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Abstract

Effectiveness of one-dimensional Bezier-Bernstein polynomial has been studied for compression of gravlevel images.
Both raster and Hilbert scan have been used for this purpose. Two different algorithms for one-dimensional approximation
and encoding of Hilbert images provide evidence of better compression ratio compared to that for raster scanned images.
Comparison with the result of an existing algorithm has also been performed to examine the effectiveness of our methods.
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1. Introduction

Bezier approximation technique [1] which uses Bernstein
polynomial as the blending function is well known in the
field of computer graphics for its speed of computation and
axis independence property. The present work is an inves-
tigation about the use of one-dimensional Bezier-Bernstein
{B-B) polynomial in gray tone image data compression us-
ing the conventional raster scanned and the nonconventional
Hilbert scanned images. To carry out this investigation we,
first of all, have examined if the conventional way ofapprox-
imating an image, in a raster scan, by B-B polynomial pro-
vides any advantage from the data compression standpoint.
For this, we have considered an entire row (or column) of
an image as a single segment for its approximation. From
the approximation theorem of Bernstein [2] it is evident that,
for a given error, the order of the polynomial increases with
the maximum gray value present in the segment. Therefore,
if the maximum gray value in an image is very large, the
order of the polynomial also becomes large. Consequently,

it introduces a large number of control or guiding pix-
els for approximation. As a result, approximation becomes
computationally expensive and the segment generation also
becomes slow. This makes the conventional way of approx-
imating an image for its compression inconvenient,

To serve our purpose, we have developed a modified ver-
sion of the approximation technique. Here, we emphasize on
the local control of data points (pixels) instead of minimiz-
ing the global squared error. An absolute error criterion has
been developed to keep the absolute error within a bound.
Also, for the sake of data compression, we have chosen the
second-order polynomial.

Based on the modified concept of approximation, we have
proposed two algorithms for selecting segments from an
image for approximation. The first algorithm uses an ervor
bound to partition the pixel data set into different segments
through approximation. The partition can be made into ei-
ther arc or line segments depending on the choice of ap-
proximation for both the raster and Hilbert scanned images.
These segments are then coded in the subsequent stage. The
second algorithm, on the other hand, considers, for a raster
scanned image, a row (or colunm }of pixels as a space curve
on an intensity surface and separates out the small deflection
curve segments on the basis of a homogeneity criterion. A
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Hilbert scanned image, however, for a raster scanned square
graylevel image can be considered as a space curve with
length equal to the square of the length or width of the raster
scanned image. MNote that the size of the image provides the
resolution of the Hilbert curve. Due to the neighborhood
property of the Hilbert scan, long homogeneous segments
are found to be approximated; resulting in less number of
segments for encoding than that for a raster scanned image.
Consequently, the compression ratio, is found to be higher.

The performance of the algorithims is tested on a set of in-
put images. The discriminating features of the proposed two
algorithms are also discussed. Finally, the results are com-
pared to that of the algorithm proposed by Kamata et al. [3].

2. Hilbert scanned image

Hilbert curve is one of the space filling curves, pub-
lished by (. Peano in 18%0. The Hilbert curve has a
one-to-one mapping between an s-dimensional space and
a one-dimensional space which preserves point neighbor-
hoods as much as possible. There are many applications of
this curve. A review on the applications of Hilbert curve
can be found in Refs. [4.5]. Some of the researchers have
already used this curve in the area of image processing.
Reported works in the area of image compression can be
found in Refs. [6-10,3,11-14].

Let £ be an n-dimensional space. The Peano curve pub-
lished in 1890 is a locus of points {1, va ..., Ve VER" de-
fined by continuous functions yi= vk pe=p2(vh.... W=
vk (vE R ywhere 0y, e <land 0 v < L
It was an analytical solution of a space filling curve. In
1891, Hilbert drew a curve having the space filling prop-
erty in K. Hilbert found a one-to-one mapping between
segments on the line and quadrants on the square. Fig. 1
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shows the Hilbert curve with different resolutions. Hilbert
scan considers the positions on the square through which the
curve passes. Therefore, a Hilbert scanned image or simply
a Hilbert image is a one-dimensional image with its pixels
identical to those through which the curve passes. The merit
of this curve is to pass through all points in a quadrant
and always to move to the neighboring quadrant. Thus, it
maintains the neighborhood property.

