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Abstract

Many planktonic species show spectacular bursts (‘‘blooms’’) in population density. Though viral infections are known to cause

behavioural and other changes in phytoplankton and other aquatic species, yet their role in regulating the phytoplankton

population is still far from being understood. To study the role of viral diseases in the planktonic species, we model the

phytoplankton–zooplankton system as a prey–predator system. Here the prey (phytoplankton) species is infected with a viral disease

that divides the prey population into susceptible and infected classes, with the infected prey being more vulnerable to predation by

the predator (zooplankton). The dynamical behaviour of the system is investigated from the point of view of stability and persistence

both analytically and numerically. The model shows that infection can be sustained only above a threshold of force of infection, and,

there exists a range in the infection rate where this system shows ‘‘bloom’’-like stable limit cycle oscillations. The time series of

natural ‘‘blooms’’ with different types of irregular oscillations can arise in this model simply from a biologically realistic feature, i.e.,

by the random variation of the epidemiological parameter (rate of infection) in the infected prey population. The difference in mean

strength of infection alone can lead to the different types of patterns observed in natural planktonic blooms.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Transmissible diseases are known to induce major
behavioural changes in aquatic species. However, little
attention has been paid to model such situations to
predict useful applications in both dynamics and
control. There are many examples of parasites modify-
ing the behaviour of the infected individuals of the host
population. This may happen by reducing stamina,
disorientation and altering responses (Holmes and
Bethel, 1972). Lafferty and Morris (1996) observed that
kill fish (Fundulus parvipinnes) tends to come closer to
the surface of the sea on contracting a disease, which
e front matter r 2004 Elsevier Ltd. All rights reserved.
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makes them more vulnerable to predation by birds.
Arme and Owen (1967) and Williams (1967) observed
the same behaviour in sticklebacks (Gasterosteus awlea-

tus L.) infected by plerocarcoids (Schistocephalus

solidus). Viral infection can also cause cell lysis in
phytoplankton. Using electron microscopy, Suttle et al.
(1990) showed that viral disease can infect bacteria and
phytoplankton in coastal water. Virus like particles have
been described in many eukaryotic algae (van Etten et
al., 1991; Reisser, 1993), cyanobacteria (Suttle et al.,
1993) and natural phytoplankton communities (Peduzzi
and Weinbauer, 1993).
Many planktonic species show spectacular bursts

(‘‘blooms’’) in population density. The periodic nature
of blooms, in the sense of the rapid onset and
disappearance of oscillations, is one of the main
characteristics in plankton ecosystem. In a broad sense
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planktonic blooms may be defined into two types,
‘‘spring blooms’’ and ‘‘red tides’’. Spring blooms occur
seasonally due to changes in temperature or nutrient
availability. Red tides are localized outbreaks associated
with water temperature, greater stability of the water
column as well as higher growth rates (Truscott and
Brindley, 1994). Different criteria has been used in the
literature to define and classify ‘‘bloom’’ (Agusti et al.,
1987; Smayda, 1997a, b). Biomass is the common
criterion for non-toxic species, whereas for harmful
species mere presence or measurable toxin levels are
responsible for the bloom dynamics. Field and experi-
mental evidences reveal different modes and mechan-
isms by which harmful species can cause mortality and
thereby induce the observed dynamics. Viruses have
been held responsible for the collapse of Emiliania

huxleyi blooms in mesocosms (Bratbak et al., 1995) and
in the North Sea (Brussaard et al., 1996) and have been
shown to induce lysis of Chrysochromulina (Suttle and
Chan, 1993). Because viruses are sometimes strain-
specific, they can increase genetic diversity (Nagasaki
and Yamaguchi, 1997). Nevertheless, despite the
increasing number of reports, the role of viral infection
in the phytoplankton population is still far from
understood.
Being a primary producer, phytoplankton bloom

