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Local cloning of Bell states and distillable entanglement

Sibasish Ghosh,* Guruprasad Kar," and Anirban Ru;-'i
Institute of Mathematical Sciences, CIT Campus, Taramani, Chenrai 600013, India
{Received 15 November 2003, published 13 May 2004)

The necessary and sufficient amount of entanglement required for cloning of orthogonal Bell states by local
operation and classical communication is derived, and using this result we provide here some additional

examples of reversible as well as irreversible states.
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L INTRODUCTION

Nonorthogonal states cannot  be cloned exactly [1],
whereas orthogonal states can be. Bul multuipartite orthogo-
nal states cannol be cloned by only local operation and clas-
sical communication (LOCC) in general withoul using an
entangled ancilla state, as otherwise that would imply cre-
ation of entanglement by LOCC. In this scenario, if one al-
lows these far aparl parties 1o share some known entangled
states as an extra resource in the form of a blank copy stale
and machine states (we call them together the ancifla), clon-
ing of orthogonal mulipartite states (entangled in general)
will be possible.

Throughout this paper, we shall consider the four Bell
states as

1
|B)=—=(]00)+[11)),
W2

1
|By)=—=(]00)—[11)),
V2

(1)
1
|B3)=—=(]01}+[10}),
V2

1
|B)=—=(]01)—[10}),
V2

where one of the particles (i.e., one of the qubits) is held by
Alice and the other is held by Bob.

We show in Sec. 11 that any two Bell states can be cloned
by sharing just one ebit of free entanglement in the ancilla
state. Cloning of four Bell states is discussed in Sec. 111 This
has been generalized, in Sec. IV, for 1 — N copy cloning of
Bell states. In Sec. V, we provide some examples of qua-
sipure states [2]. We provide some examples of imeversible
states in Sec. VL We summariee our results in Sec. VIL
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IL. 1 —2 EXACT CLONING OF TWQO BELL STATES

Now consider the simplest case where the stale may be
any two of the |B)'s. If they share, as ancilla, two known
ebits, they can first locally distinguish the above-mentioned
two Bell states, and then they can locally transform the two
shared ebit states to two copies of the corresponding Bell
states. In fact, one can have the same result using one ebit of
the shared ancilla state (although the cloned state will remain
unknown). How can we achieve this? Let Alice and Bob
share either [B,) or [By) [see Eq. (1)]. If they share (as an-
cilla) the known state |8}, then by applying a controlled-
NOT (CNOT) operation locally (where the qubit of the un-
known Bell state is the source and the gubit of the ancilla is
the target, for both Alice and Bob), they will share two cop-
ies of the unknown Bell state. The same result can be ob-
tained (modulo some overall phases) for any two Bell states
from the set given in Eq. (1), by first locally unitarily trans-
forming {or expressing the local bases in terms of some other
local bases) the two Bell states to the states | B}, |By) (ex-
pressed in the new basis), then locally cloming these latter
two Bell states (using one ebit of entanglement), and finally
locally unitarily ransforming {or expressing the local bases
in terms of some other local bases) [B, )% and |B)%7 to the
comresponding two copies of the initially given set of two
Bell states.

It is 1o be noted here that one ebit of free (1.e., distllable)
entanglement is necessary in the shared ancilla state. 1If not,
let p be any shared bipartite ancilla state (where the distill-
able entanglement of p is less than one ebit), for which,
under LOCC, any two Bell states |B) and |B,) (say) can be
exactly cloned. This mmmediately shows that the mitially
shared separable state p_\.”,=_%I:PI|B,}]+P{ B.]) of Alice and
Bob will be transformed (together with the above-mentioned
shared ancilla stawe p) as

1
P.-.r,l- @ A ;I:P[lﬂl} @ |EI }] + F[lﬂl} @ |BE}]L

due to lincarity of the 1 —2 cloning operation [3]. The final
state has one ebit of distillable entanglement (across the Ali-
ce:Bob cut) [4], while the total initial state has less than one
ebit of distillable entanglement—a contradiction. So, what-
ever shared ancilla state p we take (for 1 —2 cloning of two
Bell states), it must have at least one ebit of distillable en-
Langlement.
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The above-mentioned argument can be directly general-
ized to show that (N—1) ebits of free entanglement (i.e.,
distillable entanglement) in the shared ancilla state are nec-
essary as well as sufficient w have 1—N exact cloning of
any given sel of two Bell states [given in Eg. (1)], by LOCC
only [5]. This result immediately shows that the distillable
entanglement of _ﬂlﬂf.’ where pf.’=%(P[|E, YN+ PI B4y ]), in
the Alice:Bob cut, is given by E;_,I:pj.'.h}:N—l.

