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By applying the higher order Darboux algonthm to an exactly solvable non-
Hermmitian PT symmetde potential, we obtain a hierarchy of new exactly solvable
non-Hermitian PT symmetric potentials with real spectrn. It is shown that the
symmelry underlying the potentials so generated and the original one is nonlinear
pseudosupersymmetry. We also show that this formalism can be used to generate a
larger class of new solvable potentials when applied to non-Hermitian systems.

I. INTRODUCTION

There are not many exactly solvable potentials in quantum mechanics. As a result there have
always been efforts 1o enlarge the class of exactly solvable potentials. Some of the different
methods which have been used time and again to generale a hierarchy of isospectral potentials are
the factorization method of Infeld and Hull,' the Darboux ulgurilhm,z the method of super-
symmetric  quantum  mechanics  (SUSY QM) or the integral trmnsformations of
Ahmhum—Mnu:s—Pum:y,q ele. Among these methods the Darboux algorithm and the SUSY QM
are closely related and these methods have found numerous applications in different areas of
theoretical and mathematical physius.“

Al the same time, the scheme is still namrow as conventional SUSY fails to explain certain
phenomena, e.g., the disappearance of the leading Borel singularity of the perturbation correction
for the ground state energy of a SUSY Il'n:ur};-'.j In order to explain such behavior and also to widen
the scope of SUSY QM, an idea was put forward to extend SUSY to higher orders.” We recall that
in the conventional imenwining technique, two one-dimensional Schridinger Hamiltonians H and

H are intertwined by means of differential operators L as

HL=LH, HL'=L'H. (1)

If L is of the first order in derivatives, the standard SUSY QM. with supercharges built of first
order Darboux transformation operators, and the factorization method are recovered. On the other
hand, if higher order differential operators are involved in the construction of L, it is variously
referred 1o as polveomial SUSY." or nonlinear SUSY, or higher order SUSY (n-SUSY.* or
Nefold SUSY ™ the study of which has atiracted the attention of a lot of researchers in recent
times. " Contrary to standard SUSY, anticommutator of the supercharges no longer coincides
with the Hamilonian in general. Instead, it becomes a p-olz'mmliul of the Hamiltonian in degree N,
and is sometimes referred to as the Mother Hamiltonian.™""
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Furthenmore, the equivalence between an Nih order Darboux transformation and a chain of N
first order Darboux transformation is well established.” Every chain of N first order Darboux
transformation creates a chain of exactly solvable Hamiltonians fiy —h —+-+— hy. Hence the
inlertwining operator '™ between the mitial Hamiltonian fip and the final Hamiltonian fiy can
always be presented as a product of N first order Darboux transformation operators between every
two juxtaposed Hamilonans fg by ... g

LN = pyly s Lshi, Blpy=Lb, 1. p=12,...N. (2)

In conventional higher order SUSY, by, and fi; are essentially self-adjoint Hermitian operators in a
Hilbert space, with sguare integrable eigenfunctions. IF all the intermediate potentials Viix),
Vaix), ..., Vy_ (x) are real valued functions in their common domain of definition {a,b), the chain
15 called reducible, and the Nth order Darboux ransformation 1s called reducible as well. Addi-
tionally, if all the intermediate potentials are free of singularities in (a,b), the chain and the
corresponding  transformation are called completely reducible. When at least one intermediate
potential is & complex valued function, the chain and the corresponding ransformation are called
irreducible.

Al the same Gme, non-Hermitian Hamilwonians have made an important place for themselves
in the recent development of quantum mechanics, because of their inrinsic interest’ and possible
mpplicuLii.}n:e..IE It is well known by now that a non-Hemitian PT symmetice Hamillonian admits
real eigenvalues if the eigenfunctions, too, respect the PT invariance (the so-called unbroken PT
symmelry), whereas the eigenvalues occur as complex conjugate pairs if P7 symmelry is sponta-
neously broken (in this case the eigenfunctions are no longer PT invariant). For such non-
Hermitian PT symmetric Hamiltonians,

FIH=HPT, (3)

where P stands for the space inversion operator and T denoles time reversal,

P x—=—x, p—-—p,

(4)

T x—x, p——p, i—-—i

The reality of the spectrum may be attributed 10 the so-called m-pseudo Hermiticity of the non-
Hermitian Hamiltonian'

H'= giy?, (5)

where 18 a hnear, mvertible, Hemmitian operator. Several non-Hermitian Hamiltonians, whether
possessing PT invarance or not, have been identified as 7 pseudo-Hermitian under m=¢%, where
fis real, and p=—ild/dx), or =& %", where ¢hix) is some gaugelike ransformation. We note that
for PT symmetric Hamilonians, 5 may simply be taken as the parity operator P, whereas for
conventional Hermitian Hamilonians, p=1.

