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Abstract

This paper deals with the problem of a ratio-dependent predator—prey
model.  The deterministic and stochastic behaviour of the model system
around biologically feasible equilibria are studied. Conditions for which the
deterministic model enter into Hopf-hifurcation are worked out. Stochastic
stability of the system around positive interior equilibrivm s studied. To
substantiate our analytical findings numerical simulations are carmed out for
a hypothetical set of parameter values.

Mathematics Subject Classification: 34D035, 34K20, 92025

1. Introduction

The dynamical relationship between prey and ther predators has long been and will continue to
beone of the dominant themes inecology due toits universal existence and importance [16, 18],
The dynamical problems involved with mathematical modelling of predator—prey syslems
may appear o be simple at first sight; however, the detailed analysis of these model systems
often beads to very complicated as well as challenging problems. The most important part of
modelling the population ccosystem is o make sure that the concerned mathematical model
can exhibit well-known system behaviour for the system under considerabon.  Dynamical
modelling of ecological systems 15 a frequently evolving process. A systematic mathematical
approach can lead o a better understanding of the plavsible models and the exposed
discrepancies in tum kead to the necessary modifications [43].

After the proncenng work of Alfred Lotka and Vito Volterra in the middle of 1920 for
predator—prey interactions, prey-dependent predator—prey models were studied extensively
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[26, 31,49, 50]. In population dynamics, a functional response of the predator to prey density
refers W the change in the density of prey per unit tme per predator as a function of the prey
density. Quite a good number of works have already been performed in ecological syslems
[7, 10.14,21,23, 33, 62| where the model systems are based on prey-dependent model systems.
The classical prey—predator models with prey-dependent funcional response take the form
{or some equivalent form)

dn : N drP
EZIJV(I—E)—F{JV}P, E:CF{JV}P—E'P, f]..].::l
where piN) 15 the so-called prey-dependent functional response (N(i) and P(r) denote prey
and predator population density at any instant of time *f7, respectvely, and other paramelers
have the usual meaning). In most cases prey-dependent functional response p{ V) is given
by p(N) = aN/(b+ N) or p(N) = aN/(b+ N*) or p(N) = aN*/(b+ N +aN") or
piNY = aN"/(b+ N") or some equivalent form. These types of classical predator-prey
maodel systems exhibit not only the wellknown *paradox of ennchment” formulated by Hairston
et al [34] and Roseneweig [56] but also the so-called “biological control paradox”, which was
mtroduced by Lock [47]. The *paradox of enrichment” states that enriching a predator—prey
system (by mereasing the carrying capacity ) will cause an increment in equilibrium density
of predator but not of prey population which in tum destabilizes the intenor equilibrium. As
a result it mereases the chance of stochastc extineion of the predator population. However,
in nature, it 15 observed that ennching the system inereases the prey density which 15 not a
factor responsible for destabilizing a stable equilibrivm and fails to increase the amplitude of
oscillations in systems that abready cyeles [1].

The so-called *biological control paradox” states that we cannot have a kow and stable prey
equilibrium density, which 1s in contradiction with many examples of successful biological
controls where the prey population s maintained at low densities compared to 1 environmental
carrying capacity [4.6]. A further example is, cactoblastis—opuntia in Australia, wherne
the crucial factor seems 0 be pseudo-interference (see, May [49]), and where biological
control has worked and resulted in low and stable pest densities. So this paradox 1s a pure
artefact, created by simplifying assumptions on functional response. For the rest, the paradox
of enrichment exists, but only in systems where one predator—prey pair exists in isolation
and the predictions mdically change when they are embedded in a simple food chain model
[52]. Most of the natural systems are indeed very complex with the predators being exposed to
various degrees of facultative secondary camivory and interacting with many other subsystems
i vanous ways. This indicates the fact that the paradox of biological control 1$ not intrinsic
for most predator—prey systems.,

There are some good data on simple as well as fairly solated predator-prey systems,
like Mary Power’s catfish—alga system in the Panamian streams [54] where one can find
the interesting phenomenon that some increment in the mesource for prey population at
equilibrium increases the predator density in place of prey abundance. In some predator—prey
systems where the Holling dise is a reasonable assumption for predators (e.g. the weasel-
vole system found in boreal Europe, where voles have a hiding place and weasels have no
altemative resources ), we observe large amplitude oscillations of populaton distribution like
carnivore-herbivore systems [52, 53] According to the *pamdox of enrichment” these types
of large amplitude oscillations are expected i relatively productive areas and in the most
reproducive pans of wndra, while voles inhabiting less productive tundm areas are relatively
stuble [55]. High amplitude oscillatons were the basic charactenstics in high alpine barrens
where the density of predator is low, but at present, rodent tme trajectories indicate the
fingerpnnts of predators [60]. The change in dynamic position of herbivores along productivity
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gradients thus mdicates the necessity of reasonable alteraton or corrections of simple as well
as tradibonal food chain models [32]. Recently, predator-prey models with prey-dependent
response function have been facmg a great challenge from biological and physiological
rescarchers [3--5,32]0 AL present it 1s clear that predator abundance also has the ability o
influence the functional response. Anditi and Ginzburg [5] have suggested that, in situations
characternized by strong space and time heterogeneities, the functional response can be
approximated by a function of the prey-to-predator ratio. Several biologists have been able o
establish the fact that functional responses over typical ecological timescales ought o depend
on the densities of both prey and predators, especially when predators have o search for food
and therefore have 1o share or compete for food. Actually prey-dependent and ratio-dependent
maodels are extremes or limiting cases; prey-dependent models are based on the daily energy
balance of predators, on the other hand ratio-dependent models presuppose that prey are casy
to find and that predator dynamics are, in essence, govemed by direct density dependence, with
prey densities determining the sizes of defended terntones. Within the natural environment
both aspects have the ability w influence predator—prey dynamics, and the issue of which of
the two extremes is closer o reality in which system is wide open. Moreover, the pursuit of
the prey-dependent approach has proved more fertile since its paradoxes’ seem o be guite
realistic where the premises for their existence are found, but here opinions may differ and
there i no strong evidence to close one door or another

Ardin and Ginzburg [5] first proposed the following Michaelis—Menten-Holling type.,
ratio-dependent predator-prey system

dN ( J"i'r) alN P dprP L calN P

—=rN|1]l—-— e —_—= =
P+ N dr kiP+N

P. 12
dr K d e

The dynamics of this type of mtio-dependent predator—prey model has been studied by many
researchers (see, e.g., Kuang and Beretta [44], Jost ef af [39], Hsu et al [38]).