dynamics is known to affect other species significantly
in the upper food chain (Platt et al., 2003). Yet, few
theoretical studies have been carried out for such eco-
epidemiological systems, where the effect of viral
infection on plankton ecology has been explored
(Hadeler and Freedman, 1989; Freedman, 1990; Bel-
trami and Carroll, 1994; Venturino, 1995; Chattopad-
hyay and Arino, 1999; Chattopadhyay et al., 1999;
Chattopadhyay and Pal, 2002; Xiao and Chen, 2001).
The present paper aims to study the role of infection on
the induction of ‘‘bloom’’ like phenomena in a
phytoplankton–zooplankton system and attempts to
describe the natural ‘‘bloom’’ patterns with variations in
the epidemiological parameter.

1.1. Previous theoretical results and our motivation

Beltrami and Carroll (1994) proposed a model to
discuss the role of viral disease in recurrent phytoplank-
ton blooms. They analysed a prey–predator system in
which some of the susceptible phytoplankton cells were
infected by viral contamination and formed a new group
(infected). Based primarily on numerical simulations
and meagre theoretical analysis, they concluded that a
minute amount of infectious agent can de-stabilize the
otherwise stable trophic configuration between a phy-
toplankton species and its grazer. Standard epidemio-
logical models (Anderson and May, 1991) indicate that
generally a minimum threshold of infection is observed
below which the infected population does not persist
and hence the disease does not spread. The condition for
Hopf-bifurcation was also given in their paper, which is
satisfied when the contact rate equals the rate of cell
lysis. From ecological view point this is not plausible. To
model the natural bloom pattern which looks erratic,
they assumed temperature-cycle regulated growth rate
of the susceptible prey population. It is not surprising
that they get chaotic oscillations in such a periodically
forced system. They compared their results to the actual
data by a nonlinear forecasting technique. The other
authors have generally ignored the behaviour of limit
cycle oscillations.
In this paper we propose a prey–predator model for

the phytoplankton–zooplankton system with the as-
sumption that the viral disease is spreading only among
the prey species, and, though the predator feeds on both
the susceptible and infected prey, the infected prey is
more vulnerable to predation as is seen in nature (see
references quoted earlier). The dynamical behaviour of
the system is investigated from the point of view of
stability and persistence. The model shows that infection
can be sustained only above a threshold of force of
infection. Also, the system is locally asymptotically
stable in some region of the parametric space and
exhibits periodic oscillations in some other region. The
stability of the limit cycles arising from Hopf bifurcation
is analysed using the centre manifold theorem. Numer-
ical simulations substantiate the analytical results, and
show the variation in the dynamic behaviour of the
system with increasing rate of infection. The viral
disease not only induces burst-like periodic oscillations
in the phytoplankton–zooplankton populations, it also
allows persistence and stability in the system.
Assuming that the infected prey cells may vary in their

ability to cause infection in susceptible preys, we have
shown that such a realistic demographic feature is
sufficient to give rise to the patterns of irregularity
observed in natural planktonic blooms (Tont, 1976;
Uhlig and Sahling, 1992). We show that the difference in
mean strength of infection alone can lead to the
different types of the bloom patterns observed in host
phytoplanktons.
2. The model

(A1) We consider a two species ecological system with
phytoplankton (prey) and its grazer, the zooplankton
(predator), whose total population densities are denoted
by N and P, respectively, in units of number of cells/l.
The phytoplankton is assumed to be susceptible to a
viral disease, and in the presence of viruses, the total
phytoplankton population is divided into two classes—
susceptible prey ðSÞ and infected prey ðIÞ.
(A2) We assume that the susceptible prey species

reproduces following the law of logistic growth with
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carrying capacity M, and intrinsic birth rate a