L 1 —2 EXACT CLONING OF FOUR BELL STATES

Let us now come Lo the case where Alice and Bob have to
clone one (but unknown) of the four Bell states given in Eq.
(1). 1t can be easily shown that if Alice and Bob share three
ehits (ie., three known maximally entangled states of two
qubits), they can prepare two copies of that unknown state,
locally; becavse with one shared ebit, Alce can teleport her
part (of the unknown Bell state) 1w Bob, and Bob can distin-
zuish these four Bell states, and hence they can locally trans-
form the remaining two copies of the Bell siaies to the de-
sired Bell states.

We now show that for cloning any one of the four Bell
states given in Eq. (1), locally, two ebits of the shared ancilla
state are necessary. Consider the state where two far apart
parties Alice and Bob are sharng two copies of one of the
four Bell states with equal probabilities. Thus the shared
state 1%

4

1
= :12 P[lﬂl}r\]ﬂ'] @ |EJ}.’|3HE]!‘ (2)
=1
where Alice 15 holding the gubits A,,4,. while Bob 15 hold-
ing the qubits B, 8,. This state is merestingly sepamble in
the A Ay: B B, cut [6]. If cloning of the four Bell states is
possible with a shared ancilla state p, by using LOCC only,
we then have
1.
ps®p— 42 PllB) @ |B) @ |B)].

i=l

The final state has two ebits of distllable entanglement [7],
and hence p must have at least two ebits of distillable en-
tanglement.

Now we are going o show that two ebits of distillable
entanglement, in the shared ancilla state, are also sufficient
for exact cloning of the four Bell states. In order 1o do this,
let us first consider teleportation of two-qubit states (locally)
via the state pe. given in Eqg. (2). Interestingly, this stale can
also be wnllen as

i
Ps= 12 F[lﬂj}.a,.-sz @ |EJ}HJHE]s

=1

where the four qubits A, A, B, B, might be far apart, where
Aliceii) is holding the gubit A, and similady for Bob. Now
we consider the teleportation of a two-gubit state shared be-
tween Alice(1) and Bob(1). Let Alice(1) and Bob{1) teleport
their qubits to Alice(2) and Bobi2) respectively, using the
same leleportation proweol, namely the standard teleporta-
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tion protocol of Bennetl et al [8] for exactly teleporting an
unknown qubit through the channel state |8, ). This elepor-
tation [i.e., teleportation of any two-qubil state from the
Alice(1):Bob{ 1) cut to the Alice(2):Bob(2) cut, via the shared
channel state pg, and using the exact protocol of Bennetl e
al. [8] for the channel state B}, for cach qubit] can be rep-
resented in terms of the following maps (see [9]):

o' ® o] — §,;00? ® o', (3)

where ij=0,1,2.3, and where of! is the identily operator
acting on the Hilbert space of the qubit A,, o is the Pauli
matrix o, acting on the Hilbert space of the qubit 4, elc.
[see Ref. [10] for an explanation of the map (3)]. Using this
map, one can casily see that any Bell state [from Eq. (1)]
shared between Alice(l) and Bob(l) can be exactly tele-
ported to Alice(2) and Bob(2) [11].

Consider now the following state of six qubits A, B, (i
=1, 2, 3):

4
y 1
frsel 12 P[lﬂf}.-\,rrz @ |BJ}:‘|3H2 @ |E|}.-s,,ﬁ1,]- (4)

This state is a quasipure state [12,13] It has two ebits of
distillable entanglement in the A A2A5: B 1B285 cut [7]. while
it can also be created using two ebits of entanglement. Here
we are going o provide a simple preparation procedure for
this state, starting from two ebits of free entanglement. Let
Alice and Bob start with the following shared two-ebit
state: D**P{lﬂl}.-\]ﬂj @|By)a,n]® %':P[lﬂl}.-\,.rr,.]'*'P[lEz}.-\,.ﬂ,.]}-
Now, with equal probability, Bob either applies nothing or
he applies the Pauli matdx o, on each of his three qubits.
MNext Alice and Bob both apply locally two consecutive CNOT
operations on their respective gqubits, taking the third pair of
qubits as target (for both of these two CNOT operations),
while the first two pairs of qubils act as source. This will
directly give rise to the state p"' of Eq. (4).