Hilbert curve has a one-to-one mapping between an
n-dimensional space and a one-dimensional space which
preserves point neighborhoods as much as possible. A
Hilbert image or a Hilbert scanned image is a set of ordered
pixels which can be obtained by scanning the positions of
pixels through which this curve passes.

2.4 Construction of Hilbert curve

Construction of Hilbert curve, following Hilbert's ideas,
considers a square which is filled by the curve. Since our
objective isto scan a gray tone image and produce a Hilbert
scanned image for the study of image compression, we
shall explain the basic philosophy behind construction of
the curve and provide a scheme through which real life im-
ages can be converted into Hilbert scanned images. We also
provide a scheme for inverse mapping to get back gray tone
images from the Hilbert scanned images.

First of all, we divide the square as shown in Fig. 2
into four quarters. The construction starts with a curve Hy
which connects the centers of the quadrants by three line
segments. Let us assume the size of the segments to be 1. In
the next step we produce four copies (reduced by ;) of this
initial stage and place the copies into the quarters as shown,
Thereby we rotate the first copy clockwise and the last one
counterclockwise by 90°. Then we connect the start and
end points of these four curves using three line segments
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Fig. 1. Hilbert curve with different resolutions,
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Fig. 2. Four stages of the Hilbert curve.

Fig. 3. 4connected chain code.

{of size 1) as shown and call the resulting curve H,. In the
next step we scale Hy by 5 and place four copies into the
quadrants of the square as in step one. Apain we connect
using three line segments (now of size § )and obtain Hz. This
curve contains 16 copies of Hy, each of size §. As a general
rule, in step n we obtain M, from four copies of H,_, which
are connected by three line segments of length 1/2* and this
curve contains 4n copies of Ho (scaled by 1/2°). A different
approach (normally known as the L-system approach ) for
construction of the Hilbert curve can be found in Ref. [15].

Since, in image compression problem we are concerned
with mapping gray tone images of different size into corre-
sponding Hilbert scanned images, we construct Hilbertcurve
with different resolutions using Freeman’s four connected
chain code. The chain code is as shown in Fig. 3. Using this
chain code the curves Ha, H1 and H: are, respectively, as

given below:

Hy: 123,

Hy: 214,1,123,2,123 3,432,

Hy: 123221412144341,1,214112321233432 .2,
214112321233432, 3341443234322123,

211, Inverse mapping

Since the size of the raster scanned gravlevel image is
known, one can always generate the 4-connected chain code
for the corresponding Hilbert image. Now given the Hilbert
image and the chain code, one can quickly get back the
original graylevel image.

3. Shortcomings of Bernstein polymomial and error of
approximation

Bernstein polynomial is a powerful tool to approximate a
continuous function within any degree of accuracy. It uses
the global information while approximating a function and
the order of the polynomial increases with accuracy in ap-
proximation. The Bernstein polynomial of degree p is

L .
Hur{f}:Z.f'(i)fﬁm{f} (1
Je=il

for approximating a function f{(1). Here (1) is defined and
finite on the closed interval [0, 1]. Also

BY :
uplt) = :‘ F(l =1y

and

£y B!
i) (p—DY)

withi=1,2...., p
The order p of the Bernstein polynomial Big(r ) satisfies
the inequality

b

TR (2)
in orderto have the error ofapproximation less than ¢, where
K 15 the maximum value ofthe approximating function (1)
in the mterval [0, 1]. & is a positive number such that for
points f1, 62 £ {0,1)

| fit)—= filn) < g whenever |ty — 12| < 4.

Since a graylevel image in a raster scan can be approximated
either row wise or column wise, it appears from the inequal-
ity {2} that the order of the approximating polbynomial may
be different for different rows (orcolumns ) depending on the
value of ke (assuming & and & do not change appreciably).
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As an illustration, let us consider the case of approximating,
row wise, a 32 level (0,1,...,31), image of size 32 = 32,
If a row has its maximum value k. = 31 then for s =1,
(i.e. one unit error in gray value) p > 22U = 3542,
i.e., 36. Note that the maximum value of 6 = %, hecause
|h = 8|= ﬁ - % (1,12 (0, 1). Therefore, for k=31 one
can choose p to be equal to 36.