Major parts of the work in this direction are based on determimistic models of differential
and difference equations.  The determinmistic approach has, however, some limitalions in
biology: it is always difficult to predict the future of the system accurmtely.  Deterministic
maodels in ccology do not usually incorporate environmental fluetwations based on the idea that
in the case of large populations, stochastic deviations (or the effect of random environmental
fluctuations ) are small enough to be ignored. A stochastic model provides a more realistic
picture of a natural systermn than its deterministic counterpart. A central obstacle in the
stochastic modelling of an ecosystem 15 the lack of mathematical machinery available o
analyse nonlinear multi-dimensional stochastic models [28,40.41]. A guantum leap in the
mathematical sophistcation of ecological modelling occurred when May [49] inroduced
stochastic differential equations (SDEs) to investigate limits to niche overlap in a randomly
fluctuating environment. Well-known deterministic population models (such as the Lotka-
Vollerra model, Gauss type prey—predator model, ete) are the starting points of stochastic
multi-species models which include demographic or environmental stochasticity. The resulting
stochastic models involve nonlinear SDEs whose solutions pose great difficulties. Different
technigques of linearieation of nonlinear SDEs giving rise 0 a set of deterministic moment
equations have been recerving a great deal of attention in different fields of science and
technology [8,11, 12,28, 29, 40,41, 51, 57].

The main objective of this paper s o consider a mtio-dependent predator-prey model
and its stability behaviour around different equilibrivm points with special emphasis on the
controversial equilibrivm point (0, 07 for the mto-dependent model. Our next objective is
to develop a stochastic dynamic model for the ratio-dependent predator—prey model and 1o
examine the stability of the model system under random environmental fluctuations. We make
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acomparative analysis of the stability of the model system within deterministic and stochastic
environments.

2. Deterministic model

The classical model for predator—prey systems can be written in its classical form by a system
of first order nonlinear ordinary differential equations as

el =Nf({N)—g(N, P)P, i =h(N, PP —yP (2.1)

di di
with prey abundance N{t) and predator abundance Pir) al any given instant of tme 7.
FUND s the per capita rate of increase of the prey in the absence of predation and *y7 is the
food-independent mortality mte of the predator, assumed to be constant. The amount of prey
biomass consumed by each predator per unit of time 15 desenbed by the function g(N, P), whilke
RN, Py desenbes per capita production rale of the predator. There 15 a considerable amount
of evidence to show that predator production rate can be modelled as simply proportional Lo
food intake (up to a very good approximation)

hiN, P)=eg(N_P), (2.2)
where the constant ‘¢’ is interpreted as conversion efficiency and satisfies the condition
0 = ¢ < 1. Specific examples are given by Slobodkin [58] for hydras, by Beddington er al
[13] for numerous arthropods and by Coe et af [24] for large African herbivores in support of
previous assumptions. The tophie function g{N, P) s the sole link between prey—predator
dynamics [5]. In this paper we will consider the usual logistic form of the growth function for
prey in the absence of predator as

] Ji1-X
FIN) =1 (1 K),

where “r is the intrinsic growth rate of prey and * K7 is the environmental carrying capacity.
For the traditional prey-dependent predator-prey models (eg. (1.1)), the functional response
gi(N, P) depends only on the density of prey population N7 as we have remarked in the
introduction of this paper. According to Berryman [18], credible and consistent predator—
prey models must be able to satisfy the minimum biological property that “when resources
are low relative w population density, the predator per-capita growth rate should decline with
its density’. However, the prey-dependent predator—prey models are unable to satisly this
criterion due w the fact that the predator per-capita growth rate becomes a function of prey
population N7 only, which is independent of the density of predators “P7. To overcome this
situation, Arditi and Gineburg [5] have suggested that for situations charactenzed by strong
space and time heterogeneitics, the functional response can be approximated by a function
of the prey-i N -lo-predator-{ P) ratio (N /P and this leads to the ratio-dependent functional
response g{N, P) as follows:
i N _ ﬂ{:"ﬁ";‘rp}l _ aN
S (P) T 1+ef(N/P)  P+afN’

where “o” represents the total attack-rate for predator and “87 15 the handling time and the
functional response is known as the Michaelis—-Menten—Holling type functional response
[17.39.43]. Under these assumptions the dynamics of the mtio-dependent predator—prey
system is governed by the following systemn of first order nonlinear ordinary differential
equations:

dnN N aNFP drP ea NP
-5 i o

— N i’ il T
a k) P+apN dr ~ P+apN
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Initial conditions for the system of equation (2.2) are given by Nt = 0) = Ny = 0 and
Pt =0 = Fy =200 It s typical for predator-prey systems: positive NV-axis, positive P-
axis and the intenior of the first quadrant invanant under system (2.3) and the solutions with
positive initial condition continue to be positive for all time 1. As observed by Freedman
and Mathsen [27], Jost et af [39], Kuang and Beretta [44] and Kuang [43], system (2.3) 15
not well-defined at the ongin (0, 0) and hence the model 1s unable to capture the idea that
the growth rate of both the populations are zero in the absence of prey as well as predator
population. To overcome this sitwation, Xiao and Ruan [63] have modified the model system
(2.3) by redefining it as follows:

ar K) P+apN' & ~ P+apN ¥ WER LA 2 2 I M
(2.4a)

dN dp

e when (N, P) = {0, 0). (2.4b)

dr dr

For the sake of simplicity it 15 convenient to scale the vanables as v = N/K.y = P/ Kaf
and consider the dimensionless time T = tr. The dimensionless equations are then given by

d xy dy bxy
Z=x(1-0 - —L=Fx) ==X —cy=Fx) (25a)
dr x+y dr  x+y
Fii0,0) = F(0,0) =0, (2.58)

whermea =afr. b = effr and ¢ = y/r. Forconvenience, in the following, time 1 15 replaced
by t as the dimensionless time. The mitial conditions for the system of equations (2.5) are
given by x(0) = x = 0and v(0) = vy = 0 which s also biologically meaningiul.

2.1, Boundedness
Due to the boundedness of the functional responses, we see that

im Filx.¥y)= lm : Flx,y)=0.

