High-temperature crustal scale shear zone at the western margin
of the Eastern Ghats granulite belt, India: implications
for rapid exhumation
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Abstract

A mylonitic shear zone occurs along the western margin of the Eastern Ghats Granulite belt, India. In the northern sector, it separates
metapelitic and mafic granulites from the granite gneisses of the Bastar craton, while in the southern sector, it separates charnockitic gneisses
and mafic granulites from the granite gneisses of the Bastar craton. This boundary shear zone is characterized by a mylonitic foliation and a
stretching lineation. Microstructures characterize high-grade conditions and quartz c-axis patterns show strong point maxima close to the
long axes of the strain ellipsoids, indicating dominant prism [c| slip in quartz, commaonly interpreted in terms of ductile deformation at high-
temperatures. Quartz c-axis patterns in the recryvstallized and unrecrystallized domains also imply grain boundary migration as the principal
mechanism of dynamic recrystallization at high temperature conditions. A rapid exhumation during shearing in this marginal part of the
convergent Eastern Ghats orogen is indicated by decompression reaction textures and retrograde hydration reactions, presumably due to
hydrous fluid ingress, in the shear zone rocks.

Keywards: Granulite belt; Hydmtion; Cuartz

L. Introduction The western margin of the Eastern Ghats belt was
onginally desenbed as a boundary fault, on the evidence of

The boundaries between Precambrian mobile beltsand a sharp NNE-55W trending contact agansl granitic
adjacent cratons are important areas in understanding the gneisses of the Bastar craton and the presence of crushed
evolution of such contrasting crustal pairs (Van Reenen rocks in the boundary region (Fermor, 1936). However,
el 1'J.|., lgg{}: R.{H.Tiﬂg el 1'J.|.. lwz: Perchuk et 1'J.|., 2“{1}: Crookshank flg:iﬂ}l descenbed intrusive chamockites with
Smit et al., 2001).The Eastern Ghats Granulite belt tongues and apophyses into the schist belt of the Bastar
(EGGB), bounded by granite-greenstone belts of the craton around Jaypur. Renewed mterest and focus on this
Singhbhum and Bastar crmtons to the north and west, important problem have been evident during the last
respectively, provides an excellent opportunity for such a decade and are mamfested in 2 mumber of publications,
study focussing on the boundary areas. Although struc- Manda (1995) described a transition zone on the evidence
tural-petrological studies on granulite facies rocks and of the coexistence of low-grade and high-grade rocks in the
some geochronological data have been published during boundary region. Nanda (1993) further emphasized that
the last decade, those were mostly from different intemal ficld evidence does not support the view of uplift of the
segments (Lal et al., 1987; Kamineni and Rao, 1988; Paul high-grade belt along a boundary fault. Chetty and Murthy
et al., 1990; Senpupta et al., 1990; Dasgupta et al., 1992; (1994) proposed a network of ductile shear zones from
1994: th‘illiﬂ.‘hiif}'u el H.I., 1994 Sen et H.I., 1995: Shaw Landsat SlLﬂjiCS, but did not discnminate the h{}ura.iury
shear zones from those occurring within the high-grade

belt. Biswal et al. (2000} described a boundary shear zone

around Lakhna (location & in Fig. 1) and Gupta et al
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Fig. 1. Generalized geological map of the Eastern Ghats belt, maodi fied after Ramakrishnan e al. { 1998), Important locations: 1. Bhuban, 2. Jenapore, 3. Angul,

4. Chilka, 5. Paderu, &, Paikmal, 7

7. Denbhog, B Lakhna, 9. Jaypur, 10, Koraput. (a) Detailed geological map of the Paikmal area {northem sector): Locations of

analyzed samples for quarte c-axes, (Fig. 51 1-6 ame also given. (b) Detailed geological map of the Jaypur area {southern sector).