Om the other hand, if &, = 2 then m == L.06, ie, p=2.
ke =2 means some of the gravlevel values in the row are
same and is equal to 1. Since in a gray image it is very
likely to have the maximum value anywhere in each row,
the order may be as high as the maximum gray level in the
image. This makes the method ineffective.

4. Proposed approximation technigue

An attempt is made in this section to develop an approx-
imation scheme keeping the order of the polynomial equal
to two. As a result, the reconstruction time will be less and
the coding scheme will be simple. But due to the selec-
tion of the polynomial order of two, the amount of ervor &,
as expected, will be significantly high. In order to circum-
vent this, a modification of the conventional approximation
scheme based on B-B polynomial is proposed. This leads to
the formulation of a new scheme by which it is also possible
to obtain any degree of accuracy in approximation,

Ciiven n points, the approximation algorithm requires
{n — 2) unique quadratic B-B polynomials for their rep-
resentation. Unlike the method described in Section 3, the
scheme, proposed here, decomposes a row (column) either
into a single gray segment or into a number of segments
50 a5 to enable them to be approximated properly. An er-
ror bound has been defined which guides the process of
segmentation.

L1 FB-B) palynomial

Eq. (1) which represents a pth degree Bernstein polyno-
mial for approximating a function (1), 0= 1= 1 can be
written as

Bu(t) = dopl 1)1 (0) + i 1) f (i) + dralt)f (%)

o dapl1(1).

Let v, represent a point in a multi-dimensional space and
that o = f{i/ p). Thus B (1) becomes

i
B} =1 dilt) vs. (3)

Je=il)

Eq. (3) can be viewed as a vector-valued Bernstein polyno-
mial and it approximates a polvgon with vertices o and ¢
in [0, 1]. Bip(1) is thus seen to generate a space curve. For
p =2, the quadratic B-B polynomial (dropping the index

i in Bip)is

Baty = (1 =t ¥vo +20(1 — N1 + Fin. (4)
4.2, Algorithm ! approximation criteria of (1)

In order to develop an approximation technique, let us
first of all formulate the key criteria associated with this
technique.

Let us assume (# — 2} quadratic B-B polynomials for the
representation of n data points such that

fly=8in), i=123.. . .n-2

where B3(1; ) is the value of the ith quadratic B- B polynomial
at the point ; and is given by

Byt =(1 = 1, v, + 2,1 = t)v} + s, (5)
Let

By0) = B3(0)= - =By (0) =r,

and

By(1)=Bi(l)=" =By (1) =12

In other words, at the end supports all the quadratic B
B polynomials are assumed to be identical. The points at
end supports are also the vertices of the underlying (n — 2)
polygons. The second vertex {also called the control point)
vy of the (s — 2 ) polynomials are all different. This is shown
in Fig. 4.

From Eq. (5 ). the second control point of the ith polyno-
mial can be computed as
;B = (1 —t)v.— e

B 20(1-1) : (5

Let

=1
_ 1 i
= E Y]
n—72
=1

be the average value of the second control points for (#— 2)
polynomials and let the corresponding B-B polynomial with
control points v, f1, and vz be H:i1,). The discrete form of
H:1,) can be written as

Baty=(1 = 1V 1a + 201 — 1)1 + L2, (7
From Eqs. (5) and {7)

|Bx(n) = Ba()| = = 1] x 20(1 = 1), (8)
Therefore,

1Bz — B max = BT — 0 |mar % [26(1 = £)] e

i 1
= |_] - !"Jlm = 2 {9}

Mote that &(1 — &) is always positive. Similarly,

|-H_2 - -Hil.w.w = |ﬁ - L'llll.w.w B [2!_.“ = -r.'}].w.w- {”}}



S. Biswas! Pattern Recognition 37 {2004) 730-200 T3

f(r =0)=rp

Fig. 4. Second control points due to a sequence of quadmtic polynomials.