[,y =10, Lr, yh—(0,0

Using equation (2,56 ) we can conclude that the functions Fy(x, v)and Fa(x, v)are continuous
functions on B = [{x, ¥) : x = 0, ¥ = 0]. Straightforward computation shows that they are
Lipschizian on I[-'&i. Henee a solution of (2.5) with non-negative initial condition exists and is
unigque. It is also easy to see that these solutions exist for all ¢ = 0 and stay non-negative.
In fact, if x{0)) = xp = 0, then x(t) = Oforall v = (. The same argument 15 true for the
v-component. Hence, the intenor of JR;i 15 invanant under model system (2.5). Our next task
15 o consider the boundedness for the solutions of the model system (2.5).

Lemma 1. All the solutions of the svstem (2.3 ) with the positive initial condition (xq. yo) ae
uniformly bounded within a region 2, where,

£
ﬂ:l{_r,r]l:{]'ﬁ';.ré 0 T T o
P b il

with L= c+1/4

Prool. From the first equation of (2.5) we get,
2 ) ()
P x x e X xh.

S0, xi(r) = 1,asr — +00.
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Let us define the function
a
Wity =x(t)+ B_r{r}_

Caleulating the tme derivative of W) along the trajectones of equations (2.5), we gel
d dr ady ac
-Wll=—4+=—==2x(l —x) — — .
dr (1) dr b odr ( ) b

Clearly, the maximum value of x {1 —x) s 1/4, whenever (0 = x = 1. Then,
d 1
d—'H-"{r}+c"H-"{f}=.r{1—.r}+c'.r£-§c'+:1=L (say).

t

Thus, as ¢ — +o00, 0 = Wi = Ljc [19]. Hence system (2.5) 15 dissipative with the
asymptotic bound L fe. This ensures the existence of a compact neighbourhood £2 which 1sa
proper subset of Ri such that for sufficiently large initial conditions {1, vg) the tmjectories of
the systemn of equations (2.5) will always be within the set £2.

Hence we have shown that the model system (2.5) 15 dissipative.
2.2, Egquilibria

For population models in deterministic environments, with the environmental parmameters being
well-defined constants, it is natural curiosity w find the community equilibria where all the
species’ populations bave time independent values, that is, where all net growth mtes ane
zero. Classical two species predator—prey models always possess at least three equilibrium
points: (1) rivial equilibrivm, (i) axal equilibiom and (i) positive mterior equilibrivm [45].
Earlier works on ratic-dependent predator-prey models (e.g. [27, 39,43, 44]) have mentioned
that the model system (2.3) cannot be lincanzed at (0, 0) and consistent dynamical analysis
for the model system in the vicinity of the origin reveals the rich and complicated dynamics.
Based on the redefined ratio-dependent predator—prey model (2.4) and its non-dimensionalzed
version (2.5) we are able to mention that the system of equations (2.5) has two equilibna,
Eg(0, 0y and E(1.0) on the r-axis for all possible as well as admissible values of the
parameters myvolved with the mode] system (2.5). The third and most interesting equilibrnium
point (from a biological point of view) s E (2%, ") where x* and ¥* are non-zero positive
solutions of the equations Fj(x, v) = 0= F(x, y) and are given by

*=1—= [IM] and ¥ = [M] (2.6)
b c

Simple mathematical argument shows that ©* 1s positive for all @ = &/(6 — c) and positivity
of ¥ demands an extra condition & > .

2.3, Behaviour amound Eq (), 0)

The study of stability plays a significant mole in understanding the structure and funcions of
eccological systems. A variety of ecologically interesting imterpretations are involved with the
term Cstability’. The most common meaning comresponds o neighbouwrhood stability which
means stability in the vicinity of an equilibrivm point associated with the deterministic model
system.  An equilibrium point is called a stable equilibnum point if, when the populations
are perturbed they will retum o the equilibrium point with the advancement of tme. The
return may be achieved either as damped oscillabons or monotoncally. IUis common practice
to find the lineanzed system of equations around the equilibrium point and the sign of
eigenvalues associated with the comesponding Jacobian matrix determines the stability around
the equilibrium point. Before studying the swbility of controversial equilibrium point Eq {0, ()
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we would like to remark that mathematical investigation of the nature of the solution for the
maodel system in the vicinity of orgin reveals some interesting dynamical behaviour depending
on the parametric restrictions. This type of dynamical behaviour has never been observed in
classical prey-dependent predator-prey models. Based on the outcome of stability analysis
around £y (0, 0), one can obtain a clear idea of the possibility of extinction of population at low
population density of both prey and predators. In the case of the mtio-dependent predator—prey
maodel it 15 not possible o linearize the model system around Eq (0, 0). To study the behaviour
of the model system around Ey we follow the technique developed by Arino et af [7]. (For
rigorous caleulations and mathematical justification of the said technigue, interested readers
may consult the work of Arino e af [7] and the references therein.) For this purpose the model
system (2.5) can be wrillen as

dX
e H{X (1)) + QX(D), (2.7)

where H () is C! except at the origin, is a continuous and homogencous function of degree
one, Le. HisX) = s H{X) forall scalars 20, X{t) =({x.n) e IR:i amd Qisa O function
and satisfies the condition {X) = o{X) in the vicinity of the origin. The functions H{ ) and
() are defined by

H{X)=(H{(X), H:( X)), X)) = (X)), QA X)), (2.8)
ax|xs bayxa

HiX)=x — ) HiX)= — Cxz, (2.9
Xy +Xxa Xi+ xa

Q1(X) = —xj, Q1(X) = 0. (2.10)

Let us assume that X (¢ ) s asolution of (2.7), 1 bounded such that im inf, . | X ()] =00
For this situation it is possible o find a sequence X (1, + ) — 0 uniformly as 1, — oo, Define
X, +5)

— (2.11
Xt + 9] )

¥n {5} =

Clearly, ¥, 15 a sequence with ||y, || = 1. Applying the Ascoli-Arzela theorem [20]. 1t is
possible to find a subsequence comesponding w0y, which converges wwards some function
vit) and the imiting function satisfies the equation

dy

$ = Hiy(thy— (yit), Hiy(e)hvir). (2.12)

In equaton (2.12), (., .) stands for the standard mnner-product BE?. The steady
states of (2.12) are vectors V osatisfying H{V) = (V, H{V))V which are solutions of
the nonlinear eigenvalue problem, H{V) = pV with g = (V, H{V)). These stabonary
solutions correspond to the fixed directions along which the rajectories of (2. 12) may converge
asymptotically. Using (2.9), the nonlinear eigenvalue problem becomes

[{l —p)vy + {1 — a)ua]uy, [{b—chuy —(c+pha]u =0 (2.13)
Now we are in g position o discuss in detail the possibility of reaching the ongin following
fixed directions.
Case I. vy =0and va £ 0
In this case, there s a possibility of reaching the ongin along the v-axis, with g = —c.