dS

dt
¼ aS 1�

N

M

� �
: ð1Þ

Experiments on dinoflagellate Noctiluca scintillans

(milliaris) have suggested that in the German Bight
disease the organisms become damaged and they do not
feed anymore or reproduce (Uhlig and Sahling, 1992).
The model of Hamilton et al. (1990) showed that
infected individuals fail to contribute in the reproduc-
tion process due to their inability to compete for
resources. Though the infected individuals are handi-
capped with respect to resource competition, they can
still affect the growth dynamics of the susceptibles
indirectly—for example, by shading. Based on the
above, we assume that the infected prey may contribute
to the carrying capacity. Therefore, the term N=M in
Eq. (1) becomes ðS þ IÞ=M. Eq. (1) then takes the
form

dS

dt
¼ aS � bSðS þ IÞ; ð2Þ

where, b ¼ a=M.
(A3) We assume that the disease spreads only among

the prey, and the predator population is not infected due
to predation of infected prey. Also, as mentioned earlier,
the infected prey is more vulnerable to predation than
the susceptible prey as has been observed in several
natural systems.
(A4) A susceptible prey S becomes infected under the

attack of many viruses. The contact process is admit-
tedly debatable. Some researchers argue that a propor-
tional mixing rate is more appropriate than that of
simple mass action. But the data of Greenwood
experiment suggests that there is no change of qualita-
tive properties upon the contact process whether it
follows the law of mass action or proportional mixing
rate (De Jong et al., 1994).
Considering the above we can write the following

equations describing the time evolution of the phyto-
plankton–zooplankton system:

dS

dt
¼ aS 1�

b

a
ðS þ IÞ

� �
� cSP � lSI ;

dI

dt
¼ IðlS � kP � hÞ;

dP

dt
¼ Pð�d þ eS þ k1IÞ: (3)

Here S and I are the concentrations of the susceptible
and the infected prey phytoplanktons, respectively; and
P is the concentration of the predator zooplankton, at
time t. The parameters a denotes the intrinsic rate of
increase of susceptible prey; b relates to the carrying
capacity or crowding effects of the prey; c is the capture
rate of the susceptible prey by the predator; d denotes
the death rate of predators in the absence of prey; e is
the growth rate of predators due to predation of
susceptible prey; k denotes the rate of capturing of
infected prey by the predators; h is the death rate of
infected phytoplankton; l is the force of infection
between susceptible and infected prey populations; and
k1 is the growth rate of predator due to predation of
infected phytoplankton ðk1pkÞ.
Since the infected prey is prone to higher predation

when compared to the susceptible prey (see (A3)), k is
considered to be greater than c.
2.1. Equilibria

System (3) possesses the following equilibria:

E0ð0; 0; 0Þ; E1
a

b
; 0; 0

� �
; E2

d

e
; 0;

ae � bd

ec

� �
;

E3
h

l
;

al� bh

lðlþ bÞ
; 0

� �

and the positive interior equilibrium E�ðS�; I�;P�Þ,
where

S� ¼
�lkd þ akk1 þ chk1 � bdk

A2
; ð4Þ

I� ¼
�aek þ cld þ bkd � che

A2
; ð5Þ

P� ¼
�l2d þ alk1 þ leh � bk1h � bdlþ bhe

A2
; ð6Þ

where

A2 ¼ clk1 � lke þ bkk1 � bke: ð7Þ

Along with the assumption k4c, for positive and non-
zero A2 one gets the additional condition k14e. This
means that the growth rate of the predator due to
predation of the infected prey (k1) is higher than that of
the susceptible prey (e).
The positivity and existence of the interior equili-

brium (E�) lead to conditions based on which a range of
the force of infection (minimum and maximum l) can be
obtained from Eqs. (4)–(6). Eqs. (4) and (5) give two
values of l, and Eq. (6) also gives two positive roots for
l. Calculation shows that the range of l, between which
the E� exists, is given by

lmin ¼
1

c

� �
ake þ che

d
� bk

� �
;

lmax ¼
1

2d
½ðeh þ ak1 � bdÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeh þ ak1 � bdÞ2 � 4bhdðk1 � eÞ

q
�: (8)
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3. Local asymptotic stability (LAS) analysis

Here we summarize the results of the local stability of
system (3) around each of the equilibria. The details are
given in Appendix A and B.
The LAS of the equilibria obtained in Section 2

are
(i)
 E0 is unstable.

