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Locally accessible information and distillation of entanglement
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A different type of complementarity relation is found between locally accessible information and final
average entanglement for a given ensemble. It is also shown that in some well-known distillation protocols,
this complementary relation is optimally satisfied. We discuss the interesting trade-off between locally acces-
sible information and distillable entanglement for some states.
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The problem of local distinguishability of orthogonal
quantum states has raised much interest in the arena of quan-
tum information. Interestingly where any two pure orthogo-
nal states can be distinguished locally [1], there exist more
than two orthogonal states which cannot be distinguished by
local operations and classical communication (LOCC) [2.3]
Again Eisenl et al. [4] have studied how distllable entangle-
ment is decreased with the loss of classical information about
the ensemble. In the light of the above results, it is interest-
ing o investgate the deep connection between classical and
quantum information and extraction of classical information
about the ensemble by local operations and classical commu-
nication.

In this regard. Badeigg er al. [5] found a universal
Holevo-like upper bound on the locally accessible informa-
tion. This bound involves not only local entropy but also
mital average entanglement. In particular they have shown
that for an ensemble £={p,.p,}. the locally accessible infor-
mation (ie., informaton of x, extractable by LOCC) is
bounded by

fl__:_[:c':&zn—ﬁ', (1)

where n=log, d,d, for a d,®d, system and E refers to any
asymptotically consistent measure of the average entangle-
ment of the ensemble. Now if one writes the inequality in the
form II__;:':HT-F-E'EC n, it shows some kind of complementarity
relation between locally accessible information and the aver-
age entanglement. Various interesting results follow from
this relation. Specifically Badziag er al [5] checked that
given the dimensions of the systems what would be the en-
semble that would saturate the bound. One can observe from
this incquahty that though there are extreme cases where
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II__;:::‘.'m=I1‘}gz d iy, there cannot be the other extreme, vie., E

=log, d,d,, rather E=min{log, d,.log, d.}.

In this adicle we provide a modified inequality which
involves not only the average entanglement of the initial en-
semble (E) but also the average entanglement of the final
ensemble (Ey). In other words, the amount of locally acces-
sible information IE';‘“ is bounded above by n—E—E,
which can be rewritten in the following form:

L +E<n-E, (2)

Thus for the given choice of ensemble (ie., for fixed n and
E). there is a kind of complementarity between I“2YC and
the final avernge entanglement.

We shall prove the inequality (2) for one-way LOCC and
conjecture it W be true in the muluway case also and will
provide some simple examples to check the nice trade-off
between the amount of locally accessible information and
final average entanglement in the above-mentioned comple-
mentanty relation. It s worth notcing how this relation
plays a role in the process of entanglement distillation.

Finally we will discuss some famous distillation protocols
like hashing, breeding, and also the ermor-correcting protocol
where our bound in inequality (2) saturates.

In the following we will provide a proof of inequality (2)
for one-way LOCC. When a source prepares a state py where
X=0,.....n with pmobabilities py. ... .p. the Holevo bound
tells us that the maximal accessible mformaton (how well
the source state can be infemred) one can derive 15 bounded
by the following limit:

Lee = S(p)— 2 pxSipx).
X

where p=Z,pypy and S0 ) is the von Neumann entropy. But
we will be considering a more interesting problem. The
source 15 emiting a bipartite state p?m where X=0,.....n
with probabilities py, .....p, and two particles A and B are
given W two distant parties (Alice and Bob, say) who are
rying to guess X by LOCC. We will be trying to dedve the
upper limit of accessible information by LOCC. As only
LOCC is allowed, one among Alice and Bob has w start the
protocol. Let Alice start it. Alice can look at it in the follow-
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ing manner. She gets the states Try| ‘M’] with probabilities

Pas-or-ap, and she has to identify X. S0 she performs a
measurement described by positive-operator-valued measure
(POVM) elements {4, }={4,.A,.....A,} on her system and
by this process the most information she can extract about X
is limited by the Holevo bound, which is

