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Ahstract

The paper presents the longitudinal dispersion of passive tracer molecules released in an incompressible viscous fluid
flowing through a channel with reactive walls under the action of a periodic pressure gradient. A finite-difference implicit
scheme is adopted to solve the unsteady advection—diffusion equation based on the Aris-Barton method of moments for all
time period. Here it is shown how the spreading of tracers is influenced by the shear flow, lateral diffusion about its mean
position due to the action of absorption at both the walls. The analysis has been performed for three different cases: steady,
periodic and the combined effect of steady and periodic currents, separately. The results show that for all cases the dispersion
coefficient asymptotically reaches a stationary state after a certain critical time and it achieves a stationary state at earlier
instant of time, when absorption at the walls increases. The axial distributions of mean concentration are determined from
the first four central moments by using Hermite polynomial representation for all three different flow velocities.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The basic mechanisms of tacer dispersion in lam-
inar Poiscuille flow were first described by Taylor [1]
in his classic paper and subsequently the paper was
extended by Aris [2] for Poiseuille flow using the
method of moments. They concluded that for suffi-
ciently large time any localized initial configuration of
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tracer tends W a Gavssian distribution moving with the
mean speed of the flow. Under the pulsating pressure
eradient, Aris [3] analyzed the longitudinal dispersion
of a solute in an oscillatory flow of a viscous incom-
pressible fluid due w0 pulsating pressure gradient by
using his method of moments. Barton [4] presented an
approach for steady flow to resolve the technical dif-
ficulies in the Aris method of moments and obtained
the solutions of second and third-order moments
equations which are valid for all ime. Mukherjee and
Mazumder [3] extended the Ans-Barton method of
moments 1o study the all tme evolution of second
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central moment equation for tracer dispersion i an
oscillatory flow through a conduit. The solution was
based on the method of separation of variables which
depends upon a certain eigenvalue problem with a
discrete spectrum of eigenvalues. They confined their
analysis only to the case of flow due to a periodic pres-
sure gradient with non-zero mean. Recently, Bandy-
opadhyay and Mazumder [6] extended the analysis of
Mukherjee and Mazumder [5] wo study the mean, var-
ance and longitudinal dispersion coefficient of initial
tracer matenal released in an incompressible viscous
fluid flowing through a channel. The analysis was per-
formed for three different flow velocities to identify the
individual effect of dispersion process due 1o steady,
periodic and periodic with non-zero mean flow. They
confined their analysis only upto the second-order mo-
ment. Since the pioneering work of Taylor [1], disper-
sion problems have been extensively studied to cover
a great variety of transport problems, but dispersion
under the boundary absorption has not receved much
attention, despite the fact that such problems are of
importance in environmental fluid mechanics.

Our aim is to extend the work of Bandyopadhyay
and Mazumder [6], and 1ts main objective 15 1o study
the effect of boundary absorption or the first-order
heterogencous chemical reaction at the channel walls
for all time evoluton of first four cenral momenis
of tracer dispersion in three different flow velocities.
A numerical scheme (Crank-Nicholson implicit type)
has been adopted o solve a set of unsteady integral
moment equations arising from advection—diffusion
equation for all times when the solute is initially uni-
form over the cross section of the channel. More pre-
cisely, results are shown for all times how the spread-
ing of tracers is influenced by the shear flow caused by
periodic pressure with non-zer mean, how the spread-
ing of tracers is controlled or protected by reaction pa-
rmeler, how the center of mass moves and what are
the patterns of the mean concentration distributions in
three different flow velocities in presence of boundary
absorption. The mean concentration distnbution s ap-
proximated by Edgeworth series expansion using the
first four central moments. The recent mterest in the
analysis of shear dispersion in presence of boundary
absorption has been motvated o deposition, ransport
across a semipermeable membmpe, chemical reaction
design and depletion of tracers released from chemi-
cal plants or industnes.