(20001 suggested westward thrusting of the Eastem Ghats
over the Bastar craton, based on evidence of (a) an inverted
thermal gradient in the cratonie mocks, with complementary
cooling and hydration in the granulites, and (b) the sense in
which the ecarlier foliation curves into the shear plane.
These authors related the juxtaposition o a late and
separate deformation event (D4), but peak P-T conditions
in the granulites were said o have been attained only
during this deformation. The cooling and hydrtion in the
granulites dunng shearing would imply  retrogression
attendant on the proposed thrusting of the mobile belt
over the craton. Although these authors observed mylonites
with stretching lineations, they did not use angular
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relationships between these mylonitic fabnes (5 and C)
as shear sense enteria. Kar et oal. (2001); Bhattacharya
(2002) described mylonitic shear zones at the weslem
margin of the Eastern Ghats belt, from Jaypur in the south
and Paikmal in the north, and Bhattacharya (2002)
interpreted the shear zone as the result of obligque collision
against an irregular continental (passive) margin, Thus a
crustal scale shear zone 15 evident at the western margin of
the high-grade Eastern Ghats belt, but a comprehensive
understanding of the relation between this shear zone and
the evolution of the high-grade belt is stll lacking.

This paper presenls mesoscopic 1o microscopic scale
structural and petrological evidence across the shear zone,
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that could be ascribed to rapid exhumation of the high-grade
belt during high-temperature ductile shearing.

2. Geological selting
2.1, Eastern Ghats belt

The lithological make up of the Eastern Ghats belt can be
desenbed in terms of three broad groups, namely metape-
litic granulites; charnockile —enderbite gneisses and associ-
ated granulites; and migmatitic gnesses. Additionally, a
transition zone occurs along a significant length of the
western margin (Fig. 1, modified after Ramakrishnan et al.,
1998). Anorthosites and alkaline complexes are other
important rock types in this high-grade belt. Based on the
evidence of a NE-5W regional tectonie trend represented
by 5, gneissosity, a steep axial planar foliation, and
common  structural repetitions, the Easterm Ghats belt
could be described as a convergent omogen that evolved
under a regional NW-S5E directed compression
and attendant homogencous shortening  (Bhattacharya
et al., 2001).

2.2 Study area

In the northem sector around Paikmal (Fig. 1a, location
6), the high-grade belt 15 dominantly mepresented by
metapelitic granulites with minor occwrrences of mafic
granulites and gametiferous granitic gneiss. The crtonic
lithologies are granitoids and amphibolites. The mylonitic
shear zone 18 represented by quarzite mylonites, sheared
metapelites, mafic granulites and granites.

In the southem sector around Jaypur (Fig. 1b, location 9),
the high-grade belt dominantly exposes charnockite -
enderbite gneisses and mafic granulites, with minor
occwrence of metapelitic granulites and ronstones, par-
ticularly at the northeastem corner of the mapped area. The
cratonic rock Lypes are gmnilic goneisses with minor
amphibolitic enclaves. The mylonitic shear zone s
represented by guartzite mylonites, sheared metapelites,
sheared chamockitic gneisses and granitic gneisses.

3. Mesocsopic structures
3.1, Northern sector

The metapeliie gneiss 18 characterized by a pervasive
gneissosity, designated as 5, which is axial planar to
rootkess folds The 5, gneissosity displays mesoscopie Fa
folds Both 8 and the axial traces of Fa folds display a
bend from E-W in the northeast to NNE-SSW in the
southwest (Fig. la). In view of the fact that no
mesoscopic fold or related axial planar foliation corme-
sponding to this bend could be recognized, the change of
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trend is interpreted as a tectonic roaton during collisional
Juxtapositon of the Eastern Ghats belt against the Bastar
craton (Bhattacharya, 2002). The gmmtoids of the Bastar
craton have a crude gneissic foliaton, which is at a high
angle to the boundary.