14 = 505" = peS(p),
X

where p"'=Try [p""m]*Tr,.,.[prp 1'ﬂ"] and pm—TFH[P?m]-
The above inequality can be rewritien in the following way:

M= log. d, — prﬂp“m]l“ log, d, — E;,

where d is the dimension of the Hilben space at Alice’s side
and E s any asymptote entanglement measure. Here we
used the fact that 5(_.3'”} E(_ﬂ' N for any d.h}'mp[uljﬂ en-
tanglement measure £. We will define E,= EprEI:_ﬂx ) as the
initial average entanglement. Afler Alice’s extraction of in-
formation she communicates her result, say K, 1o Bob. The
joint two-particle density matrix has transformed into

[Ax @ IE pxpx AR @ f]

(AB)
=y
Tr( Ap® IE peplt®at @ f]
with probability pe=TriAd ?JIExppomA' @I). Then Bob's
state is transformed into :Tj,:”-—-Tr_,' :'.lj'i”".:I iwhich includes in-
formation about X accessible by Eub]l with probability py.
Now we will be using some more notation. We define
[Ax ® 1p0HAL @ 1]
TrlAx ® fp'“”A v®

AB) _
KX

and pgy=THA, @1Ip| AL @ 1.

It is now Bob's tum to perform the measurement depend-
ing on Alice’s outcome (here K, say) to extract information
about X. He performed a measurement with POVM elements
{B.}={By.B,.....B;} on his system 1o extract information
about X on the ensemble

u::. EPJCPMT \ITE;”
x P

which originated from Alice’s Kth measurement oulcome.
The accessible information for Bob I} must be bounded
above by the Holevo gquantity SI::T;( J_'I—Exp;c‘,‘_,J‘:.'I:Tr_,.:'r””‘]':']l
where p=(pyprx)/ py. Thus we have

1'”” = ‘:.I:njml —E ProS(Traais)

= S(of®) - EPLXS[TFA( > N }{W’I']]
X LS !

(where A J,'Z”}{J,"rfﬁ is any decomposition of :Tj:'f )
=S(al) = 2 pry MES(Trg | W)
X i

iby using concavity of von Neumann entropy)
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=S(al) - EmE ME (o ™)

[E,(| (™) is the measure of entanglement of |¢/*Y)
given by the von Neumann entropy S(Tr, 1J|J,,";"‘ W),

=S(o}") - Ex(o?™)

iby the definition of entanglement of formation Eg)

[AH
=S(ai ) —E'(ai™)

iwhere E' is any asymptotic measure of entanglement and is
smaller than the entanglement of formation)

f:li.}gz ﬂlj E (EIIEHJ}

where d is the dimension of Hilbern space at Bob's side.
The total bound on Bob's extractable information is 1'%
where J"H:'EEKPKJH;J, which can be rewrnitlen as

1< pelogy dy— 2, peE' (aid™),
& &

where EpppE’ l:n'j,ém"} is the average entanglement before
Bob's measurement. Let E; be the final average entangle-
ment (using the same measure of entanglement E') after
Bob's measurement, and as the average entanglement can
only decrease by LOCC, therefore

.li”:r:I = EF!‘- ll.}gg ﬂlg— EPK.ETHJ;'H:I} == I{’}E_'E ﬂlz —.E_:(.
K K

So in this one-way protocol the total locally accessible
information satisfies the following relation:

O < o)y B < log, b +log, dy — E;—E;. (3)

Hence a complementarity relation has been established
between locally accessible information and final average en-
tanglement for a given ensemble. Now instead of Alice, if
Bob had started the procedure, and depending on his out-
come, if Alice performed the subsequent measurement, it is
very easy Lo check that the quuuhL;' (3) will be of the same
form. Only the actual values of f and Ef can change.
One can also notice here that LhL d_sg, mptotic measures of
entanglement £ and E', used above w define E; and E,
respectively, are, in general, different. In some special cases,
if all or some of the component states of the final ensemble
generated by the LOCC are maximally entangled states, the
process of extraction ofensemble information (locally) has
also distilled some entanglement. Obviously the amount of
entanglement (Ey ) that may be distilled in this process
will satisfy Egy 00 =Ep. S0 for every distillation process, we
can also present a complementarity relation as follows:

IOCC . Eited = loga dydy — E;.
If for some cases, Ej ineq=E, (distillable entanglement) then
this process of extraction of locally accessible information is
itsell the best distillation process.