Using Taylor’s conceptoal model, Gupta and Gupta
[7] studied the dispersion of reactive solute in liguid
flowing through a channel in presence of first-order
heterogeneous reaction for asymptotically large time.
Smith [8] used a delay-diffusion equation to study the
effect of the boundary reaction on the longiudinal dis-
persion in shear flows. An attempt was made by Bar-
ton [9] to explain the dispersion of reactive solute in
pipe Poiseuille flow in presence of boundary reaction
for asymplotically large time and presented the resulis
for concentration diswibution for weak and vigorous
reactions at the boundary. Pumama [ 10] imvestigated
the case of reaction and retention at the flow bound-
aries when the tracer is chemically active. Mazumder
and Das [11] studied the effect of wall conductance on
the axial dispersion in the pulsatile tube flow. Using
a numencal scheme they computed the dispersion co-
efficient for different values of absorption parameter,
which is valid for all time.

2. Mathematical formulation

Consider an unsteady fully developed viscous, in-
compressible, two-dimensional laminar low caused
by axial penodic pressure gradient with non-zem mean
between two parallel plaes separated by a distance
2L apart. We have used a Cartesian coordinate sys-
tem with r*-axis along the flow and y*-axis perpen-
dicular o the flow. Plates are situated at v* = +£L.
Here, we have considered a unidirectional flow along
x¥-direction and it is a function of y* and ¢*.

When the passive solute of constant molecular diffu-
sivity [3 is released in time-dependent flow due 1o pe-
rindic pressure gradient in presence of first-order reac-
tion at both the walls of the channel, the concentration
C{x, v, 1) of the solute satisfies the non-dimensional
convective—diffusion equation of the form
ac oC &2 s ot T
E+H_~r!{_1',r]la =(E_1_1+ﬁ)£ (1)
where the dimensionbess quantities ane

T Di* u*

o ¥R FRoiew

Here the welocity wiy, 1) 1 the combimation of
steady  velocity wol(y) and the penodic velocity
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wify, 1) doe w the imposed perturbed pressure gradi-
ent, If the reference velocity and F. the Péclet num-
ber, measures the relative characteristic time of the
diffusion process (L?/D) to the convection process
(LU0, In order to formulate Eq. (1), it is assumed
that the tracer molecules do not affect the flow of the
carrier fluid. This assumption is justified in this case
because a few tracer molecules are introduced. But
for a true mixture of two or more components, one
would have 1o deal with balance equations for both
the constituents which should be coupled. A detailed
discussion of the mixture theory can be found in the
book [12] as an allernative approach to sudying the
problem.
The initial and boundary conditions are

Cix, v, ) =%(x, ¥),
% +AC=0 a y=1
al the upper wall of the channel,
'I'.f_:—'_—ﬁC:ﬂ ar y=-—1 (2)
at the lower wall of the channel,

C is finite at all points,

Lt 72 e, 5 ydxdy =1,

where f# (=f"L) is the first-order reaction rie or ab-
sorplion parameter corresponding o the catalytic re-
action at the wall. The case i=10is wsually referred 1o
as the dispersion of passive conlaminant that is neu-
trally buoyant and chemically inert.

The flow velocity wiy, ) in (1) is obtained from
the solution of approximated Navier-Stokes’s equa-
tion subject to the no-slip conditions w{=+1, 1) =0 at
the walls ¥ = £1 and 15 given by [6]

wiy, 1) = up(y) + w1 {y. 1) i3)
with

1 3
uply) = = (1—y7), ()

wi{v.t) =—Re E 1_M exsr |
x cosh izt

i=+—1, (3)

where 1 =u* /U is the non-dimensional axial velocity
(L bemg time averaged axial velocity P_:Lll.-’-’-lv]l, o=
wL? /v is the dimensionless frequency parameter or
oscillation Reynolds number, § = v/D is the Schmidt
number, £ and o are the amplitude and frequency of the
pressure pulsaton, respectively, and v is the Kinematic
viscosity of the fluid. Here Eq. (4) represents plane
Poiseuille flow and Eq. (5) corresponds o the unsteady
part of the flow.