(ii)
 LAS of E1 implies the non-existence of E2 and E3.

(iii)
 Existence of a positive interior equilibrium (E�)

implies that E2 is unstable.

(iv)
 Existence of a positive E� implies that E3 is

unstable.

(v)
 The dynamical behaviour of system (3) around

the positive E� depends on the parameter values.
System (3) is locally asymptotically stable in
some region of parameter space, and shows limit
cycle oscillations at some other regions. Eq. (8)
gives the interval [lmin; lmax] for the force
of infection, l, within which E� exists.
Choosing l, as a bifurcation parameter, it can be
shown that
(v.a) For lolmin, E� does not exist as the infection

does not persist; and, for l4lmax the infection
rate is too high for E� to exist.

(v.b) The interval [lmin; lmax] contains a critical
value lcr, where a supercritical Hopf
bifurcation occurs. For l between lmin and
lcr, the interior equilibrium is asymptotically
stable. For l between lcr andlmax, a limit cycle
exists.
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800

Force of Infection (λ)

S

Fig. 1. Bifurcation diagram of S with increasing force of infection, l,
for growth rate a ¼ 5. X -axis is plotted in logarithmic scale to

highlight the short range of small values of l where the dynamics is in
equilibrium.
4. Numerical study of the system behaviour

The dynamics of system (3) around the positive
interior steady state has been numerically simulated
for a range of parameter values. The parameters
values used are taken from literature (Beltrami and
Carroll, 1994; Chattopadhyay and Pal, 2002). They
are

b ¼ 0:006; c ¼ 0:06; d ¼ 0:4; e ¼ 0:01; h ¼ 0:5

k ¼ 0:1; k1 ¼ 0:08:

These also satisfy the conditions k4c and k14e.
The growth rate (a) of the susceptible prey S and the

force of infection (l) are the two parameters that directly
influence the population density of the preys. Thus, we
have studied the dynamics of the system for a wide
variation in a (0oao12) and l (0olo3). The carrying
capacity (M) has also been studied by doubling its value
to show that the results are valid for fairly different
environments of the prey.
4.1. Dynamics of the system for increasing rate of

infection (l)

The dynamics of the susceptible prey population (for
a ¼ 5), around E�, for increasing l is shown in the
bifurcation plot in Fig. 1. The plot shows that the effect
of increasing l is two-fold.
(a) The infected phytoplankton population does not

persist below a minimum strength (threshold) of
infection (lmin), and hence, the disease does not spread
in the prey population. For l4lmin, there is a small
range of l (shown by thick line) where both the
susceptible and infected phytoplankton species co-exist
at equilibrium with their predator zooplankton.
(b) Increasing l further induces instability in the

system through a supercritical Hopf bifurcation at
l ¼ 0:20527. (This corresponds very well to the values
obtained from the analysis given in the Appendix.)
Limit cycle oscillations with fast increasing amplitude
are observed which attains a maximum at l 	 0:36.
Thereafter the amplitude of oscillation decreases with
increasing l, and, finally reduces to zero as l approaches
a high value (lmax) beyond which the fixed point E� does
not exist. Thus, there exists a range of force of infection
within which both the prey and predator populations
co-exist, and can exhibit large amplitude oscillations.
The figure also shows that the response of the

phytoplankton population to increasing force of infec-
tion is highly nonlinear and, a small increase in
infectivity at lower l induces a larger effect when
compared to the effect of a comparable increase at
higher values of l.
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Fig. 3. (a) Time series of S at three different values of force of

infection l (0.23, 0.4 and 0.7) for a ¼ 5. (b) Time period of oscillations

of S for different values of l for a ¼ 5.
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Fig. 2. Stability plot in the (l� a) parameter space. X -axis is in

logarithmic scale to delineate the small difference between lmin and lcr.
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4.2. Population stability in ðl� aÞ parameter space