Moreover, the square integrability of the wave functions is no longer a prerequisite for non-
Hermitian Hamiltonians. Instead, the orthonormalization of the wave function for Hemmitian quan-
tum mechanics

J"'.]!.:ri]!fl dr = 5}.".“ I:ﬁ}

is replaced by

i,

j [CPT®, ¥, dx= 4 (7}

where C plays the role of a linear charge operator, obeying the relationship
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[C.H]|=0, [C.PT]=0 (8)

and has the property (*=1. In the position representation C is given as
Cle,y) = 2 g (0)n(y) (9)
and the completeness relation gets modified to

3 [CPT (x) b, (v) = Slx—y). (10)

L

While nonlinear SUSY for AV=2 has been investigated widely for Hermitian Hamiltonians,” "

such studies have not been carded out as yet for non-Hermmitian Hamiltonians. Motivated by the
importance of such systems in the recent development of guantum mechanics, our aim in the
present work is 1o generalize the concept of nonlinear SUSY w0 include non-Hermitian quantum
systems. In analogy with the first order systems, where the parner Hamiltonians Hy of non-
Hermitian systems were found to be related through psendosupe rivmmetry, 1315 it will be shown
that the underlying symmetry between the isospectral partners fiy, and fiy is a generalization of A
SUSY and may be called nonfincar pyeudosupersvmmetry. The nature of the intermediate Hamil-
tonians as well as the corresponding wave functions will also be investigated.

The organization of the paper is as follows. For the sake of completeness, in Sec. 11 we briefly
outline conventional nonlinear SUSY for Hermitian quantum mechanics. In Sec. 111 we describe a
similar framework for non-Hermitian Hamiltonians and show that the undedying symmetry for the
potentials produced by higher order Darboux algorithm 1s nonlinear pseudosupersymmetry. Somge
explicit examples are given in Secs. IV and V, while Sec. V1 is devoted to a conclusion.

Il. NONLINEAR SUSY FOR HERMITIAN HAMILTONIANS

In the conventional first order supersymmetnic quantum mechanics, if a given solvable Hamil-
Lonian

3

d”
H=—-—+Vx 11
T5+V) (11)
possesses o discrete spectum of bound states E,, n=0,1.2, ..., together with the square-

integrable eigenfunctions , (x), then a pair of first-order operators Ly and L) can be constructed
from the ground state iy, given by

! 3 !
Eoc i +Wolx), Lj=— i + Wyln), (12)
where
fulx) = —[In deylx)]’ i13)

such that Ly and L; play the role of intertwining operators for the initial and final Hamillonians H
and H, respectively,

HLy=L,H, HL{=L{H (14)

with

H=LiL, H=Ly. (15)

Simple straightforward algebra shows that the pariner potentials Vix) and V(x) can be expressed as
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Vix)= Wolx)— Wjlx), (16)

Vix) = Wilx) + Wjlx) = V(x) + 2W}(x). (17)

The eigenfunctions ¢(x) and gix) of H and H are interrelated through L, and L:, :

W, J(.T} — 4o i
Lotlplx) =0, Lylxlsilx) = ﬁaf tilx),  Lgdnlxde dilx), i=12..., (18)
il
where Wy (x)={dglx)i (x)— dry(x)fx)} 1s the Wronskian of dg(x) and o;(x). The concise alge-
braic form of spectral equivalence is given by the superalgebra for the partners H and A, and the
supercharges 2 and Qt

0 L, (o0
Q=10 o 2={L 0] (19)
H O\ (L, 0
H=10.0"1=| ¢ gl=\ 0o L (20)
satisfying the relations
0.0} = {Q+sg+} =0, [0.H] =iQ+sH] =0. (21)

Thus H and H are isospectral except for the lowest eigenvalue E, which is missing in H, as i, is
not normaklzable.

