknown sequences over the time required for a full NN search where the entire training data is used.
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The proposed technique, in fact, overcomes two standard limitations of the NN rule, viz., a requirement
to store all the training patterns, and to compute the distances of the query sequence to all the training
patterns.

Results for three superfamilies, namely globin, trypsin and ras, demonstrate the effectiveness of the
proposed technique with respect to the case where all the training sequences are considered for classifica-
tion using the same set of features. Comparison with the well-known technique BLAST also shows that
the proposed method provides a significant improvement in terms of the time required for classification
while providing comparable classification performance.

2. An overview of protein sequence classification

In this section, we briefly describe the representation techniques of the protein sequences and other
related issues in the problem of protein classification. Deoxyribose nucleic acid (DNA) is a sequence of
tour base/nucleotides-Adenine (A), Guanine (G), Thymine (T) and Cytosine (C). DNA is first transcribed
into ribose nucleic acid (RNA) which contains Uracil {U) instead of Thymine, while eliminating a lot of
Junk information.

RMNA is thereatter translated into proteins. The translation process considers three consecutive nu-
cleotides, also known as codons. Each codon codes for a unique amino acid. Thus, the consecutive
codons translate into a sequence of consecutive amino acids, which essentially is a protein. Proteins are
theretore sequences composed of an alphabet of 20 amino acids. Note that there are 4 #4 4 = 64 codons,
although there are just 20 amino acids. This 15 due to the degeneracy of the genetic code. These amino
acids are represented by the following set:

Am={A C D E F, G H L K,L, M,N, P, Q. R, 8, T, V, W, YJ.

A protein sequence can be of any length and the amino acids can combine in any order. This gives us an
idea of the huge number of possible protein structures [21].

As observed, groups of proteins have similarity in functions and structures, and we refer to a group
of proteins that share such similarity as a superfamily. An important issue in protein sequence classifi-
cation is how to encode the protein sequences, i.e., how to represent the protein sequences in terms of
feature vectors. Evidently, a good input representation (extraction of features) is crucial for the proper
classification of the sequences into superfamilies.

3. Proposed technique of extraction of features

In the proposed encoding scheme, the evolutionary profile information from multiple sequences be-
longing to a particular superfamily is taken into account. Evolutionary similarity among proteins can be
explained as follows. Fig. | shows the primary structure of four related proteins. Only a small piece of
each protein is shown. By taking a closer look at the structures, the history of evolution in this protein
tamily can be identified. Possibly, the ancestor of the four proteins in Fig. 1 looked like the protein
in Fig. 2.

In general, proteins have evolved over time such that although a set of sequences share the same
ancestor, structure differences become evident among them because of the evolutionary process. The
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Fig. 1. Primary structure of four related proteins,

LSALSDLHIHELEVDMYN

Fig. 2. A possible common ancestor.

differences arise due to some biological changes in form of insertions, deletions and substitutions during
cell reproduction. Through a process called mitosis, the cell makes a copy of itself and then splits into
two daughter cells. Most of the time a protein of the parent cell is exactly duplicated in the daughter cell.
However, over long periods of time, errors occur in this copying process. When this happens, a protein
in the daughter cell becomes slightly ditferent from the parent. It also happens that these proteins suffer
similar degradation in their structure, although a generality of structure is still maintained. As a result of
these errors, proteins which share a common ancestor are not exactly alike. However, they inherit many
similarities in primary structure from their ancestors. This is known as conservation of primary structure
in a protein family. These structural similarities made it possible to create a statistical model of a protein
family [16,18].

3.1, Sraristical profile

In order to construct a statistical profile of a set of sequences, a 20 x [, probability matrix is computed
where [y = maximum length of a sequence belonging to a particular superfamily. For example, lna =
171 for the sequences of the protein superfamily globin that have been considered in this article. Here,
the value at position (i, j) indicates the probability of occurrence of the ith amino acid in position j of the
sequence. As an example, consider the model shown in Table 1 which is a simplified statistical profile of
the five sequences shown in the Fig. 3. According to this profile, the probability of L in position 1 is (0.8,
the probability of A in position 2 is (.6, and so forth. The probabilities are calculated from the observed
frequencies of amino acids in the family of protein sequences (e.g., L occurs in the first position us four
out of five sequences, or % = 0.8).