The two reduced density matrices of p'?! corresponding 1o
the subsets {.4|, B|, .42, BE} and {.4|, E|, .4_;, E_q]' are the
same Smolin state pg. Thus if Alice(1) and Bob{1) jointly
teleport [using the map given in (3)] the unknown Bell state,
it will be reproduced both between Alice(2) and Bob{2) as
well as between Alice(3) and Bob(3). Thus two ebits of the
shared ancilla  state [shared between  Alice’s  side
iAp, A2, A3) and Bob's side (B, 8., By)] are sufficient 1o
have the 1 —2 cloning of one of the four Bell states given in

Eq. (1).

IV. 1 =& EXACT CLONING OF FOUR BELL STATES

Interestingly 1—3 cloning of an unknown Bell stale
taken from the set given in Eq. (1) by LOCC also requires
two ebits of entanglement. If Alice and Bob share the eight
qubit ancilla state p*'={XL P[|B), 5 ®|B)a,5,® |B)uw,
-:_?J|EJ}__‘4H4], using the same procedure as above, they can
have the desired 1 —3 cloning of the unknown Bell state.
A single copy of this eight-qubit state can also be
prepared  from  two ebits of free entanglement. We
now describe a simple process for this stale. Alice
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and Bob first start with the following shared two-ebit
state: D"‘*::':Pﬂﬂ|}.-sjﬂj]'i'PﬂEi}.-sjﬂj]]'@P[lﬂl}.agz'ﬁ |EI}A,.H_,.]
@ 3(P[|B )4 5,]+ P{|Bo)a,s,)). Alice and Bob both now apply
two conseculive CNOT operations, where the first pair of gu-
bits is taken as source, while the second and third pairs of
qubits are targets. In the next swep, Alice and Bob both apply
locally three conseculive CNOT operations on their respective
qubits, taking the fourth pair of gubits as target (for both of
these two CNOT operations), while the first three pairs of
qubits act as source. This will directly give rise to the state
o',

This result can easily be generalized for 1 — N cloning of
four Bell states, using the shared ancilla state

4
1
P02 23 FlIBy p, ® Bag, - ® 1Ba, p )

— (M1 1)
(5)

This ancilla state p"*" has N ebits of distillable entangle-
ment when N is even, and N—1 for N odd. But since p"™*! is
reversible [12], it can be prepared using N and N— 1 ebits for
evien and odd cases, respectively.

V. EXAMPLES OF QUASIPURE STATES

Using the above results of cloning we now provide some
examples of guasipure states, each of which is reversible.
Consider the following 2N pany entangled state (where N is
odd):

4
plp)= 2 pP(|B)*"].
=1

where, for all the N copies of the Bell state | B}, one qubit is
with Alice while the other qubit is with Bob, and where 0
=p, =+ forall i=1,2,3.4. This state can be prepared by the
following process. Consider the density matrix  pg
=51 pP[|B,)] with the same p; as above (py is obviously
separable). This state can be prepared locally by Alice and
Bob. Alice and Bob also now locally prepare the state p'™* !,
given as in Eg. (5), using (N— 1) ebits of free entanglement
[12]. Take pg with p'™*!" and apply the previous 1 — N clon-
ing operation, the final state becomes p(p). So the entangle-
ment cost [14.15] £, of the state p(p) will be at most (N—1).
But now Alice and Bob locally apply (N—1) consecutive
CNOT operations on their respective sets of gubits (where the
Nih qubit pair is taken as the target and each of the first (N
—1) qubit pars 15 taken as source), and then they locally
distinguish the two sets of Bell states {8}, |82} {|Byb. B
in the target qubit pairs. This will then directly give rise o (
N—1) copies of [B,} or |By} (depending upon the measure-
ment oulcomes ), and hence (V- 1) ehits of entanglement can
be distilled from pip) (see also [12]). Hence, for this state,
the entanglement cost and the distllable entanglement are
same [with a value is equal 1o (V—1)], providing an example
of reversibility.
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VL EXAMPLES OF IRREVERSIBLE STATES