The expression ¢, (1 — ) has maximum at ¢ —é and the value
falls symmetrically on either side as 1 moves away from 1.
Since 1, < (0, 1), the expression 20 1 — 1 ) is mininum for the
possible minimum/maxinmum value of . For equally spaced
data points, the minimum possible value of 1 is 1/{n — 1)
and the maximum possible value of 1 s (#— 2}/ (n —1). In
either case, [26(1 — 1,)]_, = 2(n — 2)/{n — 1¥ With this,

g =1 e
[B7 = iy |min Ein_—z_}lﬂ_' — B3| min
— 1%
= o (1)
and

|W - !"Ijl.'\m.u. -_2|.H_: - -Hllglwx
= 2 fmar, (12}

where |B: — Bi|min = Emin @0d |82 — B |mar = Ewax are, re-
spectively, the minimum and maximuwm absolute errors in
approximating a function f( yand 1,1 — ¢, ) is maximum at
t; = 3. It is straightforward to observe from Egs. (11) and
{12 that

|E_!r;ll.w#£|ﬁ_!":|| Elﬂ_:rljlm'-. {]3}
ar,

Hn—2) .

—— = = | = t)] = 28 14
{.I'I— ]}_ | 1 1 L { }

Similarly,
Lmin = |-E|T: = Bil = Emar- (15}

Therefore, inequality (13) tells that the functi.nl_f{r,} =
Byt )i=12 ... n—2 can be approximated by Bz{r} with
an error inequality expressed in Eq. (13).

Example. In order to illustrate the method of approxima-
tion, let us consider a sequence of 38 data points. The

Table 1
[Hustration of approximation techniques

Mo. of Original  Approx, Ermor in '
segments  data values approximation
140 40,0004 (L0000
140 1431117 =317
140 1461098  —6. 1098
157 1489941 80059
| 157 151. 7047 5135 155 8432
12 1544216 T.5TH
157 1569047 0.0353
157 159,394 1 —23941
157 1617098 —4.7008
1] 1639117 20883
1] L6, 0000 (L0000

max imum and minimum errors, Gear 80d Gwe, for approxi-
mation are chosen 10.0 and 0.000001, respectively. The ap-
proximation partitions the data set into three segments. The
beginning and end point of each partitioned segment are ap-
proximated with zero ervor whereas all other data points are
approximated with ervors between fwe and fmer. Note that,
the approximation may have much lower error than fma.
Table 1 shows the approximation for only the first partition
of that data set to provide an idea.

4 3 Algorithm 2

Here each row {column) of pixels has been viewed as a
space curve and is segmented depending onthe homogeneity
among the pixels. Each segment is then approximated by
the modified approximation scheme. Here, we consider

S
:uzn;;ﬂ_ (16)

where ¢}s are computed using Eq. (6).
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Since the segments are all homogeneous, approximation
for coding depends on the homogeneity parameter and not
on any external approximation parameter as required in the
case of Algorithm 1. The approximation is faster. Since for
each homogeneous segment vy s are averaged for 0, every
approximation has its 0Wn Lo that varies from segment to
segment.

4 3.1, Small deformation space curve and the concept
af hemegeneity

Animage may be considered as an intensity surface with
surface contours representing the space curves along the
rows and columns of the image. Note that for any curve I,
the amount of information contained in it can be represented
by its curvature vector £, or by any other related quantity.
The curvature vector &, is defined as
ko= E

ds

t being the tangent vector and s being the arc length. For a
curve I, with given end points, its bending energy 8. can
be written as

&:fﬁm
2

Here the deformation of the curve is in the direction normal
to the axis of the equilibrium position. Therefore, when the
x-axis is along the axis ofequilibrium position, the deforma-
tion may be represented by =(x) and consequently we have

3‘.fkﬁx
-

[:H{-.‘}]z 5
r [T+

(17}

For small deformation, ='(x) =0 and B, = [, ["(x)])* dx
Since B. represents the total energy of the curve, &% or (2"
represents the energy of the curve at an arbitrary point.
Therefore, in an image plane &, will represent the energy of
the image space curve at a pixel position.

With the above principle, a curve (a set of pixels along a
row or a cohunn) can be considered to be perfectly homoge-
neous if the bending energy is zero at every pixel position.
This is obviously, the most stable state of the curve (ie.,
without any deformation). Homogeneity decreases with the
increase of deformation. For the purpose of image compres-
sion, we are interested in finding the homogeneous segments
of pixels in an image because such segments can be approx-
imated with small amount of ervor and they do not produce
significantly any smearing effect. From the space curve anal-
ogy, homogeneous segments of pixels are segments with
#'{x) == 0. However, in practice, it is very difficult to obtain
long segments of pixels with zero gradient everywhere. In
order to circumvent this difficulty, we consider the average
of the first-order derivative values for a segment of pixels

and compute the variance of these derivative values. Since
small value of ='{x) corresponds to small deformation of
the image space curve at a pixel position, its average value
should correspond to average deformation and hence, the
square root of the variance, ie. the standard error provides
a measure for the deformation.