The guarzite mylonite has a prominent cleavage type
foliation (C-surface of Berthe et al., 1979) and a
stretching lineation. The mylonitie banding (S-surface of
Berthe et al, 1979 i virtwally parallel to the foliation,
but asymmetic bouding are occasionally observed on
plan view (Fig. 2a). This, and the commonly obligue
stretching lineation (Fig. 1a), indicate obligue-slip in the
shear zone and are consistent with oblique collisional
Juxtaposition of the Eastern Ghats belt against the Bastar
craton, as suggested by Bhattacharya (2002). Occasion-
ally stretched and dismembered amphibolite layers in
small-scale shear zones are observed (Fig. 2b) Two sets
of mylonitic foliation, with mean onentations of 3427707
W oand 30%60° E, respectively, and with a mke of the
stretehing  lineation  typically less than ninety degrees
(Fig. 8a and b in Bhattacharya, 20020 and with dextral
and sinistral senses of shear on plan view, can be
considered as  conjugate  shear bands C and O
respectively.

1.2, Southern sector

The pervasive gneissic foliation in the chamockitic
gneisses 15 axial planar to rootless folds defined by mafic
granulite bands (cf Fig. 2 in Kar et al., 2001) and is
designated as 5. The 5, gneissosity commonly displays
mesoscopic Fr folds (Fig. 1h), but axial planar foliaton is
rarely developed. The mineral foliwtion in the granite
gneisses of the adjoining Bastar eraton displays small-scale
crenulations and large-scale open folds (Fig. 1h).

The rocks in the boundary region bear the imprint of
intense shearing and often develop mylomtie foliation and
stretehing lineation (Fig. 2e). Also small-scale shear zones
are commonly observed in the chamockitic gneisses (Fig
2d). Folding of mylonitic banding was also observed on
the mesoscopic scale, but this did not affect the stretching
lineation (ef. Fig. 12 m Kar et al., 2001); prolonged shear
displacement on the same shear plane in a highly ductile
environment might have developed such folds. The mean
onentation of the shear foliation, 340°070° E. and the
obligue stretching lineation are consistent with oblique
collisional juxtaposition of the Eastern Ghats belt against
the Bastar craton in this sector also.

4. Microstructure

4.1, Northem sectar

Spectacular micmoscopic fabrics are observed in the
northern sector In the X4 Kinematic section normal to
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Fig. 2. Field photographs. {a) Asymmetnc sygmoidal quartz porphymoblasts in guartzite my lonite, in plan view, showing simstral micro-duplex stacking.
(b} Stretched and dismembered amphibolite layer in a small-scale shear zone developed in granite gneiss, in plan view: the photograph shows a dextral
semse of shear with the shear zone striking parallel to the pen at 67° (c) Mylonitic foliation {cleavage) and chlique stretching lineation in sheared
granite gneiss. The sense of shear is dextral. {d) A small-scale shear zone developed in chamockitic gneiss, in plan view. The dextral sense of shear is

mobed.

foliation and parallel to stretching lineation, the angular
relation between S and C indicates a anti-clockwise sense
of shear on the westerly plunging lineation (Fig. 3a).
Some microstructures in these mylonites could be aseribed
o high-grade conditions (=700°C, Blumenfeld et al,
1986). Fig. 3b shows quarte ribbons allemnating  with
recrystallized guarte, where the quarte ribbons mepresent
the shear foliation (C) and the oblique recrystallized
guartz represents mylonitic banding (5). Diffuse sub-grain
boundaries, presumably due to amnealing, also attest o
high-grade conditions (Fig. 3¢). Lobate and interpenetrat-
ing grain boundaries in polyerystalline quartz aggregates
in quarzite mylonite (Fig. 3d), and comparable features in
the nearby metapelitic granulites with no mylonitic fabric
(Fig. 3¢) ame also indicative of high-temperature con-
ditions during shearing.

