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Abstract

In continuation of our perusal of the studies on transverse momentum spectra for the main vari-

eties of secondaries from a consistent and comprehensive phenomenological approach, we propose

to take up here — after a successful completion of reporting in detail the results (Ref.[4] in the

text) on our analyses of the pT -spectra of pions — the studies specially on production of kaons,

protons and antiprotons in several proton-induced and nucleus-involved collisions at high energies.

The measured data on inclusive cross sections of kaons, protons and antiprotons from the vari-

ous published sources have here been assorted first. Next, data on the pT -spectra of the specific

secondaries produced in PP and PP̄ reactions have been scanned and analyzed with the help of

Hagedorn’s model(HM). Thereafter a connector, named here the combinational approach(CA), has

been constructed and used to analyze the data on pT -spectra of some major category of non-pion

secondaries produced in nucleus-nucleus(AA/AB) collisions at high energies. And these exercises

have, finally, led to the modestly successful interpretations of a wide band of data with the revela-

tion of some insightful physical aspects of high energy interactions. The limitations of the approach

have also been precisely pointed out in the end.
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I. INTRODUCTION

The nature of transverse momentum[1, 2] spectra is quite interesting for the following

reasons: Firstly, in the form of invariant cross section in terms of pT , it offers a ready, reliable

and very basic observable for both measurements, and for theorization to be attempted.

Secondly, the pT -spectra throw light on the particle production mechanism on the whole;

they have also impact and indirect reflections on the predicted features of what is normally

projected as the signatures of the conjectured quark-gluon plasma(QGP). Thirdly and finally,

the expressions for invariant pT -spectra lead us to define some other physically significant

observables in the domain of particle physics, like the average multiplicity, average transverse

momentum etc.

After pions, kaons of all varieties (with K± and K0/K̄0) constitute the second most abun-

dant species among the particle secondaries which are produced in multiparticle processes of

hadron-hadron, hadron-nucleus or nucleus-nucleus interactions at high and very high ener-

gies. Secondly, kaons are the lightest ‘strange’ particles for which they have a special status.

Besides, kaons are supposed to bear, as told above, some strong reflections on what are

viewed as the QGP diagnostics. Lastly, the kaon-pion ratios and their energy-dependences

play a very significant role in both the particle physics and non-accelerator physics sectors.

So, analyzing the kaon production characteristics, especially the pT -spectra, in the light of

any model assumes a high degree of importance and comes as a challenging task as well.

Furthermore, the production of proton-antiprotons, the first family-set of baryonic category,

is also important from various physical considerations. The nature of the ratios P̄ /P has

a strong bearing on astroparticle physics. Besides, the generalized antiparticle to particle

ratios are of importance in the study of matter-antimatter symmetry in the universe, since

they provide the relative abundance of antiparticle productions[3].

Very recently, spurts of data on the various aspects of particle production from the

CERN-SPS and the RHIC-BNL, studying high energy interaction properties in the collisions

between PbPb and AuAu respectively, are available. And providing interpretations for

both the previous measurements and these oncoming blizzards of new data is really a very

significant work.

Our objective here is to try to describe and/or explain the nature of the transverse

momentum (pT )-spectra of kaons, protons and antiprotons in a large variety of proton-
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induced and nucleus-induced high energy interactions with the help of a combinational

approach(CA), called also the grand combination of models (GCM). The present work is

prompted by our previous successes in analyzing the pT -spectra and rapidity-spectra[4, 5] of

pions alone in a host of nuclear collisions at high and superhigh energies. In fact, taking up

the task of interpreting the pT -spectra of a set of non-pion secondaries produced in nuclear

collisions becomes the logical imperative and the natural follow-up in maintaining a sequence

of our studies and with the model of our choice in a self-complete way. In real terms, while

proceeding with the present work, we would follow the trajectory of the Ref.[4] here more

closely than the other one, as in the former the approach to the studies on pT -spectra has

been rationalized in a better way and much more consistent manner. We have consciously

and carefully avoided here to adopt operationally any of the known popular/standard models

and have also tried to escape, as far as possible, the buzzwords related to them. And we

have singularly been guided by the results of experimental measurements on the nature of

pT -spectra alone in a very dispassionate and objective manner.

This paper is organized here as follows. In the next section (section II) we give the

outline of the combinational approach which is to be taken up for this study and the sketch

of the physical perspective which prompted us to proceed in the stated direction. In section

III we present the essential steps of the methodology of our work, the results of model-

based calculations and some brief discussion on the results obtained by this combinational

approach. The last section is reserved for summing up the conclusions and pointing out the

shortcomings of the approach adopted here.

