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This study is an extended version of a previous analysis of thermal effects on the free-surface liquid
film flow on a flat, heated rotating disk [A. Kitamura, “Thermal effects of liquid film Alow during
spin coating,” Phys. Fluids 13, 2788 (2001)]. The assumption of a constant disk temperature is
extended to & nonuniform disk temperature, and the restriction on small radial distance used in the
previous analysis is removed. The evolution equation for the transient film thickness is obtained and
solved by the method of characteristics [B. 5. Dandapat, P. Daripa, and P C. Ray, “Asymptotic
study of film thinning process on a spinning annular disk,” J. Appl. Phys. 94, 4144 (2003)]. The
effect of both thermocapillary forces and varable viscosity on the flow is revealed. A physical

explanation is provided to justify the resulis.
[DOL: 10.1063/1.1927525]

l. INTRODUCTION

Spin coating 15 a well-known technigque by which ong
can produce a very thin and uniform film of viscous liquid by
the action of centifugal force over a spinning disk. This
technigue is widely used in the microelectronics industry o
manufaciure microelectronic devices, optical mirrors, mag-
netic disks for data storage, ete. The spin-coating mechanism
is investigated theoretically in two different ways, viz., (a)
spreading of a ligquid drop on the surface of a dry rotating
disk and (b) development of a thin film on the surface of a
wel rotating disk from a liquid blob. In the former type of
investigation "% the main interest was to know how the con-
tact line moves during the spreading of the drop on the disk
and its stability. In the latter type, starting {rom the pioneer-
ing work of Emslic er al..” several models”"® have been
proposed in subsequent investigations o know the film de-
velopment on the spinning disk and the literature on the sub-
jeet is considerably developed. The assumption of a wet wall
is justified in the light of the experimental observation on
advancing contact lmes by Schware and Tl_‘jiidul? and
Giradella and Radigan,' in which they have indicated the
presence of an unseen precursor layer of fluid ahead of the
contact line which 15 only an angstrom thick. Further it has
been argued by physical chemists that the presence of a pre-
cursor layer 15 a very meal phenomenon arising as a conse-
quence of evaporation from the drop in a small region local
to the contact line followed by diffusion and adsorption
{De Gennes' ).

It is interesting o note that in all the above studies™ " it
is tacitly assumed that the disk is wet so that the classical
no-slip boundary condition can be applied at every point on
the disk surface and the film flows under a planar interface
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for the entire perod of spinning. Further, it has been ob-
served from these studies” " that the rate of film thinning
slows down beyond a specific height (depending on the ro-
tational speed) of the film. In general, the final stage of film
thickness is proportional to =2 for 1 —=, where 1 is the
spinning time. So 10 obtain the desired thinness of the film,
one has to operate the spinner for quite a long time. As a
result a solid skin may form on the suface layer of the film
due to evaporation. Therefore, coating defects may occur if
any convective flow that is present does not completely cease
before this skin hardens sufficiently. Dandapat and Ruym
(DR ) have tried 1o accelerate the rate of film thinning so that
one may obtain the desired thinness before hardening of the
skin. According to them it is always possible o create an
extermal shear stress on the film suface in the form of a
surface tension gradient by imposing either a temperature or
a concentration gradient along the radial direction of the
disk. They have shown that by imposing a specified axisym-
metde emperature distribution on the disk it is possible 1o
obtain the film thickness proportional to (o)™ for r— =,
where e is a new nondimensional thermocapillary parameter.
Pﬁ1idd|ﬂmun,l3 and Rehg and Higginhlq have also noticed that
the rate of film thinning increases due to the shear induced
by air flow over the film surface. It is 10 be mentoned here
that DR have restdcted their analysis to a specified family of
temperature distibutions that ultimately helps them to search
for similanty solutions. In the above studies also, the tacit
assumption was that the film remains planar for the entire
PIOCESs. 3'I