5. Image data compression

Since we are restricted to one-dimensional approximation,
we consider both the Hilbert and raster scanned images for
compression.

(A} Coding scheme: An image on a raster scan can be ap-
proximated either row wise or column wise. The one which
needs fewer number of segments is selected for coding. In
the following section we will be explaining the bit require-
ment for the proposed methods of coding.

(B} Bir requirement: Let us consider an image of size
M = M with £ number of gray levels {0,1,2, ... {L —1)}.
Since there may be a number of gray segments resulting in
the process of approximation, each of them can be coded
with their corresponding approximation parameters, namely
ta, 1, 12 and the length of the segment, n. Since the posi-
tional information of approximation (control parameters of
the Bezier curve) parameters is not taken into account for
coding, the size of the gray segments plays an important
part for regeneration of the image. As the maximum possi-
ble size of a segment, on a raster scan, is M, the maximum
number of bits required for encoding the size of a segment is
log, M. In particular, the number of bits required to encode
the size of a segment, satisfying the approximation criterion,
depends on the maximum value for a segment chosen for
approximation. In practice, the size of segments is found to
be much less than the length of the raster. The segments,
in fact, are found to occur frequently with the same length.
As a result, the probability of ocowrence for the segments
of same size is noticeable. Each of the gray segments is a
Bezier arc and is represented by its three parameters namely
t,, 0 and vz OF them 7, may not be an integer. So, in-
stead of @, we consider the integer part of the reconstructed
data point oy (say) at 1 = 5 for the segment. We designate
this pixel by ra. Thus, e, ve, vz and n completely specifies
an approximated data segment, where v, vy and 12 are the
three pixel brightness values on the arc. These brightness
values (approximation parameters ) in an image are found to
occur frequently for different segments. Consequently, Huff-
man coding for all the parameters provide good results for
compression of images. Furthermore, ©,, 1y and 1y being the
brightness values, are found to be indistinguishable from
their neighboring values when they differ by small values.
This fact can be used to reduce the number of independent
brightness values to be encoded. The number of parameters
decreases drastically when all the arcs are replaced by hor-
izontal line segments. This increases the compression ratio
at the cost of quality of the reconstructed image in terms of
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PSNE value. We, therefore, have the following two different
situations for compression:

{a) when the segments are all quadratic arc segments,
(b} when the segments are all replaced by horizontal line
sepments.

Let i, i, 8, and 0, be the average number of bits/pixel
for the length of segments, and the parameters va, va and
vz, respectively, then the total number of bits Ny, when the
segments are all arcs, is given by,

(FLT :J"ll:l{”l' + ﬂjﬂ + ”:J + ﬂl.,-}- {!R}

where N, is the number of segments.
When all the segments are lines, the number of bits re-
duces to

(N e = N By + Gii), {19)

where By is the average number of bits/pixel for the pixel
values on line segments.

5.1, Discriminating fearures of the algorithms

Below we provide the discriminating features of the two
proposed algorithms.
For Algorithm 1:

s Sepmentation of pixels does not need any separate algo-
rithm. The approximation scheme itself selects the spe-
cific segments.

& The method of approximation depends on the selection of
e A0 Emie. The values of these parameters are the same
for all segments in the image. The resulting performance
in reconstruction, therefore, is parameter dependent.

s For large £, the possibility of long homogeneous seg-
ments of pixels for satisfying the approximation criterion
increases. This may introduce visual disparity (smearing
effect) between the original and the reconstructed seg-
ments. This, in turn, may affect the overall picture qual-
ity. For a raster scanned image, this effect may become
formidable if e exceeds a certain value. However, for
an Hilbert scanned image this effect is almost negligible
even for a very high value gy,

For Algorithm 2 :

e A separate algorithm selects only those segments which
are homogeneous in some sense. For this, an image has
been considered as an intensity surface and the homogene-
ity concept of pixels over segments has been viewed as a
small deformation space curve on this intensity surface.

e Length of a homogeneous segment of pixels depends on
the standard ervor of deformation of the segment from its
equilibriwm position.

s Different homogeneous segments in an image are approx-
imated with different values of fw.e which are determined

automatically in the process of approximation. The per-
formance of the algorithm, therefore, does not depend on
Fmax @8 0 algorithm 1 but it depends on the chosen value
for the standard error.