Now we generalize the example of irreversibility in [16]
te the case where &V Bell states are mvolved. It has been
shown in [16] that for the state

oy =pP[|B)]+ (1 - p)P[|B2}].

where O<<p<<1 and p+# é, we  have  EJdoy)
=H_;|:%+1,Ip(1—p]l]. But its distillable entanglement is
given by Eploy)=1—-H,(p). where, for O=x=1,H,(x)
=—x log, x— (1 —x)log.(1—x) [ 14]. Thus we have here

E o)) = Eploy). (3]
Mext we consuder the state
oy =pP[|B )] + (1 - p)P[|B)""],

where O0<<p<] and p+ -; We are going W show now that
E {oy) = Eploy). First of all, we show that oy can be pre-
pared locally from the stale o) together with (N—1) ebits of
free entanglement |B)® " In this direction, first both Al-
ice and Bob locally apply the Hadamard transformation on
the respective qubits of the state oy, Thus we will have the
following transformation:

iy @P“EI}-:HN—U]
— {pP(|B))]+ (1-p)P[|B3)]} @ P[|B1Y" "],

Now both Alice and Bob use CNOT operations locally and
sequentially, where the source qubit belongs 1o the state o,
while the targel qubits come from each of the (N—1) Bell
states | B} (see the case of cloning of the two Bell states |B))
and |By}). Thus we have now the following transformation:

1P| B ]+ (1 —p)P[|B @ PL|B N1
_;pP“EI}.\-_n.-].[_ il —p}P“E]}xm] = ".:'.- (say).

Again Alice and Bob locally apply Hadamard transforma-
tions on each of the & qubits of their sides, so finally we
have the desired state oy As the tansformation o
@ P|By* V] — oy, has been achieved above by using the
local unitary transformation I7, ® Vg in the Alice:Bob cut,
Eloy=E (o2 P[|B 1] (in the Alice:Bob cut). And,
as from Eg. (17) of Ref. [17]. it is known that E.[o
@ Pl By =Eda))+(N=1). then

TP
E oy = E‘.(:T|]I+I:N—1}#H3(;up(1 —p})+I{N— 1).

(7)

Omn the other hand, vsing the reverse local unitary operation
U, @ Vi we have the following transformation:

Oy — o7 @ F{lﬂl}'\m—”]

and so Eploy)=Eploy, @ P[|BY®YY]). Now, considering
the imvarianee under local unitary operations and the subad-
ditivity property of the relative entropy of entanglement
Egl-), we have Egloy)=Eglo @ P[|B)*"V]))=Eylo))
+N=1)=1=Hy(p)+(N—1) [18]. And, as Eg(-) is an upper
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bound of Egp(-) [19], then, Eploy)=Egloy)=Eplo)
+HIN=1)=Eplo ) +(N=1) [as, for the state . we have
Enle)=1=Hylp) [14], and also Egleor )= 1 —H,y(p) [18]]. But
as we can distill Ep( o) ebits of entanglement from a single
copy of o, then from the state o, @ P[|B,)*""] we can
distill at least Epyior ) +(N=1) ebits of enanglement. So

Eployl=Eplol+ (N=1)=N-H,(p). i8)

Using Egs. (6), (7). and (8), we have E.(oy)=Epioy).
Hence the state oy 18 rmeversible.

VIL CONCLUSION

In summary, we have shown that the mimimum resource
{in terms of free entanglement) required to make a 1—N
copy cloning by LOCC of unknown Bell states, from any
known set of two Bell states, 15 (V—1). On the other hand, it
has been shown here that the minimum resource required 1o
make a 1 — N copy cloning by LOCC of unknown Bell states
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from a set of four Bell states is different for odd and even
cases. In the even case it is just equal w N ebits whereas in
the odd case it 1s (N—1). We have also given here some
additional examples of reversible states as well as imevers-
ible states, formed by using multiple copies of Bell states.

Our results show that, in order to have 1 —N exact clon-
ing of any given set of three Bell states, il is necessary Lo
have at least (N—1) ebits of free entanglement in the shared
ancilla state, while N ebits of free entanglement (in the
shared ancilla state) is sufficient in this case if N 1s even and
{1=N) ebits of free entanglement (in the shared ancilla state)
is sufficient in this case if N is odd. The existence of a tighter
bound on the sufficient condition, in this case, is an open
question.
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