Fig. 2 shows the stability of the system (Eq. (3)),
obtained through linear stability analysis, for variation
in both the force of infection (l) and the intrinsic growth
rate (a). Here l is plotted in logarithmic scale in the X -
axis, and lmin and lmax are obtained from Eq. (8). The
curves in Fig. 2 show the following results:
(a) Both lmin and lmax are increasing functions of the

growth rate a of the susceptible prey. The distance
between the two curves is finite for all non-zero, positive
and realistic parameter values (i.e., b; k40 and co1),
and increases with increasing a. Thus, this system of
phytoplankton (susceptible and infected) and their
predator zooplankton co-exist for a larger range of
values of the force of infection l for prey species with
higher growth rates. This result is valid for a wide range
of values of the other parameters (e.g., the carrying
capacity of the prey species (b), attack and utilization
rates of preys (c and e), and the death rate (d) of the
predators).
The infected prey I40 only for l4lmin, indicating

that there is a minimum threshold of the force of
infection for all a, below which the infected population
does not persist and hence the disease does not spread.
This threshold increases with increasing a. It may be
noted that this result is also consistent with the standard
epidemiological models such as, the SEIR models
(Anderson and May, 1991).
(b) There exists a critical value of the force of

infection, (lcr), between the lmin and lmax, where the
dynamics of the interior steady state E� goes through a
supercritical Hopf bifurcation (see Appendix A). Thus,
the system shows equilibrium dynamics for lminololcr,
and periodic dynamics for lcrololmax. The lcr line also
increases with a. The equilibrium dynamics in this
system is observed for a small range of force of
infection, and this range becomes narrower at higher
growth rates. Thus the predominant dynamics exhibited
by this system is oscillatory and hence, ‘‘bloom’’ is an
inherent dynamic property of this system.

4.3. Temporal evolution of the populations

The bifurcation diagram in Fig. 1 gives an indication
of the large variation in the amplitude of oscillations in
S at different values of l. In Fig. 3 we show the temporal
properties of S, i.e., amplitude and time period, for
different values of force of infection l for a ¼ 5. Fig.
3(a) shows the time series where the amplitude of
oscillations is higher for medium value of l (dot-dashed
line for l ¼ 0:4), compared to both low (continuous line
for l ¼ 0:23) and high (dotted line for l ¼ 0:7) values.
The maximum population size of S changes in a
nonlinear fashion with increasing force of infection. A
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Fig. 4. Time evolution of S, I and P for a ¼ 5 at (a) low force of infection, l ¼ 0:23, and (b) medium force of infection, l ¼ 0:4.
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small change in l at lower values leads to faster increase
in the maximum population size, whereas, it decreases
much slowly at higher values of l. Also, at medium and
higher values of l, the nature of the oscillations of the
phytoplankton population appears as sudden bursts
(‘‘bloom-like’’) separated by low population density for
long stretches of time.
The force of infection l also affects the frequency of

the periodic bursts in the phytoplankton population in a
nonlinear manner. Fig. 3(b) shows the variation in the
time period of oscillation in S with increasing l. It is
clear that the frequency of oscillation is quite high at
small and large values of l, but it maintains a fairly low
value for an extended range of force of infection. The
time period changes maximally only by 7 units in the
range of l between 0:3 and 0:95, whereas, a large change
of 14 units is observed from l ¼ 0:23 to 0.3. Thus,
within the range of the force of infection where the prey
and predator populations co-exist, the system primarily
shows burst-like oscillations with time period about 23
units.
Along with S, l regulates the abundance of the