6. Regeneration

Reconstruction of the image during decoding is done us-
ing quadratic B-B polynomial. We use here the recursive
computation algorithm based on Newton’s forward differ-
encescheme as described in Refs, [16.17]. Let y=ar®+ht+c
be a polynomial representation of Eq. (4) where the con-
stant parameters a, b and ¢ are determined by the three pix-
els {two end pixels and one mid pixel ) of the arc segment.
The usual Newton's method for evaluating the polynomial
results in multiplications and does not make use of the pre-
viously computed values to compute new values.

Assume the parameter ¢ ranges from 0 to 1. Let the in-
cremental value be g. Then the corresponding » values will
be ¢, ag® + by + ¢, daq® + 2bg + ¢, Yag® +3ag +e.... It
is observed from Refs. [16,17] that

a:‘y_, = anz and V0 — 2y + =2aq'2._ =0

This leads to the recurrence formula
¥ =2y — Vo + 2 (20)

that involves just three additions to get the next value
from the two preceding values at hand. Since the gray
segment size is known, the increment g can be obtained
from
1

T e

segment sze — 1
The regenerated gray value y: can therefore be determined
from Eq. (20).

7. Results and discussions

An attempt has been made to demonstrate an application
of one-dimensional quadratic B-B polynomial approxima-
tion in coding gray tone Hilbert and raster scanned images.
Drawbacks in using the conventional way of approximation
have been examined and a modification is then introduced in
order to make it useful for image data compression. Based
on the modified concept, two different algorithms have been
formulated. Both the algorithms have been examined to
compress 256 = 256 (8 bits) gray tone images following
the Hilbert and raster scan. The performance of the algo-
rithms on the Hilbert scanned images is found to be better
than that on the raster scanned images. This is due to the
neighborhood property of the Hilbert scan. More precisely,
the Hilbert curve always passes through the neighborhood
pixels, and since the neighborhood pixels are, in general,
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Table 2

Performance of Algonthm | on raster scamned images

Image Maode of approx. Emar Max length for segment Compression mte in bpp MS0) F5NR in dB

Lena Line segment 7 128 1.231 2ILE1T 24871
10 [ 1084 244087 24255

Girl 5 128 1.7 B4.673 2RE53

7 i 1.215 99.526 25151

Lena Arc segment X 25 1.767 25763 34020
25 256 1.602 IRT45 32248
a0 256 1.477 56967 30574

Giirl 20 256 1.E39 53287 30864
25 256 1.590 77102 29.260
0 256 1404 101.274 28075

Table 3

Performance of Algonthm | on Hilbert scanned images

Image Maode of approx. Emar Max length for segment Compression mte in bpp M5S0 FANR in dB

Lena Line segment 1 25 1.122 104,805 27424
10 256 1027 110.625 27.692
15 256 0846 124,338 27184
I8 256 0692 131.624 26937

Girl I8 128 0768 99.579 2R.149
20 128 0.720 105,089 27915
25 128 7 119,794 2746

Lena Arc segment 5 250 164 48,705 31249
30 256 143 56,924 30577
15 256 1.286 HET58 29757

Girl 15 256 1094 BLETSE 28999
I8 256 1.007 B6.545 28758
40 256 04974 104,883 274923

strongly correlated, the approximation is done over longer
segments. Over such long segments, the variation in pixel
intensity is low. As a result, arc approximation is not as
economical as the line segment approximation (in terms of
approximation parameters ). Consequently, lower compres-
sion ratio or larger number of bits/pixel is required. But the
line segment approximation reduces the PSNR value com-
pared to that for arc segment approximation. On the other
hand, for raster scanned images, the quality of the recon-
structed images is disturbed when the maximum length of
segment exceeds a certain value. Short segments, in gen-
eral, are found to produce better quality for the reconstructed
images. Table 2, shows the results on compression and qual-
ity for 256256 8 bit raster scanned images for Algorithm
1, while Table 3 provides the results for the corresponding

Hilbert scanned images. The approximation uses both the
line and arc segments. Tables 4 and 5 indicate the perfor-
mance of Algorithm 2 for the raster and Hilbert scanned
images. Finally, the comparison for the algorithm due to
Kamata et al. [3] is shown in Table 6.