Case 2. vy #0and v =10
In this case, itis possible to reach the origin along the r-axis, with p = 1.
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Case 3. vy #0and va £ 0
In this case, the possibility of meaching the ongin along some fixed direction from the
mterior of the first quadrant depends on the existence of a real root of the quadratic equation

i+ ple — 1) +ab— b — be =0. (2.14)
The existence of a real root of the quadratic equation (2.14) demands
1 [le—1)
< b= —+ac|. (2.15)
a—1 4

Again the upper bound for the parameter & will be biologically feasible if and only if
a = 1 or equivalently @ = r. This result has the biological significance that if the prey-
catching capacity is higher than the intnnsic growth rate of predator then both the populations
approach wotal extine ion.

Under the three conditions discussed above, it 18 possible to reach the trivial equilibrium
point Ey(0, 0) and hence Eq s an attractor for the model system (2.5).

2.4, Behaviour awound E| and E,

The Jacobian matnx Ji{x, v) for the system (2.5) at any pointof the first quadrant (x, ), except

at the origin, 1% given by
axy ﬂ{.r}l"
Ll '+ =
BTSN TESSE

Jlx, ¥) = = ; (2.16)
L biy) bxy
(x+y)* (x + v)?
The Jacobian matrix evaluated at the boundary equilibriom point E,(1, 0) takes the form
-1 —a
=[x, vilg, = 2.17
1 =[x, 9], [ﬂ P ] (2.17)

and therefore, if the positive interior equilibrivm point exists (e, & = o), Ei(1L, 0) 15 always
stable along the y-direction and unstable along the y-direction and consequently, E(1, 0y isa

saddle point.
Al the interior equilibrnium pomt E (x*, v*) the Jacobin matrix J, 15 given by
g ax* _'F‘ B afx* ::I_’
"_rt+.vt::|_’ (x* +..|._.t::|_3'
Je =[x, ¥)]g, = i i (2.18)
L b(y*)? bty J
{xt+.vt}! ix* +Ft}3
The charactenstic equation for the Jacobian matnix J, i given by
P+ Ar+A; =0, where Ay = —Tr(J,) and  Ax = det{J,). (2.19)

As det J,) = ﬂb{.r“}l!_v‘,.-’{.r‘ + _1;‘}! = 0 the stability of the equilibrium point E, solely
depends on the sign of Tr(J,) and hence E, is stable if Tr( /) < 0 and unstable if TriJ,) = 0.
It is easy o verily that both the sitwations are possible for the model system under some
appropriate parameter values, In terms of the parameters the stability condition of positive
interior equilibnum point E, 1s a < ble+ 606 — o)]/(b +c). We have noted carlier that
a < bfib—c)and b = ¢ are the necessary condibons for the positivity of E,. Hence the
stability of equilibrium point E, demands the following condition

a = mi b b b ) ith b (2.2{)
<= & = min T e o c+b—c' wil = C. 2200
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Figure 1. The Hopf-hifurcating periodic solution of the model system (2.5) for parametric values
a=20b=07808and c = 0.5

If we increase the value of g’ further such that @ = blc + B/(b — &)] /(b + o) with the
restriction & = ¢ then E, becomes locally unstable. Hencee by the Poincaré criteria [11] there
exists at least one limit eycle around E, within the positve (x, y)-plane. We now deduce the
condition for the existence of a Hopf-bifurcating small amplitude perodic solution.

Lemma. [fa = a* = blc+ b/(b — o)|/(b + c) with b = ¢, then the svstem (2.5) exhibits
Hopf-bifurcation near E,.

Proofl. Atthe parametric valuca = a* = ble+b /(b —c)]/(b+c), Tr(Jd,) = Oand det( J, ) = 0.
When a takes the value @ = a*, the roots of the characteristic equation (2.19) are purely
imaginary.  Also we can verily that the result (d/da)[Tri/ )0 ),= # (. Hence both the
conditions for Hopi-bifurcation [9, 22, 36, 48] are satisfied (see figure 1). O

The above result establishes the existence of a small amplitude periodic solution near the
interior equilibrium point E,. Our next task is o find the condition for stability of the Hopf-
bifurcating periodic solution and for this we have to caleulate the first Lyapunov coefficient at
the crtical parametric value @ = a*. For this purpose we follow the procedure and standard
notation as ntrodoced by Kuznetsov [46]. Firstwe translate the origin to the equilibrium point
E, using the change of variables v = v*+ ) and y = y*+ha. Substituting this transfonmation
in (2.5a) and expanding in Taylor senes at the critical parametne condition @ = a*
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we get
dh 2 2 K| 2 2 3
d_ = ﬂ||:p.h| +ﬂ(p|f!_5+ﬂ_\(;.h| +ﬂ||h|h3+ﬂ“_ﬁ.h_: +ﬂ_?||:p.h| +ﬂ_!||.h|.h_!| +ﬂ|_!|.h|.hz+ﬂ(p_:|.hz+ LI B
T
(221a)
dh
-:!_! = bighy + byiha + bagh + by +boahs + bsoh + Bayhiha + Biah s + byshi + -+
= 2 2 2
(2210
where the a;; and by; are given by
A Fix, v A Py
i = # i by = ¢ . (2232)
dxt dyd s dxtdyd i

In the above expansion we are not interested in the coefficients of fourth and higher order
terms as they make no contnbution o the caleulation of the first Lyapunoy coefficient. In
order to make the coefficients of &y in dhy fdr and of fi2 in dhs/dr equal to zero we introduce

the non-singular transformation of vanables as ity = {ayo/ &gy + 12, ia = 1y in the above
expansion o get the transformed system as
duy 2 2 3 2 2 3
d_ = Ol M + Gaglt] + O il + g lis + @yl o B I 0 al st agalts oo
T
(2.23a)
dus 5 3 3 2 a2 3
Fe = fgiy + foguy + Foue + fons + S + Saoyo + S+ s+
(2.23b6)
The above system can be writlen in the following form
d 1 |
—u=Au+—-Blu u)+-Cilu u, u)+---, (2.24)
dr 2 &

where A denotes the coefficient matnx of linear part with zero as the main diagonal elements;
B, v), Clu, v, w) are symmetric multi-linear vector functions of & = (o, w2 ). v = (1. 1),
W= 1w . ua) & R? and take the following forms:

Bl |;2’u!_:un U Fa v + Hau )+ Eumngu_:] (225)
2Hagu vy + Bl va + wav )+ 2o
Clu, v, W) = [Cll +f'|2+f‘|_a+f'|.:]1 (2.26)
L T e o e o T e o e
where the ¢;; (f = 1,2; j = 1.2, 3, 4) are given by
11 = Bosgleg v ur, Cpr o= 2o (U s + Uy + auun ),
O3 = o (i Ul + Ha U + Halla Uy ), 14 = Gog iz vaws,
1) = B vy, cxm o= 2y (v ws + o vy o),
33 = 2 a(m vaws Fua v s + wavaun ), c1 = O,

Let &y 2 = s be the eigenvalues of the matnx A and p. ¢ proper eigenvectors satisfying the
relations

Ag = iy, ATp = —lp and {pgq =1, {227)
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where {., .} means the standard scalar product in © : {p. g} = p1g1+ p2g2. The first Lyapunoy
coelficient delermiming the stability of the Hopf-bifurcating periodic solution 1s given by [46]
= _,—l,.Rﬂ{iE_ﬁtrEH +aga ). (2.28)
2w
The quantities gag. g and ga) are given by
g = {p. Big. g)}. g =ip. Bilg. q)}. e ={p.Cilg.q.q)}. (229)
The stability of the Hopf-bifurcating periodic solution depends on the sign of first Lyapunoy
coefficient. The limit eycle is called stable if |, = 0 and 15 unstable for [} = 0. The explicit
expression for gag, 21, £2; and hence that of the Lyapunov coefficient /) in terms of the system
parameters 15 oo lengthy and would take at least two printed pages. Furthermore, it 1s quile
difficult to conclude about the sign of [} doe to s complicated algebraic expression. For this
reason we present here a numerical example to illustrate the method of caleulation for /. For
numerical caleulation of the first Lyapunov coefficient !, we consider the following model
dx dy 0780776 4064x y

2xy
— =x(l—x)— == = F(x,y),
x+y dr x+y

— 05y = Falx, v).
- : alx, ¥)

(2307

From the previous analysis, one can easily verify that the positive equilibrium point is

E, = ((.280 7764064, 0157670 7808) and the system exhibits limit eycle oscillation at the

critical parametne value @* = 2, Letxy = 0280 776 4064 + h, v = 0L15T6T0TR08 + £, then
system (2.30) becomes

dh "
= 0.179 805 BUB4h — 0.820 194 1014k — 0.410 (97 05094 — 2.100970 508hk
T
+1.870 679 355k° — 1.345436 7280 + 3.446 407 236kh°
+0.525 242 287k h — 4266601 336Kk, (231a)
dk
== 0.100970 S080A — 0.179 805 8985k — 0.230 291 152442 + 0.820 194 10164k
T

—0.730291 1521k + 0.525242 626907 — 1345436 728kK°
—(.205 (48 526152k + 1.665 630 8295 . (2.31h)

Making the non-singular transformation b = (0,179 805 8983 /0100970 50800 + v, &k = u,
we see that system (2.31) becomes

dr
¥ = 0.100970 50800 — 0.000 000 001z~ + 0.000 000 002vu — 0.230291 15240°
T
— 0.000 000 011 — 0.000000 1ve” +1.460 582 30dvw + 0,525 242626907,
(2.32a)
duv ] S
dl = —0.499 9999995, — 3171 1646091 — 3561 552 813w — 0.000000 00212
T

+0.000 00131 +0.000 0161 vu® — 6.342 3292130 1 — 2.280 776 40507 .
(2.32h)
A2 = fiw = H.224 689 23860 are the eigenvalues of the coefficient matrix corresponding
to the linear part of (2.32) where the matrix A is given by,
u [ 0 0.100 wnsnm}]
—0.499 999 9995 0 :

The eigenvectors asdefined in (227 ) are given by p = (01754320563, 0078 835 390 391) and
g = ((LO78 83539039, 0.17543205631). Now one can caleulate the quantities gag. g11. £
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Figure 2. Stable limit cycle around the positive interior equilibrivm point for the model
system {2.30).

easily by using any mathematical software (e.g. MAPLE) as
gag = —0L005 279657 042 + 0,003 107 509 389,
£11 = 0005279657 042 +0.003 107 509 388,
g2 = —0L004 581 433 107 + 00005 411 288 5331,
Hence the first Lyapunov coefficient /) is given by
I = —0.201 9410159,

Thus the Hopl-bifurcating perniodie solution is stable and all other trajectories around the
limit cycle ultimately approach it (see figure 2).

2.5, Global stabiity

In the previous section we have obtained the conditions for the existence of positive equilibrium
and its local asymptotic stability condibons. We have observed that mstability of the boundary
equilibnium E, mves support for the existence of positive interior equilibroum point E,. The
parametric conditions for local asymptotic stability of E, are g = a and b = c. Now we
try to find the condition under which system (2.5) will have no non-trivial periodic solutions
around E,. For this purpose we recall the divergence criterion for the stability of o periodic
solution for planner systems [35, 37].

Let us construct the function f(x, v) = 1/{xy) such that Alx, v) = Oforally =0, y = 0.
Using the definition of Fiix, v) and Fa{x, v) from equation (2.2) we get

i i _ 1 {b—a)
E{FIM-'-?J;{FEI!}_ i —{.r+_1:}3-
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Figure 3. The phase porrait of the system {2.5) created by MATLAB. £, isa glohal atmetor,
wherea =07, b=09and ¢ =05

Clearly
i i
Alx,¥) = —(Fih) + — (Bh) < 0 for a < b.
’ dx dy

According Lo the Bendixon-Dulac entenon, there will be no limit eycle in the positive guadrant
of the xy-plane. Now we can state the following lemma.

Lemma. The existence af interior equilibrium point E, along with its local stability and the
restriction @ = b eliminates the chance of existence of a non-trivial periodic solution
amund E,.