infected phytoplankton and the predator zooplankton
population. Fig. 4 depicts the time series showing the
effect of increased l (l ¼ 0:23 and 0.4) on the abundance
of S, I and P for a ¼ 5. At low values of l (Fig. 4(a)), the
infected species I is present in very low amounts. In this
case the predator primarily predates on the susceptible
prey. The time period and amplitude of oscillations of S
and P are also small, and the population sizes show a
regular increase and decrease throughout the cycles. In
contrast to the above, even though the growth rate of
prey is the same as in Fig. 4(a), Fig. 4(b) shows that the
population of I grows quite rapidly, and both the preys
and predator reach high population size on increasing l.
The plankton population oscillations are burst-like and
occur with slower frequency. The population of the
infected prey peaks almost immediately after the
susceptible prey peaks, and the predator population
rises very rapidly with the growth of the prey species
inducing a sharp decline in population of the preys. The
predator population then decreases continuously in
response to low prey population. This trend continues
for an extended range of l values.

4.4. Modelling the natural ‘‘bloom’’ pattern

The phytoplankton ‘‘blooms’’ in nature (see Figs. 5(a)
and (b)) have irregular amplitude and time period. The
time series shown in Fig. 5(a) for the species Noctiluca

scintillans in German Bight shows clear isolated bursts
occurring fairly regularly (Uhlig and Sahling, 1992). The
time series in Fig. 5(b) of the diatom species (Tont,
1976), on the other hand, shows clusters of bursts with
unequal amplitudes and variable time period. The
population density is much higher for the species in
Fig. 5(b) in comparison to the one in Fig. 5(a). The
‘‘noisiness’’ in the amplitude of the phytoplankton
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Fig. 5. Phytoplankton ‘‘bloom’’ patterns: (a) Noctiluca scintillans in the German Bight from 1967 to 1983, and (b) Diatom abundance from 1920 to

1936. Simulated density of S for noisy l with mean at (c) 0.95, and (d) 0.4.
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blooms as seen in real data has been modelled by
Beltrami and Carroll (1994) using a forcing term
(temperature cycle-regulated growth rate of the prey),
which leads to chaotic oscillations. It is commonly
understood in theory that chaos can be achieved
through forcing an oscillating system. But advancing
such a reason for the irregularity in oscillation
amplitude requires some (experimental or empirical)
proof showing regular oscillations under constant
temperature.
Based on our results, we take a different approach,

and show that these real time series can arise from our
model under a simple but realistic assumption. From
Figs. 3 and 4 it is obvious that a range of medium
infectivity is responsible for periodic blooms in the
phytoplankton–zooplankton system, as very low and
very high values of l lead to severe reduction in the prey
and predator population sizes, and thus, may not be
evolutionarily selected. In a population of phytoplank-
ton cells, the force of infection (effectively decided by the
number of viruses in each infected cell) can vary due to
intrinsic noise in cellular processes (Bergh et al., 1989;
McAdams and Arkin, 1999) leading to variation in the
strength of infection around some mean value.
Given that the maximum of the amplitude depends
quite sensitively on l (see Figs. 1 and 2), small variation
in l can induce large changes in bloom amplitude. The
time-period does not change appreciably for medium
values of l (between 0.4 and 0.95), though it is quite
small for both low and high values of infectivity (see Fig.
3(b)). Thus, depending on the mean value of the
infectivity of the virus, the phytoplankton population
may exhibit different temporal patterns of ‘‘bloom’’ with
irregular amplitude and constant or variable time
period.
Figs. 5(c) and (d) show simulations from our model
(Eq. (3)) where l is varied randomly from an exponen-
tial distribution with mean l as 0.95 for Fig. 5(c) and 0.4
for Fig. 5(d). We use exponential distribution under the
assumption that infection is a Poisson process (Edel-
stein-Keshet, 1988), and that infected cells with high
values of l will be less likely to occur in a population.
Fig. 5(c) shows single bursts of small and varying
amplitude, and Fig. 5(d) shows clusters of small
amplitude bursts with large occasional peaks and
variable time period. It is clear from these figures that
different types of oscillations can arise in the same
system depending on the average strength of the viral
infection (or, host immunity). Lower mean l results in
clustered oscillations with high peak, whereas larger
mean l shows more periodic but unequal amplitude
single bursts. Our results thus show that the natural
phytoplankton blooms can arise from demographic
noise in l, and that the nature of these blooms may
change depending on the host (phytoplankton) and
virus species.
5. Discussion