3.2, Input feature extraction

Given a profile, the position-specific weight of any amino acid in a given sequence can be obtained
by adding the occurrences of the amino acid at a particular place and the respective probability of the
occurrence of that amino acid in that place for the entire family. For example, using this method and the
probability matrix shown in Table 1, for the sequence LAADT the weights of the amino acids are

Weight(L) =1 = 0.8 = (.8,
WeightiA) =1 =06+ 1x08=1.4
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Table 1
Statistical model of five related proteins shown in Fig. 3

Positions 1 2 i 4 5
Frob (L} 0.8 04 0.0 0.0 0.0
Prob (A) 0.2 0.6 0.8 0.0 0.0
Prob (H) 0.0 0.0 02 0.0 0.0
Prob (I3} 0.0 0.0 0.0 0.6 02
Frob (T} 0.0 0.0 0.0 0.4 0.0
Prob (K} 0.0 0.0 0.0 0.0 0.6
Prob (V) 0.0 0.0 0.0 0.0 02

Sequencel LaAaTRER

Sequence? LaAHDY

Sequenced ALADE

Sequenced LaAaTRER

Sequence’ LLADD

Fig. 3. Five related proteins.

Weight(D) =1 x 0.6 = (.6
WeightiT) =1 =% 0 =10.

The weights of all other amino acids are zero. This is because either they appear in irrelevant positions
with respect to the already known superfamily members which form our training set or they do not appear
at all. So for the sequence LAADT the feature vectoris [L2006000000080000000000]
representing the weights of features [A, C,D,E.E G, H, L K.L. M, N,P, Q. R, 5. T. V. W. Y.

As is evident, the number of features for any sequence will always be equal to 20. In contrast to the
method in [30], where a large number of features are neglected in order to reduce the dimensionality,
here the loss of information as a result of neglecting some possible input features is absent. Also position
specific information is incorporated in the scheme. In contrast to alignment-based methods like BLAST,
here each sequence is represented by a set of features, which thereafter allows for the application of
several low complexity clustering and classification algorithms.

4. The tuzzy clustering technique

In this section, we describe the use of variable string length genetic algorithms (VGAs) to automatically
evolve a set of prototypes representing each class [3]. As in conventional GAs [14], the basic operations
in VGASs also are selection, crossover and mutation. The technique 1s described below in detail.

String representation and population initialization: In VGA-clustering, the chromosomes are made up
of real numbers (representing the coordinates of the centers). If chromosome i encodes the centers of K;
clusters in N-dimensional space, K; =2, then its length [; is taken to be N = K;.

Each string i in the population initially encodes the centers of a number, K;, of clusters, where K; is
given by K; = rand()mod K*. Here, rand() is a function returning an integer, and K * is a sott estimate
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of the upper bound of the number of clusters. Note that K* is used only for the generation of the initial
population. The actual number of clusters in the data set is not related to K*, and may be any number
greater than, equal to or less than K*. The K; centers encoded in a chromosome are randomly selected
points from the data set. As an example, suppose a chromosome encodes three cluster centers in two-
dimensional space. Suppose the three patterns randomly selected from the data set are (3.2, 4.5), (143,
9.8 and (7.2, 10.4). Then the chromosome will look as follows:

Chroml : (3.2, 4.5) (14.3, 9.8) (7.2, 10.4).

Another chromosome may be present in the same population which encodes, say, five centers, namely,
(2.5,3.2), (10.7,7.8),(11.2,5.5),(3.7,6.2)and (7.5, 5.7). Then the corresponding chromosome will look
as tollows:

Chrom? : (2.5, 3.2} (10.7, 7.8) (11.2, 5.5) (3.7, 6.2) (7.5, 5.7).

Fimess computation: Cluster validity index is often used to indicate the goodness of a partitioning of
a data set as obtained by a clustering algorithm. In this article we use one such cluster validity index, the
Xie—Beni (XB) index [33] for this purpose. For a data set X = {x|, x2, ..., x,,}, set of ¢ cluster centers
V = {vi.v2, ..., v}, and the corresponding partition matrix I/, the XB index is defined as the ratio of
the total variation o to the minimum separation sep of the clusters, where ¢ and sep can be written as

all, V; X.‘J=Z):uﬂllﬂ— vi ]2 (1)

=1 k=l

and

sep(V) = min(|[v; — vI[*). (2)
iEj

The XB index is then written as

oU,ViX) T (Thoy whlioe — vl
nsep(V) nimin; i {]v; — v_,-||3]]

XB{U, V:;X)= (3)
Note that when the partitioning is compact and good, value of ¢ should be low while sep should be high.
Theretore, the XB index should have a low value when the data has been appropriately clustered. Or, in
other words, it the XB index of a particular tuple (I, V1) is X By, and that of another tuple (L2, V2) is
XB>,and it X By = X B>, then the partitioning corresponding to (I7y, V) is taken to be better than that of
{L/2, V2 ). The objective is to minimize the XB index for achieving proper clustering. The fitness function
for chromosome j is defined as 1/ X B, where X B, is the XB index computed for this chromosome. Note
that maximization of the fitness function will ensure minimization of the XB index.