To generalize standard SUSY 1o higher order, the supercharges are built of higher order
mtertwining i.‘}l:u:r::'th'!:..\3r The two Hamilionians iy, and fiy, are intertwined through an Nth order
differential operator L™, as

L= bk, L™ = 1V (22)

where fy, and hy are self-adjoint operators. The proper eigenfunctions ¢ of the original Hamil-
tonian hy, are known exactly, hgis= Eal,. Any such operator L'V can always be presented in the
form known as Crum-Krein formula

My W 1

i i i

Iy It 2 e,

Iy i dx

P = Wil ia,.cniy) | = o : ; (23)

N
(3 ) d _
1 2 U

where W (1), uq, ... ,uy) stands for the usual symbol for the Wronskian of the functions wj.pe., ...,
. The functions w; (i=1,2,. . N) called the transformation functions are eigenfunctions of fy,
hgi=aee;, and they need not necessarily satisfy any physical boundary condition. The final po-
tential has the form
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3

V.ﬂ.l I:'-} = VI:T} =i d_-:a In “":':“ [ERL-TRER s“.ﬂ.l'} |:24}
dx”

and will be free of singularities whenever the Wronskian is nodeless, which in turn requires that

only consecutive eigenfunctions of fi, must be considered.” The eigenfunctions ix) and ix) of
fiy and iy are comnected by the intertwiners D™ and M g

J} (T} = L"ﬂ”'l’!"(.r} = M : (25}
; : Fj,.l'+ Lo+ N I:l}

where W, oy (x) and W, o ylx) are the Wronskians of the eigenfunctions of h, associ-
ated with the corresponding subindices. Thus if o x) is an eigenfunction of i, with energy E,, then

dii(x) is an eigenfunction of fiy, with the same energy E,. Evidently

L™y =0, i=1.2,...N. (26)
However, for energies E, (i=1,2,... N), the corresponding eigenfunctions of hy,
a x
Ie—2D
W S - T .,‘|'+."".'I:'r}

have growing asymplotics at both infinites. Consequently, these are not physically acceplable
solutions of hy, and the corresponding eigenvalues E; (i=1.2,... . N) are excluded from the spee-
trum of fi,. Thus

habe = Edbe (27)

with the exception of the levels E=E, i=1,2, ... N, which will be absent in the spectrum of the
new Hamiltonian fiy, as the corresponding eigenfunctions are not square integrable.

It has already been shown' that the operator LY can always be presented as a product of N
first order Darboux transformation operators between every two Hamiltonians hy by, .o fyy

LI'""?=LNL.~—I"'I—I= hf"Lf'=L|’J!|’"‘I’ Pl 28)

We note that the final Hamiltonian fy is Hermitian, although some of the intermediate Hamilto-
nians f; could be unphysical, e.g.. their associated potentials might contain extra singularities that
were nol present in the initial one. The supercharges Qy and @) are constructed as

VI A . {0 o
Qn = 0 0 J~ Oy = 1wt ﬂ)' i29)

Evidently, Oy and Q,,‘, are nilpotent

{000} =10}, O3} = 0. (30)
The super-Hamiltonian
hy O
Hy=\| g hiy; (31)
satisfies the relations
[y Hy] =[0}. Hy]=0. (32)

The anticommutator can be generally expressed by a Mh order polynomial P y-of the Hamiltonian
Hy.
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LI.“.':lfLI."".":I 0 N
Hy= {Q:\-sﬂ'ﬂ.]‘ = ( 0 L'-“”L‘-“"“) B ]._[ (Hy— e 1), (33)
k=1
where T 1s the 2 %2 unit matrx, and
W
LWt H (hy— axy), (34)
=1
N
Lt =TT (= ap). (35)
=1

Since the right-hand side of (33} is a polynomial in H, it is called nonlinear SUSY or N-fold

SUSY. The operator M, is termed as the Mother Hamiltonion and satisfies the commutation
. 9

relations

(@ Myl =[Q) Hal=0. (36)

For N=1, N-fold SUSY reduces to standard SUSY.
The most widely studied higher order SUSY is for N=2.*" where the formalism reduces to

tP=Lt,, (37)

where

Li=—d +(nu), Li=—d +ilnv)'. v=>Lu,, (38)

and the sospectral potential tums out 1o be

3

Valx)= Vix) — %Inﬂ”- [x). (39)

L+

lll. NONLINEAR PSEUDO-S5USY FOR NON-HERMITIAN HAMILTONIANS

In this section we extend the concept of nonlinear or N-fold supersymmetry 10 non-Hemmilian
quantum mechanics. Though the Darboux algorithm and (nonlinear) supersymmelric quantum
mechanics are equivalent for Hermitian Hamiltonians, the situation is different for non-Hermitian
Hamilonians, However, mtertwining operators A'™ and B'™ can still be constructed with the help
of Darboux transformation. Analogous o the case of Hermitian quanium mechanics, it will be
shown that once a non-Hermitian Schridinger potential Vix) is exactly solvable, one can construct

an sospectral partner Vy(x) from (24),

3

F_,.,I:.l:}: Vix)— E%In Wiy, b, .. 00y, (40)
x°

where W stands for the usual symbol for the Wronskian of the functions w ., ... 1y, which are
eigenfunctons of fyy, hge =, As before the functions w;{x) may be just formal eigenfunctions.
Our aim will be o study the spectrum of the new Hamiltonian in detail, to investigate the nature
of the potential and the eigenfunctions, and to determine the symmetry which connects the onginal
Hamilionian fiy, and the transformed one fhy. For this purpose, we look for two intewining
operators A" and B such that