Following the Aris method of moments, the pth in-
tegral moment of the concentration distribution can be
defined as

O

Cply. 1) =f xPClx, y,t)dx (6)
—O0

and the concentration distribution of the solute over

the cross section of the channel is

_ 1 +1
Mp(y=Cp=3 fl Cply, 1) dy. 7

So, using (6), the diffusion equation ( 1) with respective
mitial and boundary conditions becomes

ac, 8¢,

= pul(y, ) FeCp_) + plp—1)Cp_2

or ay?
(81
with
Cply, M =%,(y), 9
where

Eplvi=1 for p=0, Eply)=0 for p=0,

ac p -
L +HC;=0 aty=1,

. (10}
EE__J{ —fC,=0 ay=-1],
and
dj T ARy T VAR
Tp:chn{_v, OCp 1+ plp—1Cp-2
1
— 5 BICH(—1.0 + Cp(+1.1)] (11)
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with
M,(0)=1 for p=0,
Mp(y =0 for p=0, (12)

over-bar denotes the cross-sectional mean.
The pth integral moment of the concentration dis-
tribution about the mean can be defined as

+1 400
vplf) = f (x — .rl;.]lr"C dx dy, (133
1 — 00

2Mp

wh

ere
1 +1 pton M

x,= f f iCdxdy= - :

2My oy Jm My

is the centroid or first moment of the solute which mea-
sures the location of the center of gravity of the slug
movement with the mean velocity of the fluid, imtially
located at the source, and My represents the total mass
of the reactive solute in the whole volume of the chan-
nel. From (13) v2 represents the vanance melated 1o
the dispersion of the contaminant about the mean po-
sition, the third (v1) and fourth (vy4) central moments
represent the skewness and kurtosis of the distribution
of the solute, respectively. The third moment (skew-
ness ) measures the symmetry and the fourth moment
ikurtosis) measures the peakedness of the distributions
of tracer materals about the mean. The negatve value
of the skewness indicates an asymmetric profile with
a tail to the left of the maximum and the large posi-
tive value of kurtosis (f, = 3) indicates a profile with
a much namower peak than the Gaossian distnbution.

3. Solution procedure

Owing to the complexity of the analytical solution
of moment equations { p = 1) subject to the imbal and
boundary conditions for § #£ 0, a finite difference
method based on Crank-Nicholson implicit scheme
has been adopted 1o solve the set of integral moment
equations. The scheme has been discussed in detail in
the work of Mazumder and Das [11]. The derivatives
and all other terms have been written at the mesh point
{i+1, j), where i =1 corresponds to the time =0 and
JF=1, 1o the lower wall of the channel y=—1.The mesh
point (i, j) indicates a point where t; = (i — 1) x Ar
and y; = —14(j — 1) = Ay, Ar and Ay are the in-
crements of ¢ and v, respectively. The resulting finite

difference equation becomes a system of linear alge-
braic equation with a ri-diagonal coefficient matrix,
PiCpli+1,j+ 1)+ @Cpli+ 1, j)

+R;Cpi+ 1, j— 1) =5y, (143

where P;, (07, K; and §; are the matrix elements.
The finite difference form of the initial and bound-
ary condiions ane

1 for p=0,

Coll N =10 for p21, (13)

Coli +1,00=Cpli +1,2) —2BAyC (i +1,1)

(16}
at the lower wall of the channel and
Cpli+1. M+ 1D=Cpli+1.M —1)
+ zﬁﬂ}‘cp{f + 1, M) (17}

at the upper wall of the channel for pz 0, M is the
value of § at the upper wall.