Mote that Algoritm 1 in the raster scan mode may
produce smearing for large values of £,,,. because with the
increase in the value of fmer, the possibility of long homo-
geneous segments of pixels satisfying the approximation
criterion increases. As a result, visual disparity may arise.
This fact is also true for Algorithm 2 in the raster mode
for larger values of the standard error. Fig. 5 shows this
smearing effect for Algorithms 1 and 2 in the raster scan
mode. The line segment approximation in the raster mode
also affects the reconstructed quality for high values of famar.
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Table 4
Performance of Algonthm 2 on raster scamned images
Image Mode of approx. Standard error Max length for segment Compression rate in bpp MBS F5NR in dB
Lena Line segment 4 4 18497 190,194 25338
L] [ L6 232,550 24405
Girl L] [ 1952 111.576 27.655
T [ 1785 128,795 27031
Lena Are segment 15 4 1.933 40.275 32080
17 [ LEID 50.715 31079
19 4 1713 64711 30020
Giirl 15 4 1L.E27 425 ER. L)
17 [ 1.627 54,803 30742
18 [ 1.539 62538 30169
Table 5
Performance of Algonthm 2 on Hilbert scanned images
Image Maode of approx. Standard error Max length for segment Compression rate in bpp MBS F5NR in dB
Lena Line segment 16 [ 0788 B7.05 2R.730
18 [ 0725 9z 9kl 2EH6
20 [ Lae 101.517 28065
Girl 16 [ 0763 77.521 29136
17 04 0716 B1.201 29035
I8 [ 0677 R5.491 2EE11
Lena Arc segment 17 o4 1444 4071 kh B
19 04 1.346 S3EIR 30821
Girl 18 [ L4E8 101422 28069
20 [ 1.336 114487 27543
Table &
Comparison between three different algorithms
Image Algorithm 1 Algarithm 2 Algarithm 3
hits/pizel PSMR in dB bits/pixel PSME in dB bits/pixel PSME in dB
Lena 144 30.577 144 L2 145 3009
128 20.757 134 30,821 1.20 29163
Girl 109 28,999 107 30436 1.01 30361
067 27692 068 28811 (.68 IRM2

For the 8 bit Lena and girl images, compression is found
to be higher in the Hilbert scan mode compared to that in
the raster scan mode. From Tables 4, and 5, it s seen that
Algorithm 2, also behaves in the same way as Algorithm 1.
Higher compression is found to occur in the Hilbert scan
mode. Fig. 6 shows two different decoded images for Lena
and girl images for Algorithm 1, while Fig. 7 shows the re-

sults of the decoded images for Algorithm 2 due to Hilbert
scan. Comparison with Kamata's algorithm (Figs, 8 and 9)
shows that the proposed algorithms perform better for the
Lena image, in terms of PSNR value at the same compres-
sion rate. At the compression rate of 1.44 bit/pixel, Algo-
rithm 1 provides a PSNE value of 30.57 dB, while the algo-
rithm due to Kamata et al. provides 30,01 dB, and Algorithm
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Fig. 5. Results for Algorithm 1 ({c), {d)) and Algorithm 2 ({e],
()1 due to mster scan, (a) input Lena image, (b) input girl image,
{c) bpp = 147, PSNR = 30574, (d) bpp = 140, PSNR = 28075,
{e) bpp = L71, PSNR = 30020, {f) bpp = 1.539, PSNR = 30,169,

2 provides 31.22 dB. At the compression rate of approxi-
mately 1.28 bpp, the PSNR due to Algorithm 152975 dB,
the PSNR due to Kamata's algorithm is 29.16 dB while Al-
gorithm 2 provides a PSNR of 30.82 dB at a slightly higher
compression rate of 1.34 bpp. For the girl image, Algorithim
2 provides a PSNR value of 28.81 dB at the compression
rate of (LGSR bpp compared to 28.44 dB as provided by the
algorithm due to Kamata et al.