Now we are in g posibon to prove the global stability of the model system (2.5).
Lemma. {fa = a, (a, = min (b, a)f and b = ¢ then E, is globally asvmptotically stalble

Prool. The system (2.5) has no positive periodic solution around E, fora = a* and b > ¢,
The boundedness of the solution together with the saddle nature of boundary equilibrium
point £y and local asymptoticality of E, leads to the conclusion that all the trajectories will
approach E, withincreasing ime t”. Hence E, is a global attractor and the system is globally
asymptotically stable (see figure 3).

3. The stochastic model

The above discussion rests on the assumption that the environmental parameters involved with
the model system are all constants irrespective of time and environmental fluctuations. In
reality all such parameters exhibit mndom vanations o a grealer or lesser extent. In previous
discussions we have dealt with the equilibriom populations and their stability with regard 1o
the imposition of small disturbances. In this section we consider the effect of environmental
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fluctuations on the model system and the stochaste stability of the coexisting equilibrium point
associated with the model system.

Environmental fluctuations are important components inoan ecosystem.  Most natural
phenomena do not follow stictly determimste laws but rather oscillate randomly about some
average value sothat the deterministic equilibrinm is no longer an absolutely fised state [5,9].
May [49] pointed out the fact that doee to environmental fluctuations, the birth mtes, carrying
capacily, compelition coefficients and other parameters involved with the model system exhibil
random fluctuations to a greater or lesser extent. Consequently the equilibrium population
distnbution fluctwates mndomly armound some average value. Elon [25]observed that ‘the chief
cause of flucwations m animal numbers 15 the instability of the envimonment’.  Within a
deterministic environment we seek the constant equilibriom population and then investigate its
stability which follows from the dynamics of the interactions between and within the species.
For systems which are driven by environmental stochasticity, it is impossible to find o time-
independent equilibrivm point as a solution of the goveming SDEs. In this situation it 1s
reasonable o find a probabiliste “smoke cloud’, desenbed by the equilibrium probability
distnbution. For the model systems described by the system of SDEs, there is a continuous
spectrum of disturbances generated by the environmental stochasticity, and the system is in
tension between two countervailing tendencies. On the one hand, mandom environmental
fluctuations are responsible for spreading the cloud and making the probability distribution
move diffusively, while on the other hand, the dynamics of stabilizing population mteractions
tend to restore the populations o their mean valoe in order to compact the cloud [49]. Model
systems with this type of compact cloud of population distnibution are called stochastically
stuble systems. To study the effect of mndom environmental luctuations we have W0 construct
the stochastic counterpart of the deterministic model system by incorporating environmental
fluctuations.

There are two ways of developing the stochastic model comesponding to an existing
deterministic one o study the effect of flucwating environment.  First, one can replace the
environmental pammeters involved with the determimistie model system by some mndom
parameters (e.g. the growth mte parameter v’ can be replaced by rg+ e p(r), where ry 15 the
average growth rate, () 15 the noise function and € 1 the intensity of Huctwation). Second,
onecan add a randomly Auctuating dnving foree directly to the deterministic growth equations
of prey and predator populations without altering any particular parameter [8, 11, 39].

Model (2.2) was just a first attempt towards the modelling of predator—prey interaction
with ratio-dependent functional response. In this study we introduce stochastic perturbation
terms into the growth equatons of both prey and predator populations to incorporate the
effect of mndomly fluctuating environment. We assume that stochastic perturbations of the
state vanables around their steady-state values E, are of Gaussian while noise Lype which ane
proportional o the distances of x, v from their steady-state values x*, v*, respectively [15].
Gaussian while noise 15 extremely useful to model rapidly Quctoating phenomena [11, 539]. So
the deterministic model system (2.2) results in the following stochastic mode] system:

dx = Fi(x, y)dt +oy(x — x*)dE, dy = Falx, yidt + a2y — _1“}d$f, (3.1)

where oy, o are real constants and known as the intensity of environmental fluctuations,
£ = &t} i = 1, 2 are standard Wiener processes independent of each other [30]. In the rest
of this work we consider (3.1) as an Do stochastic differential system of the type

dX, = fir, X,)dr +git, X,)dg,, X0 = Xa. (3.2)
where the solution (X, ¢ = 0715 an o process, * 7 1s aslowly varying conlinuous component
or drift coefficient, *g" 15 the mpidly varying continusous random component or diffusion
coclficient and £, 15 a two-dimensional stochastic process having scalar Wiener process
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components with increments ﬂ&‘;ﬁ = £t + Ar) — &; (1) that are independent Gaussian random
variables N0, Ar). In the case of system (3.1),

X, =(x, .'I"::'T. £ = {'E‘I E‘_i}'l‘1 |- [F|LT. 1-}] 1

Falx, ¥)
e |- (x —x*) 0
E= 0 aity — "]

(3.3)

Since the diffusion matnx ‘g’ depends on the solution X, system (3.1) 15 said to have
multiplicative noise.

F.4. Stochastic stability of interior eguilibrinm

The stochastic differential system (3.1) can be centred at is positive equilibrium point
E(x*, v*) by introducing the vanables vy = x — x* and s = vy — ¥*. It looks a very
hard problem to denve asymptotic stability in the mean square sense by the Lyapunov function
method working on the complete nonlinear equations (3.1). For simphicity of mathematical
calculations we deal with the SDEs obtained by linearizing the vector function * f7 in (3.3)
about the positive equilibrium point E,. The lineanzed version of (3.2) around E, 15 given by

AL () = FU(r)dr + g (L) dE(r), (34)
where L) = col(nq (1), w2 (1)) and
_ | manu —apus = 0
F(U(1) = [HM e ] g(U1) = [ ; a'_:u_:] (3.5)
with
. ar* .1"1‘ ﬂ{xt}_’
L e N B =
h’+}} (x*+5*) (3.6)
B(y*y bx*y*
day = =

{_rt_l_}_.t}_" {_rt_l_}_.t}_"

MNote that, in(3.4) the positive equilibnum E, comesponds o the rmivial solution (i, w2 =
{0, 0). Let 2 be the set defined by 2 = [i{r 2 1) = B2, 1y e BY]. Let V & Ca(€2) be a twice
differentiable function of tme t. We define the following theorem due to Afanas’ev eraf [2].