II. THE BASIC APPROACH AND THE PHYSICS PERSPECTIVE

Following the suggestion of Faessler[6] and the work of Peitzmann[7] and also of Schmidt

and Schukraft[8], we propose here a generalized empirical relationship between the inclusive

cross-section for production of K±, P and P̄ in nucleon(N)-nucleon(N) collision and that

for nucleus(A)-nucleus(A) collision as given below:

E
d3σ

dp3
(AB → QX) ∼ (A.B)φ(y, pT ) E

d3σ

dp3
(PP → QX) , (1)

where Q stands for K±, P , P̄ and φ(y, pT ) could be expressed in the factorization form,

φ(y, pT ) = f(y) g(pt).
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While investigating a specific nature of dependence of the two variables(y and pT ), either

of them is assumed to remain averaged or with definite values. Speaking in clearer terms, if

and when pt-dependence is studied by experimental group, the rapidity factor is integrated

over certain limits and is absorbed in the normalization factor.So, the formula turns into

E
d3σ

dp3
(AB → QX) ∼ (A.B)g(pT ) E

d3σ

dp3
(PP → QX) , (2)

The main bulk of work, thus, converges to the making of an appropriate choice of form

for g(pT ). And the necessary choices are to be made on the basis of certain premises and

physical considerations which do not violate the canons of high energy particle interactions.

Let us now tentatively propose that the expressions for inclusive cross-section of non-pion

secondaries in proton-proton scattering at high energies in eqn.(2) could also be chosen in

the same form as that was suggested for pions by Hagedorn[9]:

E
d3σ

dp3
(PP → QX) = C1 ( 1 +

pT

p0

)−n , (3)

where C1 is the normalization constant, and po, n are interaction-dependent chosen phe-

nomenological parameters for which the values are to be obtained by the method of fitting.

Their
√

s-dependences are here proposed to be given by the following formulations:

p0(
√

s) = a +
b√

s ln(
√

s)
(4)

and

n(
√

s) = á +
b́

ln2(
√

s)
(5)

where a, b, á and b́ are four constants. The
√

s-dependence of p0 and n would be shown

later diagrammatically in the text and their data-base would also be indicated. The nature

and significance of these parameters could be appreciated from the work of Hagedorn[9],

and those of Bielich et al[10] and Albrecht et al[11].

The final working formula for the nucleus-nucleus collisions is now being proposed here

in the form given below:

E
d3σ

dp3
(AB → QX) ≈ C2 (A.B)(ǫ + αpT − βp2

T
) E

d3σ

dp3
(PP → QX) , (6)

with g(pT ) = (ǫ + αpT − βp2
T ), wherein this quadratic form of parametrization is

suggested here tentatively by us for analyzing data and testing its efficacy, if any and is
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hereafter called De-Bhattacharyya parametrization(DBP). In the above expression C2 is the

normalization term which has a dependence either on the rapidity or on the rapidity-density

of the produced secondary; ǫ, α and β are constants for a specific set of projectile and target.

Earlier experimental works[11, 12, 13] showed that g(pT ) is less than unity in the pT -

domain, pT < 1.5 GeV/c. Besides, it was also observed that the parameter ǫ, which gives

the value of g(pT ) at pT = 0, is also less than one and this value differs from collision to

collision. The other two parameters α and β essentially determine the nature of curvature

of g(pT ). However, in the present context, precise determination of ǫ is not possible for the

following understated reasons:

(i) To make our point let us recast the expression for (6) in the form given below:

E
d3σ

dp3
(AB → QX) ≈ C2 (A.B)ǫ (A.B)(αpT −βp2

T
) ( 1 +

pT

p0
)−n (7)

Quite obviously, we have adopted here the method of fitting. Now, in eqn.(7) one finds that

there are two constant terms C2 and ǫ which are neither the coefficients nor the exponent

terms of any function of the variable, pT . And as ǫ is a constant for a specific collision at a

specific energy, the product of the two terms C2 and (A.B)ǫ appears as just a new constant.

And, it will not be possible to obtain fit-values simultaneously for two constants of the above

types through the method of fitting.

(ii) From eqn.(2) the nature of g(pT ) can easily be determined by calculating the ratio

of the logarithm of the ratios of nuclear-to-PP collision and the logarithm of the product

AB. Thus, one can measure ǫ from the intercept of g(pT ) along y-axis as soon as one gets

the values of E d3σ
dp3 for both AB collision and PP collision at the same c.m. energy. In the

present study we have tried to consider the various collision systems in as many number

as possible. To do so, we have to consider the data on normalized versions of E d3σ
dp3 for

many collision systems for which clear E d3σ
dp3 -data were not available to us. Furthermore,

from these normalized versions we can/could not extract the appropriate values of E d3σ
dp3 as

the normalization terms, total inclusive cross-sections(σin) etc., for these collision systems

cannot always be readily obtained. Besides, it will also not be possible to get readily the data

on inclusive spectra for PP collisions at all c.m.energies, like e.g., at
√

s = 17.8GeV (c.m.

energy of Pb + Pb collision).