Downigaded 13 012011 1a 5 Fibukan subjact 1o AP hoense o copyright; = ngapongaboaiighls and penmisshns



032102-7 PTsymmetric models J. Math. Phys. 46, 032102 (2005)

APy =ha'™,  hoBY = By, (41)
where fiy and fiy are no longer self-adjoint operators ':‘;!i?ﬂ-’\'?#h::'.tf\-)}: on the contrary, 1o ensure the
reality of the spectrum, they are n pseudo-Hermitian,

?}I!(HN':I ??_I = h(l:ll|_ﬂ||:|!n (42}

where 5 is a linear, invertible, Hermitian operator. However, the choice of 5 is not unigque. For PT
invarianl potentials, a simple representation of 5 may be given by the parity operator,

=P, Pflxl=fl—x). (43)
It follows that for real potentials, (43) leads to =1 so that BY=A""_ thus reproducing the
standard resull of supersymmetry.
It follows from Egs. (41) and (42) that the operators A™ and 8" are pseudo-adjoint:
B = A _ g0t (44)

Considering first order Darboux transformation between every two juxtaposed Hamiltonians
hg fy .. By cach pair intertwined by first order operators L (k=1,2,....N)

hL,=Lby , k=123_..N, (45)
Lihg=h L}, k=1.23,...N, (46)
where
# —1
Li=w 'L;5n (47)

then, analogous to the Hermitian case, the final Hamiltonian fiy, is found o be related 1o the initial
for starting) Hamiltonian fy, through
By=LyLy Lol by LTES Ly, (48)

s0 that the operator A™' can be represented as a product of the N first order Darbous transforma-
LIS

A i) = L.\.Lﬂ'._ A 'L3L| (49}

with its pseudo-adjoint

BN = 4V _ _IL|L3"'L_NLEL7"'L§.-IL1- (50)

It is worth mentioning here that in contrast o Hermitian quantum mechanics, all the intermediate
Hamilonians fiy, are physically acceptable as ther associated polentals contain no extra singulan-
ties which are not present in the initial potential Vix). This is essentially because the associated
eigenfunctions do not have nodes on the real line, and they are nommalizable in the sense of Eg.
(7).

Thus the initial and the tansformed Hamilonians fy, and fy are related by nonlinear pseu-
dosupersymmetry. The super-Hamiltonian of this sysiem consists of the pseudosupersymmetric

pair of Hamiltonians fy, and fiy as
hy O
Hy={ 0 hy|- (51)

The supercharges generating this form of pseudosupersymmetry are constructed in the following
Wiy
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0 A ) 0 o g o
Ov=\0 o0 |- Gv=7 Qin=|pw ﬂ)* AW g (52)

so that the supercharze Oy and its pseudoadjoint @}, of standard Hermitian quantum mechanics are
replaced by @y and its pseudoadjoint @}, for non-Hermitian Hamiltonians. Obviously, Oy and @7,
are nilpotent

{10404} = {Q:.sﬂ'm =0 (53)
and satisfy the following closed algebra:
[O.Hy] *IQLHN]=H& (54)
A 4 (0 0 N
Hy= {Q:u Oul= ( 0 A"W’A‘Nw) = J!le (Hy—ad), (55)
L.,
LY
AWEAN =TT (hy - e, (56)
k=1
LY
AWANE 2 TT (hy— e, (57)
k=1

and T is the 2% 2 unit matrix. Evidently, if o¢(x) is an eigenfunction of fi, with energy eigenvalue
E,. then (x)=A"y(x) is an eigenfunction of h, with the same energy E,. However, for i
=1.2,....N

5

~ i x)

AR o
Clearly, the eigenfunctions d(x) (i=1,2....N) of hy comesponding to the eigenvalues E, (i
=1,2,....N) grow asymplotically, and so cannot be included in the set of solutions of f,. Con-
sequently, E; (i=1,2,... . N) are excluded from the spectrum of fy,.

Nexl we nole two interesting results which are in contrast to the Henmilian case.