The proposed approximation technique described is
different from the conventional least-square method of ap-
proximation. Instead of minimizing the global squared sum
of errors, it controls an absolute maximum error for each
data point. It should be noticed in this context that if the
pixels of a segment have low-intensity variation, then the
techniques based on conventional quadratic least-square and
the quadratic B-B polynomial approximation will produce
the same result. Since the proposed method of approxima-
tion controls an absolute local error instead of global sum
of errors, it is expected that even for moderate variation of

Fig. 6. Results for Algorithm | due to Hilbert scan, {a) bpp =069,
PANE = 20937, (b) bpp = 060, PSNR = 27346, (c) bpp = 128,
PENR = 29.757, (d) bpp =097, PSNR = 2791,

Fig. 7. Results for Algorithm 2 due to Hilbert scan, {a) bpp=10.72,
PSNR = 28446, (b) bpp = (.67, PSNR = 28811, {c) bpp = 1 34,
BSNR = 30821, (d) bpp = 133, PSNR = 27543,

intensity within data points, the proposed method will
produce better results. Also, given an error term, the con-
ventional least-square technique does not ensure that all
the data points will satisfy the error criterion, whereas in
the proposed method this is not the case. Furthermore, it
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Fig. 8. Companson of Lena image, {(a) Algorthm | : bpp= L4, PSNR = 31577, (b) Kamata : bpp= 145, PSNR = 30019, (¢) Algorithm
2:bpp= L#, PSNR =31222 (d) Algorithm 1 : bpp = | 28, PSNR = 2757, (¢) Kamata : bpp = L3, PSNR = 29163, (f) Algorithm 2
: bpp = 1.34, PSNR = 30821,

Fig. 9. Comparison of girl image, (a) Algorithm | : bpp = L09, PSNR = 28999, (b) Kamata : bpp = 101, PSNR = 30361, (c) Algorithm
2 bpp = LO7, PSNR =30430, (d) Algorithm | : bpp = 060, PSNR = 27 346, (¢) Kamata : bpp = (L68, PANR = 28442 (f) Algorithm 2
S hpp = 068, PSNR = 28811,

is not needed to compute any functional distance to justify B-B polynomial in image data compression for both the
the goodness of approximation because the ervor term itself raster and Hilbert scanned images. The algorithms are effi-
quantifies this. cient for the Hilbert scanned images because of strong corre-

Mote further that our intention here is to demonstrate, lation between pixels over long segments. Both the schemes
through an application, the effectiveness of one-dimensional are fast and simple in hardware implementation. However,
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it is needless to mention that the two-dimensional approxi-
mation always provides a better compression ratio than the
corresponding one-dimensional approximation.

8. Summary

Bermstein approximation, though found good in many
areas, is not suitable for image data approximation due to
a number of difficulties. This paper, using Bernstein basis,
proposes a new approximation technique with emphasis on
the local control of data points (pixels) instead of minimiz-
ing the global squared error. An absolute ervor criterion has
been developed to keep the absolute error within a bound.
And for the sake of data compression, we have chosen the
second-order polynomial.

Based on the new concept of approximation, two differ-
ent algorithms are proposed for selecting segments from an
image for compression. The first algorithm uses an ervor
bound to partition the pixel data set into different segments
through approximation. The partition can be made into ei-
ther arc or line segments depending on the choice of ap-
proximation for both the raster and Hilbert scanned images.
These segments are then coded in the subsequent stage. The
second algorithm, on the other hand, considers, for a raster
scanned image, a row {or column) of pixels as a space curve
on an intensity surface and separates out the small deflection
curve segments on the basis of a homogeneity criterion. A
Hilbert scanned image, however, for a raster scanned square
graylevel image can be considered as a space curve with
length equal to the square of the length or width of the raster
scanned image. Note that the size of the image provides the
resolution of the Hilbert curve. Due to the neighborhood
property of the Hilbert scan, long homogeneous segments
are found to be approximated; resulting in less number of
segments for encoding than that for the raster scanned image.
Consequently, the compression ratio, is found to be higher.

The performance of the algorithms is tested on a set of
input images. The discriminating features of the proposed
two algorithms are also discussed. Finally, the results are
compared with those of a different existing al gorithm.
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