This ti-diagonal coefficient matrix has been solved
by the method of Thomas algorithm [13] with the
help of preseribed initial and boundary conditions. The
value of M, calculated from (11) by applying Simp-
son’s one-third rule, with the known values of uiy, 1)
and Cp at the corresponding grid points. The values
of the variables can be calculated for all time iter-
atively in the marching direction. Numerical expen-
mentation has been performed for three different ve-
locity profiles to distinguish the individual dispersion
processes due to steady, periodic and periodic with
non-zero flows. For the steady current, a mesh size
(Ar=00001, Ay=0067) gives satisfactory results.
For the oscillatory and penodic with non-zero mean
flows, a mesh size (Ar=000001, Ay =0.067) gives
satisfactory results for & = 1.5 and for the frequencies
#=0.5, 1.0 and 4.0. Actually, the smaller time interval
is needed 1o trap the oscillatory nature in the disper-
100 Process.

4. Discussion of results

In order o vahidate the numerical scheme with the
analytical results, a check has been made on the in-
tegral moments {mean, vadance ) of the concentration
distribution and longitudinal dispersion coefficient for
all three different flow velocities, when the absomption
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parameter [§ = . The results are in good agreement
with those of Yasuda [ 14], Mukherjee and Mazumder
[5]. and Bandyopadhyay and Mazumder [6].

When p =0, Eqg. (11) becomes

Mpit,.fy=1— g f [Col—1,£) 4+ Cpl(41, r)]de,
(183

where Cp(—1. 1) and Cpi+1, 1) are found from the
solution of Eq. (8). Eg. (18) represents the total mass
of the solute, which is a function of ff and 1. We observe
here that how the total amount of wacer malterial is
depleted over time for a given reaction parameter f.
When =0, My= 1, which represents a constant mass
in the whole channel with mespect o ome. It 18 seen
that the centroid displacement x, of the solute mainly
depends on the parameters %, &, ff and dispersion time .
When the Qow 1s steady, 1itis observed that the centroad
displacement (x, ) increases hinearly with tme for all
i and it advances for a given dispersion time f and the
mean positon of the slug moves more rapidly than
the average velocity &, when the reaction takes place.
For penodic Qow, 1t increases with a wavy nature and
for combined flow the centrond of the tracer moves
cyclically wath the oscillatory nature of the flow and in
both the cases amplide of the oscillation decreases
as the boundary reaction fi increases. According o
Aris, the effective longitudinal dispersion coefficient
Dy, may be defined as

1 dw

D,:,-{I, 5.8, ﬁ,f}l = 7P1 E.

(19

Here Dy, depends on the frequency of oscillation 2,
Schmudt number 5, amplitode of the pressure pulsa-
tion &, absomption parameter § and the dispersion lime
t. The pammeter & (= ol 1,.-‘1']! is a measure of ratio of
the time {Ll,-‘r} taken for viscosity 1o smooth out the
transverse variation in vorticity o the period of oscil-
lation (1 /e or the ratio of the half of channel width L
to the Stokes-layer thickness {Jrfw}. A small value
of o represents a large viscous layer near the wall
compared with a small inviscid core near the center
or alternatively, a large oscillabon period compared
with viscous diffusion time and therefore quasi-steady
flow and vice versa for large 2 The Schmidt number
Si{=v/ ) is the ratio of viscous diffusion to the molec-
ular diffusion. When the flow s steady (n=ug(y)), D,
mitially increases and asymptotically reaches a steady