Periodic nature of blooms i.e., the rapid onset and
disappearance of oscillations under supposedly favour-
able environmental condition, is one of the main
characteristics in plankton ecosystem. Reports of high
abundance of viruses in aquatic environments are
known for quite some time, and their role in regulating
the phytoplankton community structure and primary
productivity in oceans have been implicated (Bergh et
al., 1989, Suttle et al., 1990). That the recurrent
‘‘blooms’’ in different species of the primary producers
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may be due to life history changes induced by viral
infection is considered in this paper. We have used a
three variable Lotka–Volterra (LV) like system of
equations to model the phenomena and shown that
limit cycle oscillations, that is considered to underlie the
formation of bloom, can occur for a large region in the
parameter space.
Needless to say that viral infection is not the only

mechanism that can give rise to limit cycle oscillations in
a prey–predator system. There is a large body of
literature where the phytoplankton blooms have been
modelled using realistic modifications in the classical
prey–predator model by incorporating the nonlinear
functional responses of the phytoplankton–zooplankton
system or using environmental forcing. For example,
limit cycle oscillations can be found in a simple LV
system if the functional response of the predator
population is not constant but density dependent with
different nonlinear forms (Rosenzweig and MacArthur,
1963; Murray, 1989; Steele and Henderson, 1993).
Conditions for phytoplankton bloom development have
been extensively investigated in well-mixed aquatic
systems with homogeneous phytoplankton density using
integro-differential equations (Platt et al., 1991; Weiss-
ing and Huisman, 1994). The bloom dynamics under
incomplete mixing of phytoplankton, including spatial
patchiness, nutrient upwelling, species diversity, light
gradients and critical turbulence as is seen in oceans,
have also been studied (Edwards and Brindley, 1996;
Mathews and Brindley, 1996; Pitchford and Brindley,
1998; Huisman et al., 1999; Ebert et al., 2001). External
forcing can induce oscillations in a simple prey–predator
system (Inoue and Kamifukumoto, 1984). Ecological
communities are generally embeded in periodically
varying environments. It has been shown (Rinaldi et
al., 1993) that such periodic external forcing may lead a
classical prey–predator system into Hopf bifurcation,
period doubling, and chaos.
In this paper we proposed and analysed, both

analytically and numerically, a simple phytoplankton
(prey)–zooplankton (predator) system in which some
members of the phytoplankton population are infected
by a transmissible disease, thereby, forming a new group
(the infected prey), which is more vulnerable to
predation. This disease-regulated differential mortality
of the prey population leads to several changes in the
dynamics of this system.
When there is no infection affecting the prey

population, i.e., I ¼ 0, the three variable system
considered in Eq. (3) reduces to the simple two variable
prey–predator system with prey growing according to
the logistic growth law. Local stability analysis of the
non-trivial steady state (S�;P�40) shows that this
system is always stable for growth rate aX1. (Note that
the only possibility for oscillations to occur is when
b ¼ 0, or d ¼ 0, or e ¼ 1. Since the last two conditions
are not realistic, the condition b ¼ 0 points to an
environment where the carrying capacity of the prey
species is infinite. With this condition it then reduces to
the two variable classical Lotka–Volterra type prey–-
predator system which shows structurally unstable
periodic dynamics.)
We have obtained conditions for small amplitude

periodic solutions bifurcating from a positive interior
equilibrium by applying both mathematical and numer-
ical techniques. The stability as well as the direction of
bifurcation is obtained by applying the algorithm due to
Hassard et al. (1981) that depends on the centre
manifold theorem. We have then used numerical
simulation for a large range of parameters to study the
dynamics and persistence under increasing force of
infection. The role of disease in the prey population has
two major aspects. First, there is a minimum and a
maximum force of infection below and above which the
three species do not co-exist. Thus the disease does not
spread for lolmin. This kind of a threshold response is
known in epidemiology (Kermack and McKendrick,
1927), and is different from the earlier result (Beltrami
and Carroll, 1994) where even a minute amount of
infectious agent is shown to destabilize the otherwise
stable trophic configuration between a phytoplankton
species and its grazer.
Secondly, the dynamics of the coexisting populations