In order to sidetrack these difficulties and also to build-up an escape-route, we have

concentrated almost wholly here to the values of α and β for various collision systems; and
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the effects of C2 and ǫ have been compressed to a single constant term C3. Hence, the final

expression becomes,

E
d3σ

dp3
(AB → QX) ≈ C3 (A.B)(αpT −βp2

T
) ( 1 +

pT

p0

)−n (8)

with C3 = C2(A.B)ǫ.

The exponent term αpT −βp2
T obviously represents here [g(pT )−ǫ] instead of g(pT ) alone.

Thus, after obtaining fit-values of α and β, if [g(pT ) − ǫ] are plotted for various collision

systems, all the curves would originate from a single point, i.e. origin; and the systems and

processes are then really comparable. In other words, in this convenient way we could study

and check the scaling characteristics of g(pT ) with respect to the collision systems.

The expression(8) given above is the physical embodiment of what we have termed to be

the grand combination of models(GCM) or the combinational approach(CA) that has been

applied here. Firstly, the results of PP scattering are obtained in the above on the basis

of an assumption of validity of eqn.(3) for even the non-pion secondaries, though originally

the Hagedorn’s model(HM) was proposed only for pion secondaries. Secondly, the route for

converting the results for the non-pion secondaries produced in NN to NA or AB collisions is

built up by the Peitzmann’s approach(PA) represented by expression(2). Thirdly, the further

input is the De-Bhattacharyya parametrization for the nature of the exponent. Thus, the

GCM or the CA provides the combination of HM, PA and the DBP, and thus constitutes a

single whole. And this whole is both useful and economical; it is economical in the sense that

it can accommodate vast wealth of data with only three arbitrary parameters. Compared

to the theoretical apparatus provided by the standard model(SM)[14], this number is quite

low.

And the choice of this quadratic form is not altogether a coincidence. In dealing with the

EMC effect in the lepton-nucleus collisions, one of the authors here(SB)[15], made use of

a polynomial form of A-dependence with the variable xF (Feynman Scaling variable). This

gives us a clue to make a similar choice with both pT and y(η) variable(s) in each case sepa-

rately. In the recent times, De-Bhattacharyya parametrization is being extensively applied

to interpret the measured data on the various aspects[4] of the particle-nucleus and nucleus-

nucleus interactions at high energies. In the recent past Hwa et. al.[16] also made use of this

sort of relationship in a somewhat different context. The underlying physics implications

of this parametrization stem mainly from the expression(6) which could be identified as a

6



clear mechanism for switch-over of the results obtained for nucleon-nucleon(PP ) collision

to those for nucleus-nucleus interactions at high energies in a direct and straightforward

manner. The polynomial exponent of the product term on AB takes care of the totality of

the nuclear effects.

The individual model(s), seen in a split manner, is(are) certainly not new; but the combi-

nation with the proposed two-factor quadratic pT -dependence of the exponent (called DBP

in the text) for AB or AA interactions at high energies is testably a new proposition of-

fered by us. Besides, the probing of the role of the Hagedorn’s model in understanding the

production of non-pion secondaries in high energy collisions is another virgin feature in our

work. The testing of this mechanism suggested by us is with the views of (i) presenting

an integrated approach toward production of various kind of particle-secondaries in high

energy collisions and (ii) providing a unified outlook to particle production in all varieties

of particle-particle, particle-nucleus or nucleus-nucleus interactions at high energies. Quite

understandably, only by intensive analysis of data on several/all sets of collisions somewhat

successfully such claims could, at all, be made, and/or later be justified. The trends that

emerge from this extensive data-analysis with this grand combination of models(GCM) has

been given in the next section.

Obviously,in its approach and method, this work is undoubtedly a continuation of one of

our previous works[4]. But, even at the risk of being a bit repetitive, we have to proceed

and carry on. Because, without these special efforts at studying on a case-to-case basis for

each of the specific variety of the secondaries, we cannot reasonably arrive at any definitive

conclusion and also cannot confirm the physical basis, if any, of our work. And the two points

made very precisely in the preceding paragraph represent the strong and crucial aspects

of our physics motivation behind this proposed formalism. A point is to be made. Our

intention here, is surely not just piling up of large bulk of data in a purposeless way; rather

we would like to make the fullest possible utilization of them for checking the proposed

GCM as extensively as possible with the widest range of available data on diverse set of

reactions. Because, such rigorous and intensive checkings only could lead to meaningful

and valid conclusions, if any. And, in our opinion, this has helped us to substantiate, to a

considerable degree, the functional efficacy and strength of the proposed phenomenological

model which is called here the combinational approach. In fact, the revelation of the potency

and strength of this phenomenological approach is the other most striking feature which we
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would surely like to emphasize here.