state ([, ~ 0.0023) at dimensionless dispersion Lime
t ~ 0.3 For a given ume f, D, decreases with in-
crease in ahsorption parameter i, because the increase
in absorpuon at the boundanes helps o increase the
number of moles in the reactive matenial undergoing
chemical reaction and changing the amount of slug
material acmss the channel and hence there s a drop
in 0. For the oscillatory current (o = (v, 1)) and
when Po= 5 = 1{}3, the varmabons of D, with tme
are depicted for different values of § in Fig. 1(a,b)
for x =0.5, Fig. l(c,d) for x = 1.0 and Fig. l{e, f) for
#=4.0. It is seen from the figures that for low fre-
quency in periodic flow the dispersion coefficient I,
changes cyclically with a double-frequency period and
it reaches a stationary state after a certain critical time
te, which is related o the cross-sectional mixmg bme
(L*/D). When 2 =0.5, 1.0, 40 and f =0, the D,
reaches stalionary state at the eritical times 1, ~ (.38,
043 and 0.49, respectively. Thus, it is clear from the
figures that as # increases the flucwation in 0, in-
creases and reaches a stationary state later than the
smaller frequency. But for a given frequency, the crit-
ical time . for stationary state achieves in an eardier
instant of tme as [ increases. Furthermore, in the case
of low frequency, the amplitudes of oscillation of D,
during the first and second half of the period of oscilla-
tory flow are approximately equal, but in the case high
frequency, period is so short that Dy, initially varies al-
most single-frequency oscillation as the periodic cur-
rent and then achieves o a double-frequency period at
a large ume. However, the sitwation completely stabi-
lizes after a certain time and the dispersion takes place
at a fairly uniform e with a double-frequency os-
cillation. The dispersion coefficient D, moves cycli-
cally with time even in the stationary stale and it is
found to be much smaller than D, in the steady flow.
It 1s interesting w note that the Dy, decreases with the
frequency 2, because the shear effect due to high fre-
quency of the periodic current on D, is negligible but
is more significant on the steady and quasi-steady cur-
rent. The fluctuations in the velocity profiles cause the
positive and negative dispersion of the solute durng
the period of oscillation which contracts at each flow
reversal during the period of oscillation [15].

The temporal vadation of D, due 1o the combined
effect of steady and periodic (ug(y) 4w (v, 1)) cur-
rent for =05, 1.0 and 4.0; f=0,1, 3 and 10 with
P.= 5§ = 1Y have been plotied in Fig. 2{a-f). When
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these are compared with Dy due o periodic current
isee Fig. 1), D, no longer has the double-frequency
period. Moreover, for all cases the amplitude of D,
increases initially up 1o a cerain extent of time t, then
it becomes stable for a long time. Also, it is observed
that for low frequency, the oscillatory nature of D,
possesses positive and negative dispersion with time,
but at high frequency D, is always positive forall val-
ues of i (Fig. 2ie,f)). As the periodic current moves
with the non-zero mean flow i the same direction, the
effect of frequency parameter due to periodic pressure
eradient becomes less significant. For a given =z, D,
decreases with increase in [ for all cases. If the longi-
tudinal dispersion I, for oscillatory channel flow with
non-zero mean is compared with that of pipe flow, it is
observed that Dy, is always positive for channel flow
for high frequency, whereas for pipe flow there are
both positive and negative dispersion [11]. The varia-
tion of I has been plotied in Fig. 3(a,b) for periodic
and periodic with non-zero mean flows for § = 1.0,
=15 and = 1.0 and 4.0 with different values of
f. 1t is quite clear that the amplitude and frequency
of imposed pressure pulsation exert enommous influ-
ence on the tracer dispersion due o oscillatory as well
as perodic flow with non-zero mean. It is also noted
that for a given z, D, decreases with increase in i
for all cases. It may be mentioned here that there is
a remarkable difference in the behavior of dispersion
coefficient due to small and large frequency ofoscil-
lation. Moreover, it is observed that in channel flow
for all three cases: steady, periodic and periodic with
non-zero mean flows; the value of the dispersion co-
efficient I, much smaller than that of tube fow.

The coefficients of skewness () and kurtosis (1)
are the imponant criteria o measure the degree of the
symmetry and peakedness of a concentration distribu-
tion of a solute, and are defined by

V3

fz = = (20)
vy

and
v

fy=-2 -3 (21)
V3

For a Gaussian distribution both fi; and fiy are zero and
the non-zero value of skewness and kuriosis will indi-
cate deviations from Gaussian diswibution. Fig. 4(a—c)
show the temporal variation of skewness for 2 = 0.3,

0.015
v Combinad «_

B=0
il a=1.0

5=1.0
0.01

=" 0.005

{a) t

0.006

f=0____ - Combined +—
1

m w=4.0 -/’\.
| 5=10 II.' |

x
0.1]}4-‘{ \

b} t

Fig. 3. Dispersion coefficient 0, against time for £, = 107 and
S =1 for different fi; {a) x= 1.0, {b) 2=4.0.