Theorem. Suppose there exisis a function VU, 1) € C2(Q) satisfving the inegualities
K\U® = VU, 1) = KaU®, (3.7)
LVl < —K3|U", Ki=0, i=123 a=0 (3.8)
Then the trivial solution of (3.4) is exponentially o-stable for all time t = 0.

With reference to (3.8) the expression for LV, 1) s defined by

avu, e g AV ] Terr P VU D)
VU, H=— + FT{I[)————~ 4+ _T Uy————g(U) |, 39
(U, 1) ey () 30 5 r[gi ! T gl (39)
wherne
AVIU, 1) AV av BV, 1) v
———=col| —, —|. —— = — ; (3.10)
alf diy i alr= o i ij=12

Let us consider the Lyapunov function

V(U(t).1) = ] +wu3), (3.11)
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where ao 1% 8 positive real constant to be chosen later. It can be easily checked that (3.7) holds
for the Lyapunov function defined in (3.11) with o0 = 2. Now,

Lo [ e PV AL )
LV, 1y ={—ayuy —apualiy + a0 — @il s + ;Tr £ {IJ’}Tg{U} i
s [ e

(3.12)
From (3.5), (3. 107 and (3.11) we geL,
#vooT1 o0 T, PV aiu} 0
FIE [{} w.]' B {U}TH{U} ) UJ|G'_,"I!'; . (3.13)

Hence from (3.12) we get,

2 2
LV, 1)y=— (2:1.. - J?')n': + s — @ )iy — (2&;; - w'fz ) n::.

If we choose ay = (@2/an ) = 0, then from the above result we get,

‘Tuz 2 “I-"’T_ﬂ! 2 T
LVl rnn=— 2.:1..—7 uy — | 2an — wy=-U"QU, (314)

2aa

where 0 = diag[(2a, —a’fﬂ}, {2a2a —ﬂ.gﬂ'_,"ﬂﬂ_:.}] and the diagonal matrix @ will be o
real symmetric positive definite matnix and bence 1s cigenvalues A and Ao will be positive
real quantities if and only if the following conditions hold:

dazzaz

oi < day witha;; =0 and of < y (3.15)
7 iz

If &y stands for the minimum of two positive eigenvalues Ay and A for the dingonal matnx @
then from (3. 14) we get the following result:

LV{U. 0 € —A U (3.16)
This keads us to the following theorem.

Theorem. Assume that for some positive real value of ey = a2/ax and the inegualities in
{3.15) hold then the zew solution af system (3.4) is asvmpiotically mean sguare siable.

Recall that @ = @ and b = ¢ are the conditions for deterministe stability of the intenor
equilibnium point E,. Conditions for deterministic stability of intenor equilibrivm point along
with the inequalities (3.15) are the necessary conditions for stochastic stability of the model
system under environmental fluctuation. Inegualities (3.13) defines the upper threshold values
for the imtensitics of the environmental luctoations “oy” and ‘o2’ determined by the system
parameters (e, a. b and o) as

5 i b —a(b— c)? , .. Mb—c)
Gl""'~¢|’=4|i—j| and O D

ac

e 3 (3.17)

Thus the intemal parameters of the model system and the intensities of environmental
fluctuation have the ability 0 maintain the stability of the stochastic model system and exhibit
abalanced dynamics at any future time within a bounded domam of (a, &, c, o), o2 )-parametric
space. The boundaries of the bounded set n (a, b, ¢, oy, g2 )-parametne space are defined by
the following inequalities (which are some implicit functional relations):

a<a, b>ec, o7 <ai, af < al, (3.18)
where the expressions for a, Erf and r'I; are given in (2200 and (3.17), respectively. The
mnequalities in (3.17) can be put into an altemative form as

2 3 o
.ﬂ-c:[ & ] [ —J—'] and H{M. (3.19)
b—¢

a
4 oy
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For a given set of values for b, ¢, oy and a3 with b = ¢ we can find an estimate for the
parameter ‘a’ which will ensure the deterministic stability as well as stochastic stability of
mnterior equilibrium point £, for the model system (2.5). Delining the upper threshold hmit
‘a’ for ‘a’ as

A —min| B b b) b -’1 all b —cy a0
— Sod| B e C+b—c‘ b= T4 'T Fiak)

we can conclude thata = A and & = ¢ are the necessary and sufficient conditions for the
stochastie stability of intenor equilibriom point E, for the model system under consideration.

3.2, Numerical simulation

In order Lo give some support to the stability results of the stochastic model system obtained in
the previous section, we numencally simulate the solution of the SDE (3.1). For this purpose
wi have to keep in mind that approximated sample paths or tmjectories of [lo processes obtaimed
from direct simulation must be close to those of the original Lo process and these will lead us
to the concept of a strong solution for a system of SDE [21]. To find the approximale strong
solution of the Lo system of SDEs (3.1) with given initial condition we use the Enler—-Maruyama
(EM) and Milstein method.
Consider the discretization of the time mterval [r, £ ] with
=0 <k e by o= By Iy =er

and the simplest stochastic numencal scheme for the system under consideration is the
EM method

. k
Wi n+l = “k..’l + _.f {'r.lh “k..’l}ﬂ'rﬂ + ._[i.r{-r.ll s uk.ll}ﬂ"&.“
with g g =g &k = 1,2 and &, = [0y, 02, | being the numerical solution at tme ", In the
above numerical scheme, the increments are given by
ﬂl-r.ll = fntl — Ins
k k k k k
ﬂl'E.ll = Sn+l _'E" = £ (tar1) — 'E (),

wheren=10,1,2,..., M.

The noise increments ﬂﬁf are N0, A ) -distnbuted independent mandom vanables which
can be geperated numencally by pseudo-rmandom number generators.

An efficient way to evaluate the increments of the Wiener process ALY 1s 1o consider

At = T A,

where [, 15 the nth realhzation of 7 and [ 15 the Gavssian random vanable N (0O, 1),
Figures 4 and 5 are genermted by using the numencal simulatnon method dise ussed above
with the help of MATLAB software.

4. Conclusion

In classical predator—prey model systems, the consumption rate of a single predator (so-
called functonal response) 15 the key component of predation models as it s considered
to determine both the prey death mte and the predator mte of increase. In a continuous-
time predator—prey mode D with prey-dependent functional response itis a classical assumption
that predators encounter prey al mndom and that the response function depends solely on
prey abundance. This assumption s true for several cases but is not always approprate [5].
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Figure 4. Solution of SDE (3.1) with pammetric values @ = 19, b = L5, ¢ = 1.2 and
oy =ax =102
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In veality, it 15 reasonable to assume that the response function depends on the ratio of prey to
predator abundance. There are several field and laboratory observations i support of mtio-
dependent functional response. There s a sharp difference between the two Lypes of response
functions with the vanations in prey production or abundance. Ratio-dependent models predict
proportional increase of both populatons while prey-dependent models predict the benefit of
predators only from an increase of prey production and abundance.