It is obvious that there are two phenomenological parameters in g(pT ) in expression(8)

which need to be physically explained and/or identified. In compliance with this condition we

offer the following physical explanations for the occurrence of all these factors. The particle-

nucleus or nucleus-nucleus collisions at high energies subsequently gives rise to an expanding

blob or fireball with rising temperature. In real and concrete terms this stage indicates the

growing participation of the already-expanded nuclear blob. As temperature increases at

this stage, the emission of highly energetic secondaries(which are mostly peripheral nucleons

or baryons) with increasing transverse momentum is perfectly possible. The coefficient α

addresses this particularity of the natural event; and this is manifested in the enhancement

of the nuclear contribution with the rise of the transverse momentum. Thereafter, there is

a turnabout in the state of reality. After the initial fractions of seconds, the earlier-excited

nuclear matter starts to cool down and there is a clear natural contraction at this stage

as the system suffers a gradual fall in temperature. Finally, this leads to what one might

call ‘freeze-out’ stage, which results in extensive hadronization, especially in production of

hadrons with very low transverse momentum. In other words, the production of large-pT

particles at this stage is lowered to a considerable extent. This fact is represented by the

damping or attenuation term for the production of high-pT particles. The factor β with

negative values takes care of this state of physical reality. Thus the function denoted by

g(pT ) symbolizes the totality of the features of the expansion-contraction dynamical scenario

in the after-collision stage. This interpretation is, at present, only of very suggestive nature.

However, let us make some further clarifications.

The physical foundation that has here been attempted to be built up is inspired by ther-

modynamic pictures, whereas the quantitative calculations are based on a sort of pQCD-

motivated power-law formula represented by eqn.(6). This seems to be somewhat para-

doxical, because it would be hard to justify the hypothesis of local thermal equilibrium in

multihadron systems produced by high energy collisions in terms of successive collision of the

QCD-partons(like quarks and gluons) excited or created in the course of the overall process.

Except exclusively for central heavy ion collisions, a typical parton can only undergo very

few interactions before the final-state hadrons ‘freeze out’, i.e. escape as free particles or res-

onances. The fact is the hadronic system, before the freeze-out starts, expands a great deal

– both longitudinally and transversally – while these very few interactions take place[17].
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But the number of parton interactions is just one of the several other relevant factors for

the formation of local equilibrium. Of equal importance is the parton distribution produced

early in the collision process. This early distribution is supposed to be a superposition of

collective flow and highly randomized internal motions in each space cell which helps the

system to achieve a situation close to the equilibrium leading to the appropriate values of

collective variables including concerned and/or almost concerned quantities. The parameter

α in expression(6) is somehow related to the measure of the ratio of the net binary collision

number to the total permissible number among the constituent partons in the pre-freeze

out expanding stage identified to be a sort of explosive ‘detonation’[17] stage. This is ap-

proximated by a superposition of collective flow and thermalized internal motion, which is

a function of hadronic temperature manifested in the behaviour of the average transverse

momentum. The post freeze-out hadron production scenario is taken care of by the soft

interaction which is proportional[13, 18] to the number of participant nucleons, Npart, ac-

cording to almost any variety of wounded nuclear model. The factor β, we conjecture, might

have a relationship with the ratio of the actual participating nucleons to the total number

of maximum allowable(participating) nucleons. In fact, this sort of physical explanations is

reproduced here from some of our previous works[19].

III. PROCEDURAL STEPS, RESULTS AND DISCUSSION

At the very start we study the pT -spectra for K±, P and P̄ inclusive production in PP

collisions at several energies and try to fit the expression in the formula(3) given in the

previous section. The graphs are shown in the several diagrams in Fig.1 for kaons, protons

and antiprotons. The fits for the average kaon yield and antiproton production in PP̄

reactions have also been obtained(Fig.2) on the basis of Hagedorn’s model(eqn.(3)). The

same could not be done for proton production in PP̄ reactions due to unavailability of the

measured experimental data in this particular collisions. The obtained fitted-values of the

parameters, p0 and n, for different secondaries produced in PP/P P̄ collisions at different

energies have been displayed in Table-I - Table-V. The graphs for
√

s-dependences of p0 and

n, as proposed in eqn.(4) and eqn.(5), have been depicted in Fig.3 and the necessary values

of the parameters, a, á, b and b́ have been presented in Table-VI. While plotting graphs we

have obviously assumed that at very high energies the proton-proton and proton-antiproton
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collisions could be treated at par and with the acceptance of equivalence between each other.