First we will provide some simple examples (of course
avoiding those discussed elsewhere [2]) to find the implica-
tion of our inequality [inequality (2)].

Example 1. Consider the following example where the
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source is producing any one of the states py, which are three
copies of Bell states, X=1,2 3 4, with probability py=1/4,
i.e., Alice and Bob have the ensemble E={py=1/4.py
--I:|Ex}l:Ex|]l ‘L. Here |By) are known Bell states |B,)
=(1/\2)(00)+[11), |B)=(1/\2X|00)—]11)), |B3)=(1/,2)
% (|01)+ 109, |Byy=(1/+2)(|01)=|10}). Now the maximum
amount of information about X one can extract In-LuIIy ior
globally also) is 2 classical bits (chits) (ie. ,_II:FF
[1.9]). Hence the final H#LF%L entanglement £y is h{}unduj
above by log, dd,—E| f_l,:'x =06—3-2=1. By using two
copies of the Bell states one can know the Bell state and
therefore with the remaining copy, finally one can distill
1 ebit. But there s a process given by Chen er al. [6] by
which one can extract 2 ebits; then our inequality [inequality
(2] shows that the extractable information I_';E_'m 15 bounded
by 1. Using inequality (11) of Chen er al. [6] one can casily
check that IL"FC- 1. which also saturates our bound [7].

One can gLnLFdlILL this process for n copies of Bell states,
where n 15 odd, 1.e., the source 15 producing a state which s
n copies of one of the four Bell states with probability 1/4.
The distillable entanglement is (n—1) ebit [6] When one
distills this amount of entanglement, f_l’?[r can be al most
1 chit [from (2)]. But if one tries w extract the maximum
amount of classical information about the ensemble, ie
2 chits, the amount of entanglement one can distill is al most
in—2) ebit. This can be achieved by using two copies of Bell
states for reliable discrimination and the remaining (n—2)
copies produce (n—2) ebils.

Example 2. Another interesting example is {py=1/4, py
=(|Bx}{By|)*'}. X=1,....4. Here log,dd,=8, E;=4, the
maximum allowed value of I5%°C s 2; and hence E; is
boundedabove by 2 which is equal to the entanglement one
can distill by locally discriminating four Bell states using
two copies. For this ensemble the distllable entanglement
Epis also 2 ebits [6].

For all even cases, as the distllable entanglement is (n
—2) [6]. here the extraction of the full 2 bits of classical
information is the best distillation process, unlike in the odd
cise.

Exampfe 3. We now take examplesin a3 ®3 system. Take
two copies of all nine maximally entangled states each of
which is in the canonical form given by Eq. (4) below with
equal probability,

3 i
Z 7
H,m} _ __2 pr(%

U.p)lj}:a |U+q}ﬂiﬂd -i}s (4}
V3

where p, g=0,1,2. Here n=log, d,d:=log, 81=4 log, 3, and
E;is2log, 3. S0 if Ifc is 2 log, 3 {which is the maximum
that one_can achieve by LOCC [9]), E; is 0. In another pos-
sibility, E; can become log, 3. Then from our ineguality ([in-
equality (2)], I2*€=log,3. In the case where 10
=log, 3 we show that the amount of entanglement that can
be distilled is loga 3. We know from the work of Yang er al
[8] that the amount of distillable entanglement of p:l
=(1/9)= #_“I:HJ }{q:w““ is log, 3. Applymg a bilateral
controlled-NOT  operation, the ensemble p; trans forms
into _la[l':r’m}':mml 8 Z,|Po H{ Poy| +P 11 g @ Z, [P 2 XDy,