P.=5= 1P cand =0, 1,3 and 10. It is observed that
the skewness in penodic current changes cyclically
with a single-frequency penod and decreases with dis-
persion tme £ Also, 1t 1s seen that as the boundary
reaction [ and frequency of the oscillation « increase,
the amplitude of the skewness decreases. In a com-
plete period of oscillatory current, the skewness 15 ap-
proximately zero and therefore the concentration dis-
tribution of the solute is essentially symmetrical even
at large time. The variation of §, due o shear effect of
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Fig. 4. Skewness (fia) of the distribution due to periodic flow for
Py= 5= 107; (u) smull time (b) medium time and {c) large time
for different [

periodic current with non-zem mean has been plotted
in Fig. 5{a—c) for vadous values of reaction parameter
fi. It is seen that the skewness initially decreases with
time and moves asymptotically to a constant value af-
ter a certain tme and have a tendency o reach sym-
metrc distribution at large ime. Also, it is seen that
for periodic channel flow the skewness of the distribu-
tion is initially greater than that of tube flow but after a
cerlain time the skewness values approximately equal
in both the conduits. Moreover, it is observed that for
periodic with non-zero channel flow the skewness val-
ues are negative for all § but in combined tube flow
the skewness value becomes negative for large value
of fi.

The widely used conventional method of moments
provides a great deal of information about the concen-
tration distribution across the flow. For any approach
o Gaussian distnbution, it is worthwhile o use Her-
mile polynomials with the computed results of higher
moments. Once the central moments ve, va, vy are
known, it is possible 1o compute the mean concen-
tration distribution Cy,(x, 1) with the help of Hemite
polynomial representation [16] and is given by

O
Cunlx. 1) = Mo(H)e ™" Y an(t) H (), (22
n=ll

where, z ={.1'—.rg]ll.-'{21'2}|”1, xg =M /My and H;, the
Hermite polynomials, satisfy the recurrence relation
with Hy{x) = 1.0 as

Hinx)=2xH;(x) — 2 Hi_1(x),
E=0i1 200 (23)

The coefficients q; are
ap = 1/(2mv)! 2,

:21;:““!5'11 i = ﬂnﬁ.l_
24 96

ap = az =10,

(3

The vanation of mean concentration distribution
C ol x, 1) has been presented in Fig. 6(a—c) against the
axial distance (x — xg) for pedodic flow through the
channel for varous values of § and r, when = =0.5
and P. = § = 107, It is seen from Fig. 6(a. b) that
for fived 2, the tracer material always remains con-
stant for =10, whereas for a given reaction parameler
fi=10 the amount of reactive materal is depleted over
time; and then it disperses longitudinally with time.
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KK Mandal, BS. Mazumder / International Jonmal of Non-Linear Mechanics 4 {2N)5) 69-8] ™

As the dispersion ime ¢ increases, the peak of the dis-
tribution decreases and ends w become flat. Fig. 6(c)
shows the depletion of tracer materials over the ab-
sorption parameter 5 for a given dispersion time ¢ Fig.
Tia-c) shows the plos of mean concentration distribu-
tions Cyy (x, 1) in pedodic flow for various values of f§
and =, when the dispersion time 1 is fixed. L is noted
from the figures that for a given i the peak of the dis-
tribution increases with increase of z, which implies
the reduction of longitudinal dispersion due o high
frequency.