Selection: Conventional proportional selection is applied on the population of strings. Here, a string
receives a number of copies that is proportional to its fitness in the population. We have used the roulette
wheel strategy for implementing the proportional selection scheme.

Crossover: For the purpose of crossover, the cluster centers are considered to be indivisible, 1.e., the
crossover points can only lie in between two clusters centers. The crossover operator, applied stochastically
with probability g, must ensure that information exchange takes place insuch a way that both the offspring
encodes the centers of at least two clusters. For this, the operator is defined as follows:
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Let parents P| and P encode K and K> cluster centers respectively. Cy, the crossover point in Py, is
generated as Cy = rand()mod K. As before, rand () is a function that returns an integer. Let C> be the
crossover point in P, and it may vary in between [LB(Cz), U B((C2)], where LB() and U/ B() indicate the
lower and upper bounds of the range of (2, respectively. LB(C2) and UV B((2) are given by

LB(C>) = min[2, max[0, 2 — (K} — C1)]] i4)
and
U B(C2) = [K> — max[0, 2 — Cp)]J. (5)
Theretore C> is given by
Cr = LB(C2) + rand(Ymod(U/ B(C>) — LB(C2)).
As an example, suppose the two chromosomes selected for crossover be
Chroml : (3.2, 4.5)(14.3, 9.8) (7.2, 10.4)
and
Chrom2 : (2.5, 3.2) (10.7, 7.8} (11.2, 5.5) (3.7, 6.2) (7.5, 5.7}
Here K| = 3 and K> = 5. Let {; = 2. Therefare,

LB(Cy) = min[2, max[0, 2 — (3 — 2)]] = min[2, max[0, 1]] = 1 (6)
and

U B(C2) = [5 — max[0, 2 —2)]] = 5. (7)
Therefore

Ca =1 + rand (mod(5 — 1).
Let Oz = 3. Therefore after crossover, the two offspring will be
Offspringl : (3.2, 4.5) (14.3, 9.8) (3.7, 6.2) (7.5, 5.7)
and
Offspring2 : (2.5, 3.2) (10,7, 7.8) (11.2, 5.5) (7.2, 10.4).

Mutation: Each chromosome undergoes mutation with a fixed probability p,,. Since floating point
representation is considered in this article, we use the following mutation. A number § in the range
[0, 1] is generated with uniform distribution. If the value at a gene position is v, atter mutation it becomes
(1+2%4)=v, whenv # (), and +2 = 4, when v = (0. The ‘4" or "—" sign occurs with equal probability.

As an example, suppose Offspringl undergoes mutation in the first dimension of the second gene
position (cluster center). After mutation with § = (0.2, it may look as follows:

(3.2, 45 (1 =202+ 14.3, 9.8) (3.7, 6.2) (7.5, 5.7,
which is

(3.2, 4.5) (8.58, 9.8) (3.7, 6.2) (7.5, 5.7).
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5. The NN dlassification

In this section the nearest neighbor (NN) classification procedure in briefly described. Let us consider

a set of n labeled pattern {xy, x2, ..., X} belonging to one of the classes Cy, Ca, ..., Ce. The NN
classification rule assigns an unlabeled pattern v to the class of its (NN} x; € {xp, x2, ..., Xp} such that
D{XI',}:] :I‘I‘I!il'i{D{xL 1” I=12....n (8)

where [} 15 any distance measure defined over the feature space. Since the aforesaid scheme employs the
class label of only the NN to v, this is known as the NN rule. As an example consider six data points
labeled into two classes as follows:

Class 1 : (9, 10y, (10, 10} and (10, 93,
Class 2 : (14, 13}, (13, 14) and (13, 13).

Suppose the unknown pointis(11,11). Then atter computing its distance from all the six labeled points,
it can be seen that the NN is the point (10,10 that belongs to Class 1. Hence the unknown point is labeled
as Class 1.

The details of the NN rule along with the probability of error are available in [10,11,13 ,28].

The NN rule, though conceptually very simple and appealing, has two severe limitations. These are
that all the n training patterns need to be stored, and n distance computations need to be carried out for
classifying an unknown sequence. These limitations are overcome in this article by the application of fuzzy
clustering on the training patterns. Using the variable length genetic fuzzy clustering technique described
in the previous section, the training data corresponding to each superfamily class is first partitioned into
a number of clusters that is evolved automatically. Thereafter, instead of the tull training data, only the
prototypes toreach superfamily class (or, the centers of the clusters evolved by the genetic fuzzy clustering
technique) are used as the training data. The NN rule is then applied with the evolved set of prototypes
(whose size is much smaller than the size of the entire data), rather than the full data set. This is expected
to result in a significant improvement in the computation time.