Hereafter, in studying the nature of pT -spectra in all nucleon-nucleus and nucleus-nucleus

collisions, the interaction energy in all cases of nucleus-induced reactions is invariably con-

verted first into the c.m. system values, that is expressed in
√

sNN, then the values of p0 and

n are picked up from the graphical plots drawn already and shown by Fig.3. While analyzing

nucleus-dependence with expression(8) and trying with the fit parameters C3, α and β, we

have inserted these extracted values of p0 and n for PP cross section term occurring in the

expression(8) given above.

However, the plots presented in Fig.3 deserve special mention from phenomenological

points of view. The p0 and n values for production of the same secondary at various energies

(
√

s-values) show very slow fall-off with energy in these graphs. The nearness of values

of p0/n signals a march towards a steady state of hadronization. Once the natures are

established by the theoretical procedures adopted for either PP/P P̄ reactions at high or

very high energies, we would be compelled, for the sake of consistency, to reduce/minimize

the degree of arbitrariness in choosing values of p0 and n for nucleon-nucleus or nucleus-

nucleus collisions. As soon as the values of
√

sNN is given for a specific interaction, the values

of p0 and n are to be obtained from the theoretical plots of them shown in Fig.3(a), Fig.3(b)

and Fig.3(c) for different secondaries and/or for different collision(s). The diagrams given

in Fig.4 to Fig.8 do actually provide the nature of collected data and also the theoretical

descriptions for diverse reactions indicated by the labels in each diagram. The solid curves

represent the results arrived at on the basis of the new combination of models(NCM) and

the use of De-Bhattacharyya parametrization(DBP). And the totality of this combination of

NCM and DBP is called Grand Combination of Models(GCM). And the tables (displayed

by Table-VII to Table-IX) provide the necessary parameter values that have entered into

each calculation of the theoretical solid curves in all the diagrams of Fig.4-Fig.8 for various

reactions. In some cases, due to lack of availability of clear proton data, we have used the

net proton(P − P̄ ) data with the assumption of the near equivalence and as an approximate

measure. The diagrams presented in Fig.9(a) to Fig.9(c) are full of physical import and

convey the message of mass number scaling of nuclear reactions.

The deviations, whenever and wherever if any, from this observation could be attributed,

in the main, to the following few points: (i) limits of uncertainties in the measurements; (ii)

some unavoidable approximations in theoretical calculations; and (iii) availability, in some
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cases, of only too sparse and rare data on which reliability is certainly questionable.

Obviously, we present here the GCM-based analyses of extensive sets of data on some of

the observables measured by the various experimental groups in high energy particle and

nuclear physics. The study has, thus, given rise to some crucial observations with revelations

of following systematic trends: (a) For the non-pion secondaries produced in nucleus-nucleus

collisions at high energies the nature of fits is not as good as in PP reaction, especially at low

momentum region, and especially for E d3N
dp3 vs. pT plots. The reason(s) for this discrepancy

would be discussed later in the last section. (b) The fit parameters p0 and n for production

of secondary kaon(s) and protons are, by ascription, different in the basic PP reactions.

And this is consistent with the theoretical expectations. The factor p0/n has, we recognize,

a relationship with the slope parameter of the pT -spectra. And the slope parameters for

the lighter and heavier particles, one knows, are not the same. But, quite interestingly,

the nature of
√

s-dependences of p0 and n values of all three species, kaons, protons and

antiprotons, as shown in Fig.3(a)-3(b), are qualitatively quite alike.(c) It is quite evident

from the Tables VII, VIII, and IX that the values of α and β are too close. This, in our

opinion, reflects the basic fact that the nuclear effects are quite finite and certainly not too

pronounced even with the heaviest of the nuclei and the highest available energies.

IV. FINAL COMMENTS AND CONCLUSIONS

In the end let us summarize our main findings from the present study in the following

way:

(i) Quite naturally and predictably, the χ2/ndf values shown in Table-VII-IX present,

at times, sharply contrasting nature, because of either very sparse available data and

that too for a narrow region of pT -values, or large ranges of errors and uncertainties

in the measurements.

(ii) Still, on the whole, the approach describes modestly well the large bulk of data on

kaon-antikaon and proton-antiproton production phenomena in high energy nucleon-

nucleus and nucleus-nucleus collisions.

(iii) Related with production of K± and P/P̄ , the c.m. energy-dependences of the param-

eter values occurring in the basic PP reactions are of the same hyperbolic nature as
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in the cases of pions. This element of observation on similarity aspect of K± and P/P̄

with pions is certainly a new finding here made by us, as Hagedorn’s early work[9] was

made exclusively on pions.

(iv) Besides, the entire energy-dependences, even in purely nuclear collisions, are mani-

fested by only the basic PP interaction; the nuclear geometry exhibits no separate

energy behaviour. This is quite significant in the sense that it might be a great hint to

and confirmation of the enormous importance of PP interaction even in understanding

the nature of heavy ion collisions.