(1) Far Vyix) to be free of singularities, the Wronskian W (thy e i) =Wy g L)
must be nodeless. In the case of Hemmitian potentials, this is guaranieed only when o, i
=1.,2,... N represent NV consecutive eigenfunctions. However, in the case of generic non-
Hermitian potentials, the eigenfunctions ¢ (x) (r=0,1.2,...) have no nodes on the real line.
Consequently, the Wronskian is free of real singularities for any value of i,j &, ..., and thus can be
used to generate a wider class of sospectral Hamiltonians,

i2) The intermediate Hamiltonians are also physically acceptable, as the corresponding poten-
tials are free of singularities, for the same reason as given above. For example, the first intenwin-
ing gives

a

Vilx)= Vix)— Ed—_a_.ln il x) (39)
dx”

which is well defined. However, this may not always be true for Hermitian potentials due to the
presence of additional singularities in V(x), which are not present in Vix).
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For the sake of simplicity, in the present work we shall restrict ourselves o second order
nonlinear pseudosupersymmetry. Thus if an intertwining operator A= L,L, is constructed from the
two first order Darboux transformation operators Ly and Ly, given by

Li=—d+(lnw), Ly=-d+(lny), v=Lu;, (60)

where u; and u; are any two eigenfunctions of the non-Hermmitian Hamiltonian hy, then the trans-

formed isospectral Hamiltonian,

fy=— f{j + FH-I:.-.']I 61)
has eigenfunctions
= mtﬁ’*ﬁ""ﬂfﬂl} wl:'t.'!{u*'t.‘!‘} wl:'t.b]s'l:'!{u}
rj=—— T =_F Eply——" 4 Fafp———" 62
ﬁll:r} w(tﬁ;’%} .'I'Ii;'.;l-i- 1":’!’1- H"I:-:,!q,lﬁr‘,} * Jt'b-' H,('I;;ﬂg'l:l!":.} ': }
where
F,-JI:.-;} = Vix) —Z%In Wit ). 63)

The mother Hamilionian M, is constructed from the anticommutator by

‘A* 0 ify— o Lhhy— D) 0
H_:{QS,Q_,}:( #)=( L I 0 ’
0 AA", 0 (hy — ey I)(hy — ayT)
where T is 2 2 unit matrix and H, is given by (51).

In the following sections we shall investigate this formalism further with the help of explicit
examples.

) ; (64)

IV. PTSYMMETRIC OSCILLATOR

In this section we shall apply our formalism to the well-known example of the PT symmetric
. 14
oscillator

3 1

, o
Vicl=(x—iel +

4 2
P 65
(x—ie) (65)
with eigenfunctions
I,bj,':-'-'} =g 12Mx - a'e:lzl:_l. - E-E}—qr.r+ I.l'_JL;e,rrrl: I:.l' - !-EF} I:ﬁﬁ}
and eigenvalues
E =dn—-2ga+2, n=0,12,..., 67)

where g==+1 is called the guasiparity.

In this study we shall reswrict ourselves 1o N=2 only. If one performs Darboux transformations
with two eigenfunctions dq(x) and dyix) of the potential Vix), coresponding to energies E and E;
iiand j need not be consecutive), then the intertwining operators take the fonm

S (68)
dr oy dr
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d W : d W. 4
g==~rﬁ—£,ﬂ=—+éh£— (69)
de W, de W o,

i

where W, ; is the usual Wronskian given by

W, = Wl t) = (0] () — (0 (x) (70)

and # has been taken as in (43). Replacing the intedwining operators A (and B%') by A {and B)
for simplicity, we obtain

d* d A

A=LLi=—+B,—-B,———. 71
25 dr] .Iﬂj,‘ldl_ J,‘lt'b_‘. J’!‘_‘ ': }

d W oW
B='4 = ?? A ??- -'Hh.'d .ﬁj.\‘l'l;‘_‘ 4;!" I ':?2}

where
wr.

Tl ) 73
Bz (73)

and 7 is simply the parity operator P for PT symmeltric potentials. The new exactly solvable
non-Hermitian potential, which is isospectral to the PT symmetric oscillator in (63), is oblained
from

& a?
Vi lx)=Vix) - EEIH W, (74)
with solutions
Jilx) =Ag(x). (75)

Thus for each set (i,f), one obtains two sets of f",-_}-l:.r} because of the presence of quasiparity g.
Obviously, -;,'.'”rk[.t]wﬂ for k=i, j. Thus the new potential so constructed in (74) above, has all the
eigenenergies of the original PT symmetric oscillator except for the levels i, j, which are missing
from the spectrum of (74).