6. Results

Experiments were carried out to evaluate the effectiveness of the proposed scheme. The data used in the
experiments were obtained trom the International Protein Sequence Data base, release 75, in the Protein
Information Resource (PIR) maintained by the National Biomedical Research Foundation (NBREF-PIR)
at the Georgetown University Medical Center. Three superfamilies, viz., globin, trypsin and ras were
considered. We have taken 500 sequences tfrom each of these superfamilies. The maximum variation
in lengths of the sequences for these superfamilies was of about 70 residues. Each class was divided
into training and test sets comprising 250 sequences each. Results were compared with respect to both
the classification performance and the timing requirements when executing on SUN-BLADE with a
processor speed of 1.2 GHz. For the purpose of comparison, experiments were carried out using BLAST
{(obtained from the http://www.ncbhi.nlm.nih.gov site), NN rule using the full training data (instead of
evolved prototypes), and also with prototypes evolved using the well-known fuzzy clustering algorithm,
the fuzzy c-means (FCM ) al gorithm [6] (with the same number of clusters as obtained using the genetic



14 8. Bandyvopadiyay / Fuzzy Sets and Systems 152 (2005) 5- 16

Table 2
Confusion matrix obtained using BLAST

Cilobin Trypsin Ras % Score
Gilobin 205 45 0 B2.0
Trypsin T 168 5 672
R 0 0 250 100.0
Owerall 83.06

Table 3
Confusion matrix obtained using full NN rule

Gilobin Trypsin Ras % Score
Globin 204 30 16 Bl.6
Trypsin 0 217 3 ROB
Kas L] 33 197 TH.B
Owerall 824

Table 4
Confusion matrix obtained using the prototypes evolved using genetic fuzzy clustering

Globin Trypsin Ras % Score
Gilobin 186 37 27 744
Trypsin 4 186 o9 744
Ras 0 ks 241 964
Owerall B1.73

tuzzy clustering method). For the genetic fuzzy clustering, population size was taken to be 50, and
the probabilities of crossover and mutation were fixed at (.8 and (0.1, respectively. A maximum of 100
iterations was executed. The number of prototypes evolved for globin, trypsin and ras were 2, 15 and 16,
respectively.

The confusion matrix obtained using BLAST is shown in Table 2. The confusion matrix corresponds
to the actual classes along the rows, and the computed classes along the columns. The entry (i, j) in
the confusion matrix shows the number of points that actually belongs to a particular class, say i, but is
classified to class j. The class wise and overall correct recognition scores are also shown in the table. The
corresponding tables for the full NN rule (using the full data for training), the proposed genetic fuzzy
clustering algorithms and FCM are shown in Tables 3-5, respectively. It is found that the performance
of BLAST and the full NN method are comparable in terms of percentage recognition scores. The score
obtained by the using the prototypes evolved using the genetic fuzzy clustering scheme is also reasonably
good, while that obtained using FCM are quite poor. This suggests the effectiveness in our examples.
When timing comparisons are made, the proposed method and FCM outperform the full NN rule by about
20 times, while the timing requirement of BLAST is the largest at 6 min (Table 6). This demonstrates that
the proposed method provides a reasonably good result significantly faster than both BLAST and the full
NN rule (Table 6).
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Table 5
Confusion matrix obtained using the prototypes evolved using FCM

Gilobin Trypsin Ras % Score
Gilobin 180 il 39 720
Trypsin i3 182 35 728
Ras 0 T0 180 720
Owerall 7226
Table &
Time required for classification
Method Time required
BLAST O min
Full NN rule 2425
Proposed method 0.125
FCM-based method 0125

7. Conclusion

In this article, a hybrid scheme for protein superfamily classification is proposed that combines a
technique for feature extraction, fuzzy clustering and NN classification. The feature extraction scheme
incorporates some amount of positional information of the amino acids in the sequences. The genetic
tuzzy clustering method is able to generate a good set of prototypes representing each class, and the NN
rule is used for classification into the appropriate class. Results are reported on three superfamily classes
namely, globin, trypsin and ras. It is found that although the classification result obtained by BLAST
is the best, the one based on fuzzy clustering and NN classification is also reasonably good, while the
timing requirement is significantly lower as compared to BLAST as well as the full NN approach.

There are several ways in which this work can be extended further. First of all, it a pre-alignment is
made before computing the probability matrix, then this may result in a better weighting scheme, and
hence better extracted features. Again, other feature extraction schemes also need to be developed. The
fuzzy clustering adopted in this article uses the XB index as the optimizing criterion. Other indices like
[26] could be applied and a comparative study needs to be performed. Note that these indices are based on
the compactness of the classes in the data set. Validity indices that evaluate different characteristics, other
than compactness, need to be studied in this context in future. New indices may have to be developed for
this purpose. Finally, the effectiveness of other classification methods, including neural network-based
classifiers, for superfamily classification needs to be studied.
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