4.2, Southem sector

In the sheared gramtic goeiss, the pervasive foliation
under the microscope is a near continuous cleavage (C-
planc) and elliptical gquanz-feldspar clasts define the
mylonitie banding (S-plane); the angular S-C relation
and asymmetric deflection of the extemal foliation

SEAES 752—012004—1 236—SUREKHA—9 1401 — MODEL 5

indicates a clockwise sense of shear (Fig. da). In the
sheared charnockitic gneisses and malic granulites, the
foliation under the microscope 1S again conlinuous
cleavage (C-plane) and porphyroclasts of pyroxene and
plagioclase mepresent the mylonitic banding (S-plane).
Pyroxene porphyroclasts display a spectacular o type
rolling structure (Passchier and Sympson, 1986) and
indicates an anti-clockwise sense of shear (Fig. 4b).

5. Quartz c-axis fabric

In the XZ sections, perpendicular to the shear folinton
(C) and parallel to the stretching lincation, gquartz c-axis
orientatons in six samples were measured using 8 Universal
Stage (Fig. 5). Five of these represent domains of dynamic
recrystallization (Fig. 5a-e), while one mepresents old
unrecrystallized grains (Fig. 50). All the samples are
characterized by a strong point maximum close o the
stretching direction (X). In sample 142 (Fig. 5b), a
secondary point maximum  close to the compression
direction (Z) is also evident. The asymmetnic relation
between C and 5 in these sections i also consistent with the
clockwise sense of shear.
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Fig. 3. Photomicmographs. {a) C-type shear hands in a mylonite section normal to foliation and parallel to stretching lineation { X2 kinematic section). §-C
relationship indicates an anti-clockwise sense of shear on westerly plmging (arrow ) lineation. Scale har: 7 . (h) Quarte rbbons defining shear cleavage or O
bands, and recrystalized quartz domains defining mylonitic banding, 5. Scale bar: 9 . {¢) Wide C band with diffuse sub-gmin boundares indicating high
temperature annealing. Scale bar: 9 . {d) Interpenetrating grin boundaries (amow) in dynamically recrystallized quantz within quartzite my lonite. Scale bar:
9 . {e) Lohate and interpenetrating {amowhead) grain boundaries in the adjacem metapelitic gramulites. Scale bar 9 .

Experimental and observational data suggest that the
guartz c-axis maxima close w the stretching direction
developed due to the dominant activity of prism [¢] shp
(Blacic, 1975; Linker et al, 1984; Linker et al.. 1984
Blumenfeld et al., 1986; Mainprice et al., 1986; Garbutl and
Teyssier, 1991). The weak point maximum in sample 142
(Fig. 5b) possibly represents associated basal (a) slip. Such a
dominant prism [¢] fabric is commonly interpreted in lemms
of high-temperatures (Mainprice et al., 1986; Patersonetal.,
1989). It 1s also significant that the c-axis pattern in the
recrystallized quarte grains (Fig. 5a-¢) does not differ from
that in unrecrystallized grains (Fig. 5f). This is charactenstic
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of high-temperature conditions, when grain boundary
migration (GBM) is the dominant recrystallization mech-
amsm (Hirth and Tullis, 1992; Gleason et al., 1993;
Rosenberg and Riller, 20000,

In terms of numerical simulation, a single point
maximurm 15 anilogous to that observed in olivine tectoniles
(MNicolas and Poiner, 1976). For polyerystalline quartz
ageregates, the single point maximum 1s consistent with the
single slip hypothesis (Bouchee et al., 1983), where
alignment of the ship direction 15 toward the X-axis of the
strain ellipsoud.
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Fig. 4. Photomicrogmphs, (o) X£ kinematic section in sheared granite gneiss. Feldspar porphyroclasts define the mylonitic handing, 5, 5-C angular
relationship and deflection of extemnal foliation indicating a clockwise sense of shear. Scale har: 7 . (h) XZ kinematic section in sheared two-pyroxens
granulite, showing typical o type rolling structure. The sense of shear is anti-clockwize. Scale har: 7 .