Recently, Kitamura™ has removed the barder of a planar
film surface assumption and oblained the transient film thick-
ness through matched asymptotic analysis. Kitamura™ has
also studied the effects of surface tension and viscosily varia-
tion with temperature on film planarzation and thinning. In
this swdy Kitamura considered a hemispherical-shaped lig-
uid blob placed on the center of the disk, which is heated
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uniformly. He derived the evolution equation for the film
thickness and solved it by using an expansion for film thick-
ness in powers of 7, r being the radial distance from the axis
of rotation. He observed that the variable viscosity has a
more profound effect than that of thermocapillatty on the
transient film thickness. A close scrutiny reveals that one
may nol observe the effective thermocapillarity flow at the
free-surface due 1o uniform heating of the disk. Further the
solution obtamed by Kitamuora 1s v;{!id only near the axis of
rotation. Recently Dandapat e al.” have removed the re-
striction of small r used by Kitamura®"* 1o solve the evolu-
tion equation by using the method of chamctenstics.

The present analysis falls in the second type of spin-
coating méechamism, which implies the imberent assumption
of a wel disk to facilitate the use of the no-slip boundary
condition. Further 1o study the effect of both thermocapillary
flow and varable viscosity, a nonuniform heating of the disk
surface is assumed. Due to the proximity of the present in-
vestigation with the previous paper (Kitamura®™) we shall
state details only where the two papers differ. The paper is
organized as follows. The evolution equation for the film
thickness is derved in Sec. 11 using an asymplotic expansion
of all dependent varables in terms of the aspect ratio
gl=h, /L), where hy and L, respectively, denote the charac-
teristic length scales in the vertical ifilm thickness) and radial
directions. The evolution equation is solved in Sec. 111 by the
method of characterstics o remove the constraint of small r.
Results and a discussion are contained in Sec. IV

Il. EVOLUTION EQUATION

Consider a uniform film of viscous, incompressible, non-
volatile liquid on a disk whose radius is large in comparison
with the thickness of the film. Initially, the system is at the
room temperature Ty Simultaneously the system starts rolat-
ing with a uniform angular velocity {1 aboutl an axis normal
to the plane of the disk and an axially symmelric lemperature
T,ir) is imposed on the disk. The origin is fixed at the center
of the disk and the ; axis points vertically upward along the
axis of mtation. To express the goveming equations of mo-
tion, continuity, energy, and the cormesponding boundary and
initial conditions into their nondimensional form, we shall
use the chamcterstic lime scale f, (:i«’,;,.-"ﬂzhé]l, the tme at
which viscous and centrifugal forces balance each other
Specifically, the dimensionless (astersked) variables are de-
fined as

h=hph', z=hy', r=Lr', t=tf, y=shy.

= (Q2Lhg /v’

U= (Iljﬂaﬁﬁﬁ}u‘, W= (ﬂzhg}‘ piw’,

p=pPLp’, T=Ty+(T, -TyT,
where fiy, 18 the maximum height of the inital film thickness
hir, 0)=+r), w, is the kinematic viscosity of the fluid at
room lemperature Ty, p is the fluid density, and T"'u 15 the

imposed temperature at the center of the disk. w, v, w, p, and
T, mspectively, denote the three velocily components along
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the r, & z directions, pressure, and temperature. Finally we
obtain the dimensionless governing equations and the cormre-
sponding boundary and initial condidons as

& Re(u, +uu, + wi,) =—p,+r+2 eRev +&° Re* r 't
+ 2 (fu,), + fluir),]
+U'I:u;+f:3wr]l]_., (1)

; v |
> Rc( v, + MU+ WL+ —) =& frlvin,],
r

+ (fv.), — 2u, (2)
& Relw,+uw, +ww.) = —p, — & Fr+ 2&(fw.).
+f:2r_|[fr(u; +£3wj.]l],, (3)
1
—(ra) +w, =0, ()
-
& Pe(T, + uT, + wT,) = er ' (rT,),+ T.., i5)
at z=1,
n=v=w=0 T=0(r, ()

at z=hir.t),
—pr el + EJI:E]I_' I:f:gu,_hf +w,—uh— &w,h,)