For the simplicity of calculations we shall now construct and examine some polentials using
low values of i and j in further detail.

A. New potential for i=1, j=2
Applying the above formalism with the two eigenstates o (x) and ¢s(x) of the potential in
(65), the Wronskian 1s found o be
-H_:': I';ﬁ ; vt';l'z} =c sz—h - Jtrl:.l. | !-E} !—Eqr:g ; E? ﬁ}
where ¢, is some real constant and
g=1—ga)i2 —ga)—201 —ga)ix —ie +(x—ie. (77)

The intertwining operators A and A* are obtained from A=L,L,, A*=L{L}, where

1 E
d i d —ga+3 2ix—ie)
Liz—— 4+t —_(x—id+ — _ —, (78)
de iy dx ix—ie) 1-—ga—i(x—ie)”
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B i i 3 i . —qa’+% 2(x—ie) i
Lg-—dt+drl“':f~l¢‘z}-—dr—[.r—lf}+ —ie) +1—.rfﬁ'—|:_l'—!-t'}') R (79}
s that
—i" ) 2(l-—ga) g'|d . nd ':—f!ﬁ'i'_h':—f!ﬁ"i'%]'
A-drz_{_zl:x_!d-i-—(.r—if} +S}dr+(-f—!f} + (r—ier +2qa—1
4 —E.r—i£}+_qa+:l— i) 18 (80)
x —ie) l—qaf—(.‘f—lf}l g
#_ﬁ ) 21— ga) E i LA ':—ffﬁ""%]":_ff“__%]'
A ..dl_z+{—2I:.r—rf}+—':x_!_d + p d.r+(.r—!£} + (o ie] +2ga—3
i) —qaf+_% 2(x—i€) g_' g_" (i)? (81)
i ix—1e _1—.:;h:tf—|:.1f—!'15}2 g * g g gl

Applying Eq. i74), the new potential isospectral to the one in (65) except for the states
corresponding to o (x) and gn(x), comes oul as

F,_»,.I:.l:} =(x—ie) +

i 3 5 ar i ey 2
ConsPesand) oo e ) £ (82)
g

(x—iel ;

which has solutions

= wl:'[,b:lﬁls'l;b!} wl:'[,b'h't}!’iﬁ'!}
)= —E, s s+ By —————— + By ———— 83)
'[."-I‘ + ,;',l_';_'_-_, |,|;,l_';| W':'E;’n*.;’z} 't."-l’r‘-' H?E't,t'-"’ls";a'-l‘z}
with energy eigenvalues
E,,:E“”: 4n+10-2ga, n=1273,... (REY]
The ground state is given by
% , B(x—ie)
I,a!’i;.':-r} =E—H."E:II.1.—JtT|:I_!-E}—qu+|."E{BI +M} (HS}
E
with eigenvalue
Eﬂ =E,=2-2ga, (86)

where B and B, are some x, € independent constants. Thus the energies E; and E, of Vix) are
absent in the spectrum of F|I_:.|:I}. It can be verified that the eigenfunctions i are also PT invariant,
and can be normalized using (7). Furthermore, the supercharges @, and @), generated from the
operators A and A®, satisfy the following algebra :

Ha =10, 03} = Hy — 4(4 — ga)H, + (6 — 2qa)(10 - 2ga), (87)

where H, is given by (51). The intermediate potential given by
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_ i e A AR %]I(—qaf-i—%} 12
Vilx) = Vix)— Edrzln dnixh=lxr—ie) + —ie)? + T o)
Bl —ga) o (88)

§ [1-—ga—(x—ie’f

does not have any singularity on the real line, and hence is physically acceptable as well. By
arguments similar to those given above, its ground state eigenfunction is given by

1 -1 .
ﬁi= —— {12 —ie (.T—EE}_“‘HHE'I (Hg}
| —ga—(x—ie)”
with energy
ep=Ey=2-2g0 (90
and the excited states
b, = —({’!";"‘;"} 91)
1
with corresponding energics
e, =E  =4n+6-2gax, n=12.3..... 92)
" n+1 il

It is ecasy 1o observe that applying (4), both the intermediate and the final potentials (as well as
their eigenfunctions) satisfy (3), and hence are PT invariant, having real spectra.