(v) The observation of the close values of α in various sets of nuclear collisions with varying

pair of projectile and target and at different energies is another interesting finding. It

indicates that enhancement due to nuclear contribution could never assume too large

values, even with the heaviest of the nuclei, though the parameters are uniformly

non-zero for each and every collision and the values are limited. This does, in effect,

imply the very finite degree of the nuclear effects. The constraint would appear more

severe and acute, if the diminutive role of the β factor is reckoned with. This might

be attributed to the large baryon stopping effect in heavy ion collisions.

Besides, the small positive α-values in any collission represent physically the nu-

clear enhancement — though certainly not of ‘anomalous’ nature — called Cronin

effect. secondly, the negative β-values might explain the suppressions of productions

of hadrons at relatively large values of the transverse momenta.

(vi) Even with some heaviest nuclei, the observations from Fig.9(a) to Fig.9(c) on the

validity of a sort of mass-number(A) scaling for production of both strange and non-

strange variety of hadrons constitute an interesting and probeworthy point. Physically,

this might signal the limit to the finite degree of impact parameter dependence of

nuclear collisions. The near-saturation of the parameter value at and after certain

magnitude of AB indicates the stringent limit on both the number of binary collisions

and the number of participating nucleons in the colliding nuclei.

(vii) The reason for observation of departure of the fits from the data on pT -spectra pro-

duced in nuclear collisions, especially at low pT region, could be ascribed, in the

main, to the following reasons. Firstly, because for the nucleus-involved collisions, the
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measurements in the experiments on purely soft collisions are very difficult, as hard

collision effects are almost unavoidably present there. Secondly, the measurements

of the factor E d3N
dp3 through the array of several detectors have always an intrinsic

simulation-based standard-model (mainly the HIJING version) component, for which

the obtained data are not the pure products of experimental measurements alone. But

the present model can, in no way, accommodate such sorts of superposition effects.

(viii) The property of ‘universality’ of hadronic, hadronuclear and nuclear reactions at very

high energies is also vindicated by the approach adopted here.

The implications of all these are obvious. With the series of such modestly successful

ventures, the combinational approach attains a plateau and assumes a potential to claim

the status of an alternative approach to understand functionally some aspects of the heavy

ion collisions in general, and the nature of pT /rapidity-spectra in NA or AB collisions in

particular.

However, we must not gloss over the gross limitations of the present approach which are

as follows: (i) It is a fact that we could, so far, offer no measure to estimate quantitatively

the values of α and β. The hints are, uptil now, of only very qualitative nature. (ii) Quite

admittedly, the physical explanations outlined here for α and β are also of tentative nature;

they have, still, not been identified concretely with any of the known physical observables in

the domain of collision dynamics for multiple production of hadrons and of nuclear geometry

as well. (iii) The calculations for particle-nucleus or nucleus-nucleus interaction cases are

absolutely dependent on the apriori and data-based knowledge of the production charac-

teristics of the same particle species in PP reactions at various energies. Without it, the

method is ineffective and that is a major handicap. (iv) The approach fails to respond to

the very basic query on actual mechanisms for particle production processes in any collision.

(v) And just because of it, the approach is insensitive to the charge-state of the specific

secondary produced in any high energy interaction and that is certainly a great difficulty.

So, unless these problems could be remedied to a great extent, we accept that we have no

reasons for complacency.
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TABLE I: Fit Values of p0 and n for PP → (K+ + K−)/2 + X at different energies