=er ' (rh, +h + ﬂzf!f:il:l +f:1hf}"”'3I:Wc—aza'T},

(7)

j[?ﬂzhj.(w_. —u )+l + EEH-'J.}“ - ﬂlf!,%}]
=ealT,+hT)il +f:2hf}”2, (8)
u__—azrﬁ,(w’r},:ﬂ, (9}
T.—&°h,T,=—Bi(l+&h))'"T, (10)
h+uh.=w, (11}

and the iminal conditions at time =),
hir,0) = ¥r),

where the dimensionless parameters that appear are the Rey-
nolds number Re=0°Li) /1, the modified Froude number
Fr=g/0°L, the Peclet number Fc:ﬂ-’ﬂ:f,h:(,x, the Weber
number We=ay,/p(°L’, and the Biot number Bi (=8hy/)).
B. k., k, and o denote the heat transfer coefficient, thermal
conductivity, thermal diffusivity, and surface tension, respec-
tively. a{::—I:ﬂ'rr.-f.rIT}I:Tdu—?},]lﬂ:gﬂlhf,fd}] is the thermmocapil-
lary parameter. Since the aim of this paper is w0 study the
effects of emperature variation along the radial direction of
the disk, it is assumed that a small emperature difference
T,;,— Ty is sufficient to change the surface tension o and vis-

u=v=w=0, T=0, h,=0, (12)

£l

cosity v of the liguid. To derive the above set of equations,
linear variations of o and v with temperature are assumed, of
the form o=oyll —al) and f=(1 -8 T), where f=v/v, It
is 0 be noted here that a few typographical errors in
Kitamura®™ are removed in this study; also the notations &
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and A of Kitamura™ are changed to 8, and e, respectively.
In the present analysis 8, a, Re, Fr, and Pe are of order 1 but
We~Q{e?) and £<1.

To obtain an asymptotic solution, all the dependent van-
ables are expanded in powers of £ according 1o the following
ansale:

F(rt.z)~ F(,l:r,f,:}-!-EF,I:r,I,E}+l']'l:f:2}.

On substituting the above form for each dependent van-
able in the system of Egs. (1)-(10), and equating terms of
like orders, new sets of equations are oblained as usual
Solving these sets from zeroth order to the first order, one
gels

i2h—zhz+e - 2477 +3(1 + Ah)Z?

Bir) ) (hj_:2 ) (r;{'
z+F| —-ffhz|+Re

[ SrO(r)
= B

—6hz}— a(

1 + Bif 2 36l
rhz®  Phhz i ol ; ' z
——t———+ B -Cz|+WeD |hz——||.
6l 24 : 2
(13)

where A=Bi/(1+Bih), B=2h /9+rh /6, C=3rk'(5
+r°h i 6+ rh 712, and D=(rh,)/r which are same as in
Kitamura® except of his notation § representing the change
of viscosity due o temperature that is replaced by £48; in the
present analysis and a negative sign on the first O{g) term
inside the angular bracket. It is to be noted here that the
solution for u in Eq. (13) will not satisfy the initial condition
(12} due to the large charmactenstic time scale considered
here. To get the initial effect, one needs to consider the short-
tme analysis as described by Hi,ﬁ_l:ygin!;.IE The surface evolu-
tion equation 15 obtained by integrung the continuily equa-
tion (4) and using (11), as

&I-! 1 r;, i ,
—+—— | (rukdz=0. (14)
at rardy,

Finally, Egs. (13) and (14) together yield

£ { (rzﬁlir}l:il-hj-b 3Bij;“})
e

¥ =
hy=——(rh).+
s =g Rt 35 1 + Bih

B(r) 136 8
(r) ) + Rc( rh— grjf:ﬁ!:,)

+ i.":-afrhl(

1 + Bih 105
1

+4Frri'h,— 4Wum-‘( —(m,},) } . (15)
r rpr

It is to be noted here that for ©(rj=1. one can oblain
Kitamura's™ equation (11) from Eg. (15) above, except that
of the negative sign in front of the first of the O{g) terms on
the right-hand side (rhs) of (15) and A is replaced by «. For
B(r)=0, Eg. (15) coincides with Eq. (35) of Reisfeld er at™
with E=(0). Further it is o be noted that although the circum-
ferential velocity component p exists, it is not necessary for
deriving Eq. (14) and the flow pattern is independent of the
circumferential coordinate  because of axial symmetlry
assumplion.
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lll. SOLUTION PROCESS