Moreover, for comparison, the profiles of Cy(x, 1)
along the axial direction are plotted in Fig. 8(a—c) for
the periodic flow with non-zero mean, when % =015
and P, = § = 10P for various dispersion time ¢ and
Fi{=0,1,3 and 10). It is observed that the peak of the
distrbution gradually decreases with time ¢ and for
small dispersion time 1, the mean concentration distri-
bution Cy(x, 1) remains same even for the boundary
ahsorption parameter fi, because the solule has not yet
been meracted with the channel boundary. But, it s
interesting o note that for the large dispersion time
t and large boundary absorption parameter ffi=10),
the uni-modal distnbution tums mo bi-modality. 1t s
also remarkable that the mean concentration distribu-
tion for the case of pedodic flow with non-zero mean
is not effected by increase of frequency parameter.
The above observations show a remarkable similanty
between the mean concentration distnbutions due o
boundary absorption in the combined shearing curmrent
through the channel and due to pedodic flow with non-
zero mean through the pipe discussed by Mazumder
and Das [11].

5. Conclusion

We have presented a numerical solution o study the
dispersion process of contaminant molecules on the
shear effect due to steady, periodic and combined flow
through a channel with conductive walls; and we have
compared some specific results due to different shear
effects with particular emphasis on the role played by
the first-order reaction at the walls. All the investi-
zations have been done for different flow velocities,
when the slug is released initally uniform over the
cross section of the channel at a large Péclet number.
The centroid displacement (x,) of the slug due to the
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Fig. 7. Mean concentration distribution Cyy (x, £ along the periodic
channel Aow for £, = 5= 1{F, and dispersion time £ = (.2 when
() f=0, (b =3 and {c) = 10 for different .
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Fig. 8. Mean concentration distribution Cu (x, £ along the periodic
channel flow with non-zero mean for Fo= 5= 10F and 2= 0.5
when {a) fi=10, (b) =3 and {c) i = 10 for different dispersion
time 1.

periodic and pedodic with non-zero mean flows moves
cyclically and after a certain time, it moves asymp-
totically 1o a constant value; and the amplitude of the
oscillation decreases with increase in absorption pa-
rameler . Also il is seen that the temporal varation
of centroid displacement (xp) due to periodic cumrent
is much smaller than that of combined flow due 1o
steady and periodic curent. The apparent dispersion
coefficient Dy, reaches a stationary state after a cer-
tain critical tme ¢, for all the three different flow ve-
locities: steady, periodic and combined effects due 1o
steady and periodic currents. It 18 inleresting Lo note
that in channel flow for all three cases: steady, perd-
odic and periodic with non-zero mean flows, the value
of the dispersion coefficient 13, is much smaller than
that of tube flow. For a fixed x, D, initially moves with
double frequency and ultimately reaches a stationary
state and the amplitude of the oscillation decreases
with increase in . It is interesting o note that for
high frequency of the periodic curmrent, it appears that
Dy, varies eyelically with almost the same frequency
as the periodic current during the mital stage; but as
tme goes on it reaches a stationary state with double-
frequency oscillation. In case of combined flow (perd-
odic flow with non-zero mean), the double-frequency
oscillation disappears from [, for all cases of # and
the amplitude of the oscillation increases till it reaches
a stationary state and when [ increases, the amplitude
of D, decreases significantly. The effect of boundary
absorption on mean concentration distributions have
been studied for oscillatory and combined effect of
steady and periodic flow. When the flow is oscillatory,
it is seen that for a fixed 2, the peak of the distribution
becomes flat with increase in both § and dispersion
time t. Also it is interesting to note that as ¥ increases,
the peak of the diswribution gradually increases and the
free space expansion gradually decreases. But for pe-
rindic flow with non-zero mean, when both the disper-
sion time ¢ and the absorption parameter f§ are large,
the uni-modal distnbution tums into bi-modality. 1t s
observed that the mean concentration distribution for
the case of periodic flow with non-zero mean is not ef-
fected by increase of frequency parameter. The above
observations show a remarkable similarity between the
mean concentration distributions due to boundary ab-
sorption in the combined shearing-current through the
channel and due to pedodic flow with non-zero mean
through the pipe.
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