B. New potentials for i=0, j=2

In a similar manner, the expressions for the different quantities are oblained as follows:

Wt yha) = cope™ =9 (x = r'fl‘“‘ﬁz{ e 1} 93)
2—ga
with o some real constant
d ) I:—qaf+_l-]l
L,-—E—(.t—rf}-i-w, (94)
d . [-ga+3) 2x—ie)
LE'_E_(-'-_'E}"' el +|:I:.-.'—i£}3—(2—qﬂr}]’ (95}
) ; sk
A:i,_,+2{(.l:—if}+l:qa__”— _I:I,_!E} }£+(.r—if}3+( ng-E“:_ (fa-'-z}
dx” ix—ie) (x—iel"—(2—ga)]dx (x—ie)”
3
— i —(2—qa) +2ga— 3, i9a6)
e E 2{“_! } (qa—_l}+ -I:.l.;—l-f} }:—!+|:.T—P-E}2+ (—qa—_%}':_—:faw%}
d: ix—ie) (x—ie)l”"—(2—ga)]dx ix—iel”
4 Aaerd)  iae. 3, 97)

= {(.l:— ie)t—1(2 —qaf}} = {I:.-.'— el —1(2 —qaf}}-z

The new potental
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aio—1) 4 B2 —ga)
(x—ie) o (x—ie) —(2 — gex) i {[.l: —ie)* —(2 —qa’]}z *

ﬁu(.r]= (x—ie) + 4, (98)

where
rr:—qaf+§ 99)

is totally different from the initial potential of the PT symmetric oscillator, yet shares the same
spectrum excepl for the states n=0, 2 of the original potential, which are missing in the partner.
The ground state wave function of the Hamilonian in (98) is given by
Ay
(x—ie)—(2 - gex)

hylx) = {A,u —ief +A,+ }e* 2 =iy jyramei12) (100)
with ground state energy

é,:ﬂ:ﬁ—zqa, (101)

where A, Aa, A5 are v-independent constants, while the excited states are obtained from (62)

il W': ";il-l’:u+2 s'[.'l-lri} “,I: 't.'!’ii?!' 'li‘l‘l’.;|+_’}
N . +E 102
Vo= Abhr== Epthons + B 2S5+ Bl o = 8 (102)
with energies
E,=E,.=4n+10-2gqa, n=12,.... (103)

It can also be verified that eigenfunctions i, (x) have correct asymptotic behavior and are also P7
invariant. Consequently, they also satisfy Eqg. (7). The intermediate potential is given by

i—ga+ %]I[— gor+ %]I

(r—iel

Vix)=(x—ie)f+ (104)

which is also physically acceptable. By arguments similar 1o those given above, its ground state
cigenfunction is given by
qﬁh - L“'_' 152 - J't:lzl:.r S !'E:I—qr.ﬁ{_’l.l']:l I:].ﬂ_'_:l}
with energy
ep=06-2ga (106)

and excited states

":E'h = H":":'!‘rawls":;h} I:lﬂ?}

iy
with energies
ep=E =dn+6-2ga, n=1273,. . (108)

Onee again, both the inlermediate and the final potentials (as well as their eigenfunctions) are PT
invariant, having real spectra.

The supercharges (3, and Q; generated from the intertwining operators A and A® can be shown
to satisfy the following algebra:

Ha={0, 0%} = H; — 4(3 — ga)H, + (2 — ga)(10- 2ga) (109)

where H, is given by (51).
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We note that the potentials oblained in this section are unigue in the sense that they do not
have any counterpart in standard quantum mechanics (i.e., in the Hermitian case).

V. PTSYMMETRIC SCARF Il POTENTIAL

We note that the generalized oscillator problem considered in the last section was made
non-Hermitian by an imaginary displacement of the coordinate variable x. However, there are
other methods of constructing non-Hemmitian models. To see how the formalism described in Sec.
1l works with such models, in this section we shall study an example, viz., the PT symmetric
non-Hermitian Scarf 1 potential, which has been PTsymmetrized in a different way. This exactly
solvable potental, given by

Vix)=—hsech® x—igsechxtanhx, A=0, g#0 (110)

has a discrete spectrum that admits both real as well as complex conjugate energies, depending on
the relative strengths of its parameters h and u. For ||#| = h+%, the system possesses a real and
discrete bound state spectrum, whereas for |g| = A+ 7. the system exhibits spontaneous PT sym-
melry breaking, with complex conjugate pairs of energies. The normalized wave functions for this

potential are well known, being given by o

I
i, (x) = %f"{:'}‘“ﬁz"‘”3"'1‘-“”3&' sinh x), (111)
nll{3-2p

where P:"H are the Jacobi p{}l}'nmniuls,m

Mun+a+1)

e P — I 1;z) 112
Tins Dlias 1) i—nn+a+ B+ ;a+1:2) (112)