From now onwards, the method of solution procedure
differs from that of Kitamura® and follows closely Dandapat
X & .
et al.” Expanding Air,f) in powers of & as

hir.0) ~ holr.t)+ ghy (r.0 + O(&%) (16)

and using Eq. (16) in Eq. (15) and equating the coefficients
of order up to &, one gels

hy+ rfaf,hm. =— _'%I:E‘,, (17)
and

R+ rhihy, == 2005 + rhihg hy)
I [ 5.{ PO(r)(4h) + 3B m;‘,}}

12r] | + Bih,
O 136
+harﬁé(—_) +Ru(__r?.h?,
1+ Bify ; 105

8 16 s 23
= Er‘ fghyg, | + 4Frriphy,,

&
—4Wur§:(‘1( "-I:rhn.l.]l,) ] ; i18)
r ol
From Eg. (17), one can oblain
d 2 .
Eh(,{r[r},f] =— if:“{r(r]l,f] (19)

along the characteristic curve (1) satisfying

%r(f} = r(0)hg[r(0).1]. (20)
Upon integration, Egs. (19) and (20) give

holr(0).f]= Cox™ ", (21a)
along with

Mfi=C™, (21b)

where y= 1+I:4I3}Cf:,r. It also follows from Eg. (21) that,
along each characteristic curve,

r(f]l!:f, 2[rI:r}J] =C, C(':'Q = Const. i22)
Integrating Eq. (18) along the same characteristic curve,

Eq. (20) reduces to

h[rif).f]=— %5.{'”6&}(3 Y

+ e 0,000

2 62
+ =BiC,C; 'y 0 '*3)+— ReCoy ™"
3 BIGCT x0T )+ 375 ReCox

2 32
- aFrcE,c-,’x‘-"l o WeCoCr 'y ™ + Cax ™,
(23)

where {=(1+BiC,x~'"?) and €. C,, and C, are constants of
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FIG. 1. Composite height & vs rat
=00, 05,30, 100 for Bi=0.0 and
yirfi=exp(—r'). Solid lines for tem-
perature distribution—E(r)=exp(-r’)

and dotted lines for constant temperi-
ture distribution—Eiri=1.
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0ar 4
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mtegration, which are o be evaluated through matching with
the corresponding small tme solution. The short-time scale
analysis can be done by simply stretching the temporal co-
omdinates as r=tf& and keeping other vanables the same as
before excepl i is replaced by H w0 mark short-time scale
varible. Following as outlined by Higgim,IJ onge can oblain

s 1
he=yir)—g {( ng‘,+ RUH{,H(,,.)T

exp(— A2 r/ReH) - 1 }

}tﬁ

Here fig denotes the surface profile obtained from shor-
time analysis. The maching conditon that is derved from

+ Ru{ (4H + 10rH H,,) >,

Texpl— hf,#RuHé.Jl
%

+4H H,, >, (24)

the requirement that the fow 1s contimuous from the start of
spinning of the disk to all suceeeding lime, suggests

lim__  hel7h=lim, gh(r),

which implies Cy=¥£), O =rir=0)=£(say) and

8§ ) T ' e
E}‘ﬂ(é}(3+ Lo ) — Ei Oy

"
+§f-:rf§'}u'.y$'g;3)-

Ca

62 Re® EF 242
— Rey' + —Fry &~
315 &
B2 e g 5 i )
—HWE}"% +0.066 66 Re(4y” + 106y y,).

where £,=1+BiC,,

Using (25) in Egs. (21) and (23}, the composite film
thickness 15 obtained as

B = h(r,t) + he(r, 7 + 39’7 —[ ¥+ 0.0666e Re(4y’

+ 1069y ] i26)

IV. RESULT AND DISCUSSION

The variation of the film thickness i with r given by Eq.
i26), for different temperature distributions and times, is de-
picted in Fig. 1. It is clear from this figure that the film thins
faster for temperature decreasing radially outwards than for a
constant distribution. In this study, only two thermal factors,
the thermocapillary parameter o and the viscosily vanation
with temperature §; act on the system. It is natural 1o ask the
question which of these parameters affects the flow most? A
close look mnto the solution for f reveals that both of these
paramelers appear in the fisst-order term . Collecting all
the terms containing & and o separately and denoting them
by fy s, and k. espectively, one can oblan

¥
lle."l

hyis= {368 -6M]+[6(85' -6}

(27)

and
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0.1

FIG. 2. J'?;,,I and fy, vs roat r=30 for
Bi=0.0and ¥iri=expl-r). Solid lines
for temperatune  distribution—E(r)
=expl-r') and dotted line mepresents
both J'a;,vl and fy,, for constamt tem-
perature distribution—E(r)=1.