I/ - e | /f:{}- m“"x\\

E-
R
\'-.
I %5 . \

. O

(a} e (b) T -
T T T
| r
IL\
/ -
) e o
i 'd___'_“'“x.x\ e T T

/ e ¥

| \

\L / \de

s o

g sl y St

Fig. 5. Lower hemisphere equal area projections for quanz c-axis odentations measured in X sections. Fabric patterns are comtoured following the Kamhb
method with £ = o Amow is pointing down plunge of the siretching lineation. Traces of 5 and C are also marked. (a) Sample 32 {location 5 in Fig. 1a),
N = 180, contour interval = 6 3 o, (b) Sample 142 {location 2 in Fig. la), N = 18, contour imerval = 6 3, {¢) Sample 150 {location ©in Fig. la) & = 160,
contour interval = 63 ar, (d) Sample 202 {location 4 in Fig. la), N = 200, comour interval = 6 %, (e) Sample 1949 {location 3 in Fig. la), N = 300, contour
interval = 83 o, {f) Sample 177 (location 6inFig. [a), & = 150, contour interval = 2 % . Only quanz grains in the unrecrystallized domains were measured
in this sample.

SEAES 752—¥12004—1 245—SUREKHA—9 1401 — MODEL 5

al7
als
al9
e
i
[iee)
023
H24
025
26
i
L
L)
L
63l
62
[RE]
634
015
636
Likn
68
Lk
i)
LB
h2
6043
fi4
645
b
647
48
649
650
651
h52
653
654
655
56
657
58
659
fifll
il
filon
iR
i
[ilia]
fibh
aiT
it
Hifd
L]
67l
672



673
674
675
676
677
678
G679
il

682
683
4
685
GE6
GET
GEE
it
Ll

2
3
4
5
6
o7
[ih
9

2
T3

s

0T
ik

710
1
712
T3
T4
5
6
nT
it
719
T
721
T2
723
724
725
26
727
T8

& Bhavtacharya / fowrnal of Asian Earth Scisnces xx (O000) xo—xox 7

6. Petrological constraints

Away from the shear zone, the unsheared lithologies
such as pelitic and mafic granulites in the northem sector
and charnockite and mafic granulite in the southern sector
display granoblastic textures, as commonly associated with
the early deformation and granulite facies metamorphism in
the Eastern Ghats belt ( Bhattacharya, 1996, and references
therein). Two mafic granulite samples, one each from the
two sectors, preserve evidence of garnel-pyroxene -
plagioclase—quartz  equilibration before exhumation

(Fig. 6a and b). Pressure—temperature estimates of this
equilibration were derived using multi-equilibrium caleu-
lations (Berman, 1991), using the TWEEQU program.
Pressure and temperature for the northem sector (8.2 kbar,
B20°C) and southern sector (9 kbar, 830 °C) were estimated
{Table 1) Similar P—T values were reported from several
internal segments of the Eastern Ghats belt, as summarized
by Sen et al. (1995).

On the other hand, close W the shear zone, these same
lithologies display reaction textures that could be ascribed
to decompression and tectonic exhumation of the deep

Fig. 6. Photomicrographs. Scale bars 5 p in each photogmph. {a) Granoblastic texture in mafic gmnulite, showing coexisting gamet—pyroxens—
plagioelase 4 quarte. Mote the triple junction indicating equilibrium between these phases. (h) Granchlastic texture in mafic gmnulite showing coexisting
gamet—clinopymxene—orthopyronene —plagioclase 4 quarte. o) Sillimanite and ilmenite growth on elongate garnet in sheared metapelite. (d) Sillimanite and
ilmenite grwth on stretched gamet pamllel to the stretching lineation, in sheared metapelite. {2) Orthopy maene—plagioclase symplectitic growth on gamet in
1 sheared mafic grmnulite. () Biotite-guartz symplectitic growth on an embayed portion of orthopyroxene, in sheared chamockitic gneiss,
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Coexisting minerals for pressure —temperatune: estimates

Sample P34 Paikmal) 1458 (Jaypur)

Mineml Flagioc lnse Ciarnet Clinopyronens: Plagioclase Gamet Clinopyroxens
Chidles