P:I""gl:r' sinhx)=

and
1 —isinhx 113
z= 5 i (113}
e

1+1 1 \ 1+r (114)

=——*—A/—F+At+tpu=——+—,

P==4%2V3 P==33
1+1 I|1 i\ 1+.1.' 115
T==3FINg ™A= =y P

However, for normalization of the wave functions, only the positive sign is allowed in p. The
CNCTEY Specirum

, s+1r—1
E =—in—-p—g), n=0,12_.< - (116)

: s i . .
15 real and bound for [u|=A+7, ie., for real p and g. with two towers characterized by the two

values of g.
If the formalism developed above is applied to this example for N=2, with states oy(x) and
raix), then the Wronskian is caleulated to be
Wik, ) = (1 — i sinh x)™(1 + i sinh x)™ cosh x{—ilp—g)+ (p+ g — %]hinh x}  (117)

and the intertwining operators A and A* are given by
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A=LE, A=D1, (118)
where L) and L, take the form
d oy _d
Li=——+—=—+iip—g)sechx— (p+ghanh x, 119
e ™ i (p—q) (p+q) (119)

d W, o
Li=—— =22 Yo = — +ilp—glsech x— (p+ ghanh x
2z de Wyao iy dx

i—p—g+ '::}+ i(p—q)sinh x + (— 2p — 2g + 3)sinh” x

: v (1200
ilp —gleosh x + (—p— g+ 5)sinh x cosh x
Now using (40) the new potential is found 1o be
~ ~ ' sech® x — ipor sech x tanh x|
VM(x}=—:«mhl.x-—fﬁuxh.rmnh.r—z( i s ) (121)
i psech x— iortanh x)-
where
h=h—dp—4dg+2, (122)
A=p—4p+4g. (123)
A=2(p*+ )+ (p+q). (124}
p=2p"-q")+(p-q). (125)
pP=p—4q. (126)
r.r:—p—q+%_ (127)

Onee again, the final potential FMI:I]I is also PT invariant. The eigenfunctions are obtained from
(62), with the ground state as

i P
do = (Eq= E\)n +(Ey= EgW (128)
and excited states

[
i 'F.l|+3

t.b.;l - ':'EII? _'EJ|+2}I.‘!{|+E + EE—:' = E(?}%"“PT

(129)

where P, denotes the Jacobi polynomial P77 12(; ginh x) and P denotes its derivative with
respect 1o x. It can be shown that for || < \+7, the wave functions ¢ are also PT invariant, and
can be normalized following (7). The new potential Vi 2(x) has real bound state specirum given by

Ey=—(1-p—g)°, (130)

- . ‘5415
E=—in+2-p—yg), n=12,.... = ; (131)

and the algebra satisfied by the supercharges turns out 1o be
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Hy={0,. 0% = H3 + (2= 2p - 29)H, + (p+ @) (p+ g - 2), (132)

where H, is given by (51).
The intermediate potential akes the form

Viix)=-10, hDL'hz.l.'—!-LT_: sech x tanh x, (133)
where
0 =h=2(p+g), (134)
Uy=p—2(p-—gq) (135)
with eigenfunctions
Wit tho)
&, = Wit o) (136)
i
and the corresponding energies
s+1-3
e,=E  =—(n+1-p—g)?, n=01,.. < (T) (137)

Thus Vix) and the corresponding wave functions (136) are also physically acceplable as well as
PT invariant.

V1. CONCLUSIONS

In this paper we have suggested an application of higher order Darboux algorthm to non-
Hermitian PT symmetric potentials. For the sake of definiteness the method has been applied o
two specific potentials, namely, the generalized oscillator and the Scarf 11 potentials and a number
of new potentials having nearly the same spectrum as the original ones have been obtained. It may
be noted that in each of these cases, starting from a P symmetric potential we have oblained new
potentials which are again PT symmetric. In other words the higher order Darboux algorithm does
not induce spontaneous PT symmetry breaking. Among the different cases considered here the one
involving nonconsecutive levels deserves special mention. The potentials thus obtained have no
Hermitian analogues. Also the intermediate potentials in all the cases are perfectly well behaved
since the Darboux algorithm does not introduce any new singularity or break PT symmetry.
Furthermore it has been shown that the symmetry underlying the original and the new potentials
is a fusion of nonlinear SUSY and PT symmetry which we call nonfincar pseudosupersvmmetiy.
Finally we note that analogous to the study of breaking N-fold sul:u:rsymm:lry,'” it would be of
interest 1o examine breaking of this new symmetry.
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