Figure 3 shows the variation of the composite film
height with respect o tme at r=0.8, when the disk 1s either
cooled or heated outwards for different Bi. It is clear from
the figure that cooling outward helps thinning for all Bi ex-
cept for Bi=0. At Bi= 1.0, the film thins faster for cooling.
According to Fig. 3, it seems that for Bi=0 the film thins

08 1 1 1 1 1
a 04 0.2 nAa 0.4 a5 a6 o7 iR 0.5 1
r »
p or 6,0r) " B
= o
T s ¥ P £ Biy  1+Big
2 O(r) 014 }
ST L N T e Y
3075 | 2012 L Big)? T (1 + Biy)
(28)

where 6(£) is the initial temperature distribution. The influ-
ence of 8, and o on film thinning is delineated in Fig. 2, and
it 1s clear that both hy; and hy, increase with » for Bi=0 a
time r=3. From this figure one can infer that fi;, has a stron-
ger influence on film thinning than fy 8. This behaviorof h |,
and I:,I,;J may be explained as follows: The thermocapillary
parameter a is & measure of the variation of surface tension
with emperture. Since the disk s allowed o cool madially
outward, the surface tension 15 low at the center of the disk
and hence the thermocapillary force acts as a langential
stress on the surface of the film along the favorable flow
direction. This leads o to enhance film thinning. However,
the ole of o will be adverse if the disk is heated radially
outward. On the other hand, & is the measure of the increase
of the viscous resistance as the system is allowed 10 cool
radially outward. Due to this reason, f 15, 15 increasing with r
in Fig. 2. However, if the temperature increases radially out-
ward, then the viscous resistance decreases and as a result §
helps thinning the film. Now looking at the expressions for
hys and hy, in Egs. (27) and (28), one can see that for a
constant lemperature distribution and for Bi=0, both f; and
hy vanish, as reflected by the dotted line in Fig. 2. Further
one can also see thal as Ume increases I:,,;J decreases through
the increase of y bul remains positive for cooling radially
outward.

faster for heating. For Bi=({, h; reduces to

b= €0, - 04"

+ terms containing (Re, We, and Fr). i29)
The first term on the rhs of Eq. (29) gives the change of film
height due 1o the difference of temperure distribution.
Since |0,|=|0] either for heating or cooling outwards, the
term in the bracket becomes negative or positive depending
on the temperature distribution. This explains why heating
outward gives faster thinning for Bi=(0).

Lookmg first at Fig. 3, one may wonder what 1s the
reason for A° increasing initially, before decreasing? One
may resolve this question by serutinizing Fig. | and will find
that at r=0.8, i" has increased at time r=0.5 from its original
height at r=0.0. Due to the assumption of the no-slip bound-
ary condition and a constant volume of liquid, a sharp wave
front gradually develops at the initial stage and moves along
the radial direction, resulting in the increase of A for some r.
This result s also observed in the classical work of Emshe et
al.® in their Fig. 3.

Finally, it 15 to be pointed out here that the present paper
is the first 1o investigate the thermal effects on spin coating
with disk temperature vanation and predicts the tmansient
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FIG. 3. Composite height & vs ratr
=08 for Bi=0.0,10,10.0, and Wr)
=exp(-r'). Solid lines for temperature
distributi on—Er) =expl-r) and
dashed  lines  for  temperature
distribution—8{r) =exp[—(r- 1)*].

0.z 1 1 1 1 1 1 1
0 25 a0 35

t—

the au-
can be

shape of the interfacial film boundary. Unfortunately,
thors do not know any experimental result which
compared with the present observations.
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