PHYSICAL REVIEW A 71, 012321 (2005)

+| @y i Doy @ Z | B 3D, |]. Now one discriminates locally
between subspaces spanned by {[00), |11} 1223}, {|o1}, |12},
|20}, and {02}, |10}, |21}} and extracts £ M"‘H'=Iu§;_e_1 3 and at
the same time distills log, 3 ebil entanglement.

All the above examples show that whenever the state has
some distillable entanglement, some amount of entanglement
may be distilled in the process of extracting information
about the ensemble. In some cases ke Example 1 and Ex-
ample 3 extracting full information about the ensemble re-
duces the amount o be distlled, but iff one extracts some-
what less information, the amount o be distilled reaches the
distillable entanglement.

We now wrn o a d@d system. In d @d, there are d”
pairwise orthogonal maximally entangled states which can
be writlen  as |¢""l?} (lfx,:!bE"l o exp2mijpld)j) @ |
+glmod dy, p.g=0, ... ,.r! 1. These states can be discrimi-
nated either by providing two copies of each state [9] or by
sharing an additional amount of log, d ebits of entanglement
[10]. These also follow from our bound. We also show that
after having classical information no entanglement will re-
main finally. As in the previous example here I:-‘_'m
=2log,d, n=4log, d, E;=2log,d. So E;=0. So finally no
entanglementis there. Similarly for the case when one copy
is supplied and logs & amount of entanglement is also sup-
plied, 1.e., a known maximally entangled state in d&d is
supplied, the final average entanglement becomes zero afler
discrimination.

Next we shall study the inequality (2) in the context of
some famous distillation processes like hashing, breeding,
and the errorcomection protocol. In a distillation protocol
like hashing or breeding, the main idea 1s the same as the
classical problem of identifying a word for a given probabil-
ity distribution of the alphabets which constitute the word.

In the breeding protocol [11,12], a sufficiently large num-
ber of copies of the Bell diagonal state py=X} p|B) B,
with  comesponding  Shannon  enropy  [ie.  Hip,)
=—2%,p; loga p,] kess than 1, are considered. We are also sup-
plied with nH(p) copies of a predistilled maximally en-
tangled state. Thu n L'npius of the Bell states (pg) form the
string b B ?J|E WB; | with
pmb.iblll[} P;IP J:rj P dnd our Jub 15 o |dLnl|fy this
string by using the prL‘ﬂlh[llLd states. So finally one gets n
maximally entangled states. For this problem Iltnn::HLDJ}
(as the total number of different strings like |B, B, |G?J|BH}
X(,EJ’|®|EH}{EH|@| @ |B; B | that can be identified by
the protocol is 2"H0) jp “the asymplotic  limit), En-n{l
+H(p))). log, ddy=2n[1+H(p)]. and E;=n. Here one can
see the saturation of the bound given in inequality (2), in the
asymptote limil

In the hashing protocol [11,12], the string is identified, or
equivalently the classical information is extracted at the ex-
pense of the entanglement from the string. Starting with n
copies of pg one gets nil —H(p)) copies of a known maxi-
mally entangled state in the asymptotic limit, by locally dis-
tinguishing 24 likely strings |E 1Y |?J|EJ‘}{E |?J|E J
X{B,|®-- 7:l|E B, | of the four Bell states, in v.hu_h
againour bound (?} saturates.

In this context, our inequality establishes the fact that

13
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when distilling from a mixture of Bell states = p|B}B . if
the process is to identfy the strings of Bell states in the
ensemble (e.g., in breeding or hashing) by one-way or even
two-way LOCC [by conjecturing our inequality (2) to be
valid also for two-way LOCC), the highest amount of en-
tanglement that can be distilled per copy of the Bell mixture
is |—Hip,).