√
sNN (GeV ) Relevant C1 p0(GeV/c) n p0/n(GeV/c) χ2/ndf

[with reference] collision-specifics

23[20] 12 ± 3 2.7 ± 0.9 17 ± 4 0.16 1.427

31[20] ycm = 0, 15 ± 2 4 ± 1 22 ± 4 0.18 1.031

45[20] min. bias 13 ± 3 2.6 ± 0.5 16 ± 2 0.16 1.276

53[20] 15 ± 2 2.4 ± 0.2 15 ± 1 0.16 1.722

63[20] 15 ± 1 1.6 ± 0.2 11 ± 1 0.15 1.831

TABLE II: Fit Values of p0 and n for PP̄ → (K+ + K−)/2 + X at different energies

√
sNN (GeV ) Relevant C1 p0(GeV/c) n p0/n(GeV/c) χ2/ndf

[with reference ] collision-specifics

300[21] 5.7 ± 0.5 1.5 ± 0.3 8.2 ± 0.5 0.18 2.258

540[21] |ycm| < 2.0, 4.1 ± 0.1 1.3 ± 0.4 8 ± 2 0.16 2.273

1000[21] min. bias 0.36 ± 0.02 1.50 ± 0.06 7.0 ± 0.2 0.21 1.971

1800[21] 0.09 ± 0.01 1.55 ± 0.05 8 ± 2 0.19 3.526

TABLE III: Fit Values of p0 and n for PP → P + X at different energies

√
sNN (GeV ) Relevant C1 p0(GeV/c) n p0/n(GeV/c) χ2/ndf

[with reference] collision-specifics

23[20] 11 ± 2 19 ± 6 86 ± 15 0.22 0.984

31[20] 10 ± 2 16 ± 5 70 ± 10 0.23 1.012

45[20] ycm = 0, 9 ± 1 12 ± 3 50 ± 9 0.24 1.359

53[20] min. bias 10 ± 3 8 ± 1 37 ± 6 0.22 1.022

63[20] 10 ± 1 7 ± 3 34 ± 7 0.21 2.106
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TABLE IV: Fit Values of p0 and n for PP → P̄ + X at different energies

√
sNN (GeV ) Relevant C1 p0(GeV/c) n p0/n(GeV/c) χ2/ndf

[with reference ] collision-specifics

23[20] 4.2 ± .4 15 ± 3 69 ± 9 0.22 1.085

31[20] 5.2 ± .5 13 ± 2 60 ± 11 0.22 2.104

45[20] ycm = 0, 7 ± 0.4 11 ± 4 53 ± 8 0.21 1.734

53[20] min. bias 6.6 ± 0.7 10 ± 2 45 ± 9 0.22 1.430

63[20] 9.3 ± 0.4 9 ± 3 40 ± 5 0.23 1.226

TABLE V: Fit Values of p0 and n for PP̄ → P̄ + X at different energies

√
sNN (GeV ) Relevant C1 p0(GeV/c) n p0/n(GeV/c) χ2/ndf

[with reference] collision-specifics

300[21] 2.6 ± 0.2 7.5 ± 0.9 29 ± 3 0.26 1.242

540[21] |ycm| < 2.0, 1.4 ± 0.1 7 ± 2 25 ± 6 0.28 1.775

1000[21] min. bias 0.13 ± 0.03 7.3 ± 0.8 24 ± 3 0.30 1.620

1800[21] 0.025 ± 0.003 7.4 ± 0.9 23 ± 2 0.32 1.483

TABLE VI: Values of a, b, á, b́

Secondaries a b á b́

(K+ + K−)/2 1.6 103 3.6 161

P 7 602 5 644

P̄ 7 478 13 527

16



TABLE VII: Numerical Values of the parameters: α and

β for Kaon production in different high energy collisions

Collision E(GeV) Relevant C3 α β χ2/ndf

[with reference] collision-specifics (GeV/c)−1 (GeV/c)−2

P + D[12] 400 y = 0, min. bias 38 ± 6 0.14 ± 0.03 0.04 ± 0.01 2.832

P + Be[24] 450 2.4 < y < 3.5, central 1.2 ± 0.4 0.26 ± 0.03 0.04 ± 0.015 0.381

P + S[22] 200 0.6 < y < 2.4, central 6.4 ± 0.6 0.23 ± 0.03 0.03 ± 0.01 1.974

P + Au[22] 200 0.2 < y < 2.0, central 6.3 ± 0.4 0.21 ± 0.03 0.032 ± 0.005 0.859

P + Pb[24] 450 2.4 < y < 3.5, central 1.1 ± 0.1 0.17 ± 0.04 0.04 ± 0.01 0.552

O + Au[22] 200A 0.2 < y < 2.0, central 63 ± 9 0.24 ± 0.05 0.03 ± 0.01 1.164

S + S[22] 200A 0.6 < y < 2.4, central 72 ± 10 0.24 ± 0.02 0.03 ± 0.01 2.088

S + Pb[24] 200A 2.3 < y < 2.9, central 28 ± 3 0.25 ± 0.03 0.027 ± 0.002 2.170

Au + Au[28] 8450A |ηcm| < 0.35, min. bias 17 ± 2 0.15 ± 0.03 0.041 ± 0.005 1.005

Pb + Pb[26] 160A 2.4 < y < 3.5, central 66 ± 2 0.20 ± 0.02 0.038 ± 0.004 2.158
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TABLE VIII: Numerical Values of the parameters: α and