S0 58T 3743 375 4437 M7 318
Al 25.17 2226 158 M4 21.9 1.97
Fel) i 27.01 1007 (LiH i 8.61
Mn(} ] 081 007 0.0z .68 0.15
Mg O 0 5.65 12.05 005 031 13.58
Cal} T7.67 [iRi] 2142 18.79 8.32 e
Muz() 6.35 0 6 1.26 0.12 0.1
K. O 0.23 i i 0.5 001 i
Tity, ] 4] (139 (.28 0.11 0.11
Tonal 9841 99.76 9794 099.59 0004 99.37
P-T estimates 49 khar, 850 "¢ 8.2 kbar, 820°C

crustal granulites during sheanng. Pelitie granulites in both
sectors display growth of sillimanite and ilmenite at the
border of elongate garnet parallel to the stretching lincation
(Figs. 6c and d). In view of the gentle positive slope of the
reaction garnet + rutile — ilmenite + sillimanite 4+ guarte,
a decompression can be inferred from this texture. Mafic
granulites i the northem sector show a charactenstic
orthopyroxene-plagioclase symplectite on an embayed
portion of gamel indicating a reaction such as gamet 4
guartz — orthopyroxene 4 plagioclase, and a decompres-
siom can be imferred from this wexture (Fig. 6¢). Sheared
chamockitic gneisses in the southern sector commonly
display retrogression and hydration; biotite-quarte symplec-
titic growth on othopyroxene could mdicate hydrous fluid
mgress during shearing (Fig. 6f).

7. Discussion

Although meaction textures indicative of decompression
have been described from several intemal segments of the
Eastem Ghats belt (Lal et al., 1987; Dasgupta et al., 1994;
Sen et al, 1995; Bhattacharya and Kar, 2002), the
kinematics of exhumation in these segments are nol well
understood. On the other hand, although small-scale shear
zones and shear fabrics are commonly observed in several
areas (Bhattacharya et al., 1994; Bhattacharya, 1997), the
significance of these fabrics in terms of the evolution of the
granulite belt is not uneguivocally established. Chetly and
Murthy (1994} proposed an early collisional regime and
suggested that granulite metamorphism was achieved by
thrusting. Howewver, based on evidence of subvertical early
foliation and reclined folds, Bhattacharya (1996) argued for
homogeneous shortening rather than thrusting as the cause
of granulite facies metamorphism in the Eastern Ghats belt.

In termms of exhumation of deep crustal rocks inoa
convergent orogen, Thompson et al. (1997) proposed

SEAES 752—012004—1 253 —SUREKHA—9 1401 — MODEL 5

from modeling constraints that weak marginal zones will
be separated by extensional faults or shear zones, from
the much more slowly uplifted rocks of the core of the
thickened mountain belt. Although isotopic data on the
exhumation history of the Eastern Ghats belt, is sparse,
the data from one internal segment have significant
implications. Bhattacharya et al. (2003) desenbed a
prolonged decompression and reaction history from a
single sample, coupled with isotopic  disequillibrium
between whole rock and minerals in the same sample.
This and the time gap of about 100 million years
between the end of thickening-related heating (10 kbar,
100 °C) and the beginning of isobaric cooling (¥ kbar,
950°C), could thus imply a slow exhumation in this
internal segment of the Easterm Ghats belt. The crustal
scale shear zone at the westem margin of the Eastem
Ghats belt, with evidence of decompression  reactions,
resulted faster exhumation by
tectonic  denudation, as suggested in the model of
Thompson et al. (1997).

could have in much

8. Conclusions

High-temperature shear zone at the western margin of the
Precambrian Mobile belt of the Eastern Ghats, India, could
have developed dunng exhumation of deep crustal granuo-
lites. Future sotopic data from this shear zone would
provide important constraints on exhumation history in this
marginal segment of the mregional granulite belt of the
Eastern Ghats.,

9, Uncited reference
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