We are now going to discuss the relation between our
bound and entanglement distillation by error correction. Let
Alice and Bob share n nonmaximally entangled states (they
need not be the same), which arse due w the possible cor-
ruption during transmission of a maximally entangled state
from Alice to Bob by some noisy channel. Let the errors that
occurred during the transmission belong 1o a subset, say S, of
the Pauli group G, on n qubits [13], and there exists a stabi-
lizer code tocorrect the errors [14,15]. After the transmission
ong can write the 2r-qubit state along with the envimonment
as

|1]‘r.-ur£} = E [I__‘ @ I:I‘lrl}.ﬂ']|3|}:.;“|fl}

1

where |e;) are environment states (possibly nonorthogonal
and unnormalized). Here {U7]} is the set of unitary operators
acting on the 2"-dimensional. Hilber space of Bob's sysiem,
where each U7, belongs to S, that can be cormected by the
stabilizer code [characterized by (n,m)], considered in the
problem. So the number of lineardy independent /s is 27
Now in this protocol Alice and Bob perform identical in
—m J-generator measurement on n qubils in their possession,
and by comparing their measurement results they identify the
error syndrome § and then correct it. Bul in this process of
measurement the joint state of Alice and Bob collapsed 1o a
maximally entangled state of 2”& 2" S0 finally Alice and
Bob come upwith an m-ebil maximally entangled state.

As no knowledge of the environment is used, this problem
is equivalent 1o the problem of distilling 8 maximally en-
tangled state from the mixture

1 ; 5
p= 2,._,,,2 (14 ® (U)s)(BMB D [I® (W5 (5)

Thus in this process, the amount of information U_I;:':HTJI that
has been extracted s (n—m) [by this process of eror comrec-
tion, we are detecting and then comecting 2" equally prob-
able errors appeaning in Eq. (5) by LOCC), Ei=n, E;=m, and
log, dijdy=2n. S0 the bound (2) is saturated for this distilla-
tion protocol.

In this article, we provided a relation [inequality (2)]
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among locally accessible information, initial average en-
tanglement, and final avermge entanglement for any given
asymptotic measure of entanglement, allowing even different
kinds of asymplotic measures of entanglement for these two
averages. We have given a proof of this relation for any
one-way LOCC and provided some examples, each of which
saturates the above-mentioned relation, revealing comple-
mentarity between locally accessible information and the
amount of entanglement that has been distilled in this pro-
cess. We have also shown that in each of the three well-
known distillation protocols—breeding, hashing, and disil-
lation by error correction—the above-mentioned relation is
saturated. Although all our examples (given here) involve
one-way protocols, one can ¢asily check that the mequality
i2) is strictly satisfied in the case of the recurrence protocol
[16].

Distilling maximally entangled states from a general
mixed state (created due o some disturbance in the channel)
by LOCC is a fundamental problem in gquantum-information
processing. Untl now, the standard distillation protocols deal
with mixtures of Bell states, and in each of these prowcols
cither full or partial ie.g., the recwrrence protocol) extraction
of information about the ensemble is performed. In paricu-
lar, when for a state, hashing and breeding protocols yield
either no or very litle entanglement, initially the recurrence
protocol is used, in which partial information about the en-
semble is extracted o increase the fidelity. This shows that
extraction of full informaton about the ensemble may reduce
the amount of entanglement to be distilled. We have also
encountered here some examples where accessing full infor-
mation about the ensemble distilled less than the corespond-
ing distillable entanglement. All these findings suggest that
in order 1o find a better distillation protocol, one has to ke
care aboutl the inerplay between the amount of accessible
information (to be accessed locally) and the final average
entanglement (which may equal the amount of entanglement
distilled in the process), and optimize it in some clever way.

Note added. Our conjecture [inequality (2)] concerning
the two-way protocol has been recently proved by Horodecki
eral [17]
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