β for Proton production in different high energy collisions

Collision E(GeV) Relevant C3 α β χ2/ndf

[with reference] collision-specifics (GeV/c)−1 (GeV/c)−2

P + D[12] 400 y = 0, min. bias 28 ± 2 0.18 ± 0.02 0.028 ± 0.002 2.577

P + Be[25] 450 2.3 < y < 2.9, central 0.57 ± 0.02 0.22 ± 0.04 0.04 ± 0.01 2.530

P + S[23] 200 0.5 < y < 3.0, min. bias 16 ± 2 0.15 ± 0.02 0.045 ± 0.008 1.813

P + Au[23] 200 0.5 < y < 3.0, min. bias 47 ± 6 0.14 ± 0.03 0.05 ± 0.02 1.425

P + Pb[25] 450 2.3 < y < 2.9, central 0.8 ± 0.2 0.18 ± 0.02 0.04 ± 0.01 2.763

D + Au[23] 200A 0.5 < y < 3.0, min. bias 102 ± 8 0.16 ± 0.02 0.05 ± 0.02 0.535

O + Au[23] 200A 0.5 < y < 3.0, min. bias 473 ± 63 0.17 ± 0.01 0.04 ± 0.01 0.866

S + S[23] 200A 0.5 < y < 3.0, min. bias 164 ± 30 0.19 ± 0.02 0.03 ± 0.01 1.247

S + Ag[23] 200A 0.5 < y < 3.0, min. bias 450 ± 70 0.17 ± 0.01 0.03 ± 0.01 0.992

S + Au[23] 200A 3.0 < y < 5.0, min. bias 139 ± 12 0.17 ± 0.03 0.03 ± 0.01 2.063

Au + Au[28] 8450A |ηcm| < 0.35, min. bias 7 ± 2 0.17 ± 0.02 0.034 ± 0.001 0.744

Pb + Pb[26] 160A 2.3 < y < 2.9, central 33 ± 2 0.19 ± 0.02 0.022 ± 0.002 2.672

TABLE IX: Numerical Values of the parameters: α and β

for Antiproton production in different high energy collisions

Collision E(GeV) Relevant C3 α β χ2/ndf

[with reference] collision-specifics (GeV/c)−1 (GeV/c)−2

P + D[12] 400 ycm = 0, min. bias 7.2 ± 0.6 0.15 ± 0.04 0.035 ± 0.003 1.764

P + Be[25] 450 2.3 < y < 2.9, central 0.16 ± 0.03 0.20 ± 0.03 0.03 ± 0.01 1.362

P + Pb[25] 450 2.3 < y < 2.9, central 0.18 ± .04 0.19 ± 0.03 0.032 ± 0.004 1.470

S + S[25] 200A 2.3 < y < 2.9, central 1.5 ± 0.2 0.19 ± 0.02 0.03 ± 0.01 2.674

S + Ag[27] 200A 3 < y < 4, central 8 ± 1 0.18 ± 0.02 0.03 ± 0.01 1.851

S + Au[27] 200A 3 < y < 4, central 5.7 ± 0.6 0.25 ± 0.03 0.024 ± 0.003 1.620

S + Pb[25] 200A 2.3 < y < 2.9, central 1.7 ± 0.2 0.23 ± 0.03 0.022 ± 0.003 1.767

Au + Au[28] 8450A |ηcm| < 0.35, min. bias 0.42 ± 0.01 0.16 ± 0.03 0.034 ± 0.003 2.081

Pb + Pb[26] 160A 2.3 < y < 2.9, central 15 ± 1 0.26 ± 0.02 0.024 ± 0.002 2.838
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FIG. 1: Plot of E d3σ
dp3 vs. pT for various non-pionic secondaries produced in P + P

collisions at different c.m. energies. The various experimental points are taken from

Ref.[20]. The solid curves give the theoretical fits on the basis of Hagedorn’s model(eqn.3).
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FIG. 2: The inclusive spectra for secondary K++K−

2
and P̄ produced in P + P̄

collisions at
√

s = 300, 540, 1000 and 1800 GeV. The various experimental points

are from Ref.[21]. The solid curvilinear lines are drawn on the basis of eqn.3.
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FIG. 3: Values of p0 and n as a function of c.m. energy
√

s. Various data points are

taken from Table-I to Table-V. The solid curves are drawn on the basis of eqn.4 and eqn.5.
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FIG. 7: Plots of multiplicity spectra as function of pT for produc-

tion of some non-pionic secondaries in different nucleus-nucleus collisions

at CERN and SPS energies. Various experimental data are taken from

Ref.[22, 23, 24, 25, 26, 27]. The solid curves depict the GCM-based fits(eqn.8).
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FIG. 9: Values of α and β for various non-pionic secondaries produced in different

collisions as functions of the product of mass numbers(AB) of the interacting nuclei.

The fitted values of α and β, enlisted in Table-VII to Table-IX, are taken as the

data points; and are denoted by empty and filled squares respectively. The dashed

lines give the average values for αK++K−

2

= 0.21 ± 0.03, αP = 0.17 ± 0.03, αP̄ =

0.21 ± 0.04, βK++K−

2

= 0.035 ± 0.0005, βP = 0.037 ± 0.003 and βP̄ = 0.030 ± 0.005.
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