In this paper we have considered the deterministic analysis of stability for various
equilibium points of a4 nonlinear predator—prey  system with ratio-dependent functional
mesponse.  First we have proved the boundedness of solutions of the model system under
consideration. The ongin (e, Eg(0,00) and E (1, 0) are two equilibrium points lying on the
x-axis for all permissible parameter values. However the model system cannot be linearized at
Ey and hence its local stability analysis is not possible by traditional analysis with a Jacobian
malrix. To overcome this situation we have employed the technigue intmoduced by Anno er al
[7]. Our analysis shows that the rajectones reach the origin and both the populations become
extinct. This may happen in two ways, In one case, absence of prey or predator species is
responsible for extinetion of predator and prey species, respectively. In the other case, over-
predation of prey species imespective of the growth rate of prey drives the system towards total
extnction of both prey and predator species. This result agrees well with the result of Kuang
[42]. Next we have considered the local asymplotic stability of intenor equilibrivm point
E, and established the existence of a small-amplitude penodic solution arising from Hopf-
bifurcation as the parameter ‘a” passes throughits eritical value o = a™ from lower to higher.
At this position we can conclude that if the consumption ability of the predator 1s not very high
{l.e. @ = a*) then both prey and predator populations coexist at their steady-state value E,
and hence the consumption ability and growing ability generate a balanced dynamies for both
the populations. Global stability results are obtained from the condition for non-existence of
a tmvial penodic solution around E, with the parametne restnetions obtaimed i the last part
of section 2.

On the other hand, for the stochaste version of the model system we have oblained the
condition for asymptotic stability of equilibrium point E, in the mean square sense by using a
suitable Lyapunoy function (3.11). These conditions depend on oy, o2 and the parameters
involved with the model system.  For the delermimste environment, the stability of the
equilibnium point demands that all eige nvalues of the Jacobian matnx lie in the left-hand half
of the complex plane. For the comesponding model within the stochastic environment, this
condition is necessary but insufficient, due w the existence of a relatively compact equilibrium
probability cloud for the populations around the deterministic equilibrivm point. The stochastic
stability requires that the stability provided by the interactions (which is measured by the
real parts of cigenvalues of Jacobian matrix) be sufficient o counteract the driving arising
from random environmental fluctuations [49].  Regarding stability and instability of the
stochastic model system, it intuitively seems appropriate to refer w the systems charactereed
by large fluctuations in the population numbers as ‘unstable’ and to those with relatively small
fluctuations as “stable’. For stochaste model system (3.1) asymplote stability of E, in the
mean square sense depends on the restriction of (3.15).  Recall that the feasible values of
the intensities of environmental Quctuatons depend on the system parameters, which in turn
decrease with the merease of parameter *a’. For a given set of values of a, b and ¢ ome
can easily calculate the upper bounds &f and &f from the relation (3.17). Within the natural
environment it is not possible to control the sumroundings in such a way that the inensities
of environmental fuetwations camnot exceed the upper bounds settled for them by the system
parameters. The restrictions (3.15) or equivalently (3.17) are the boundanes determined by the
mathematical methods to obtain a stable population distnbution around the equilibrium point
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Figure 6. Solution of SDE (3.1) with parametric valuesa = 190 = 1.5 c = 1.2 and oy = 1.2
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Figure 8 Solution of SDE (3.1) with purametric valuesa = 190 = 1.5, c = 1.2 and oy = 1.9
and o = 1.E.

within a fluctuating environment. Hence we conclude that to preserve the system stochastically
stable the above restriction should be maintained.

Now, we are in a position 1o substantiate the analytical findings for the stochastic model
system through numencal experiments. The behaviour of the ecological system depends on the
rapidity of environmental fluctwations. This rapidity of Muctuations can be measured through
the intensity of fluctuations which act as an environmental doving force. The high amplitude
environmental driving foree has the ability o change the dynamics of the system from a stable
situation to an unstable one. From this viewpoint we have only varied the intensity parameters
ay and a2, keeping all other parameters unaltered. For the numerical analysis, we choose the
hypothetical set of parameter valwesa = 1.9, 6 = 1.5 and ¢ = 1.2 and substituting these
values in (2.6) we obtain £, = E0.62, 0.156). Now if we imagine a circular or elliptic
nei ghbourhood around the equilibrium point £,(0.62, 0.156), we find that 90% or more of the
population distribution will lie within the said peighbourhood implying the stochastic stability
of the model system (see figure 5). IDwe increase the inensities of environmental fluctuations
fromo = a2 =02 100 = 1.2 and o2 = 0.8 with the same parameter values for a, b and
o, we again find a dense assemblage of probability cloud around E(0.62,0.156) depicting
stochastic stability of the model system (see figures 6 and 7). Now, we would like to see how
the behaviour of the system changes for increasing fluctuations. If we further increase o and
(o = 1.9 and g = 1.8) we observe that the amplitude of the fluctuations increases,
implying instability of the coexisting equilibrium point within the fQuctuating environment
isee figure 8). Thus the intensity of the random environmental driving force may be used as
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acontrol parameter. These findings agree well with some earlier works [8, 11, 12, 21,28, 61].
Numerical simulation establishes the fact that the steady state of the stochastic version is not
absolutely fixed but a *fuzzy” value around which the population fluctuates.

Ecological systems are so complex that environmental fluctuations may not always be
controlled. In such a sitwation, the condition given in (3.200) may provide some feasible way
for controlling the species from extinction. Itis clear from (3.19) that oy never exceeds the
vitlue 2.0 as the parameter a is positive. Hence for a given set of values of b, ¢, oy and a2
(with obvious restrictions & = ¢ and ) = oy < 2) i we can employ a mechanism o control
the predator—prey system such that the pammeter value *a” lies below the numencal value *A4°
obtained from (3.20) then the mtio-dependent predator-prey model system will exhibit stable
fluctuation of population distribution around its interior equilibrium point E, embedded within
a randomly fluctuating environment.
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