show stable dynamics for a small range of force of
infection. Increasing the force of infection destabilizes
the system through a supercritical Hopf bifurcation and
the populations show large amplitude ‘‘bloom’’ type of
oscillatory dynamics, as seen in the phytoplankton
populations in nature. Within the range of co-existence,
the predominant dynamics exhibited by this system is
oscillatory. Our results show that infection increases the
population burst in the phytoplankton species quite
dramatically, although the time period remains fairly
uniform for a large range of l. Thus the disease not only
induces and increases the oscillatory tendency in the
population, it also increases the maximum population
size of both the preys and the predator.
Finally we have shown that realistic assumption of

variability of infectivity among the cells can give rise to
phytoplankton blooms of the kind seen in nature. Given
the increasing reports on viral infection of phytoplank-
tonic communities, our theoretical study indicates an
important role of infection in the phytoplankton–zoo-
plankton system in inducing the blooms. These results,
therefore, urge that more attention be given to the
epidemiological aspects of these ecological systems.
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Appendix A. Local asymptotic stability (LAS) analysis

The local stability of system (3) around each of the
equilibria is obtained by computing the variational
matrix corresponding to each equilibrium.
The variational matrix around E�ðS�; I�;P�Þ is
V ðS�; I�;P�Þ ¼

a � 2bS�
� cP� � lI� � bI� �ðlþ bÞS� �cS�

lI� lS� � kP�
� h �kI�

eP� k1P
� �d þ eS� þ k1I

�

2
64

3
75;
The variational matrix for E0 is

V 0 ¼

a 0 0

0 �h 0

0 0 �d

2
64

3
75:

The eigenvalues are m1 ¼ a40;
m2 ¼ �ho0;m3 ¼ �do0, which shows that E0 is
unstable.
The variational matrix for E1 is

V 1 ¼

�a � la
b

� ca
b

0 la
b
� h 0

0 0 �d þ ea
b

2
64

3
75:

The eigenvalues are m1 ¼ �ao0; m2 ¼ ðla=bÞ � h,
m3 ¼ �d þ ea=b. From the above it is clear that LAS
of E1 implies the non-existence of E2 and E3.
The variational matrix for E2 is

V 2 ¼

�bd
e

�ld
e

�dc
e

0 ldc�kðae�bdÞ�hec
ec

0

ðae�bdÞ
c

k1ðae�bdÞ
ec

0

2
664

3
775:

The characteristic equation for E2 is

ldc � kðae � bdÞ � hec

ec
� m

� �
bd

e
þ m

� �
mþ

dðae � bdÞ

e

� �
¼ 0:

The eigenvalues are

m1 ¼
ldc � kðae � bdÞ � hec

ec
and the other two roots are given by

m2 þ mK1 þ K2 ¼ 0;

where K1 ¼ bd=e40; K2 ¼ dðae � bdÞ=e40:
It is clear from (5) that ldc � kðae � bdÞ � hec40, so

m140 and hence the existence of a positive interior
equilibrium implies that E2 is unstable. Note that non-
existence of a positive interior equilibrium ensures that
E2 is stable.
The variational matrix for E3 is

V 3 ¼

�bh
l �h �ch

l
al�bh

l 0 �kðal�bhÞ

l2

0 0 �dl2þehlþk1ðal�bhÞ

l2

2
664

3
775:
The characteristic equation for E3 is

V 3 ¼

�bh
l �

ðlþbÞh
l

�ch
l

al�bh
bþl 0 �kðal�bhÞ

lðbþlÞ

0 0 �dlðbþlÞþehðbþlÞþk1ðal�bhÞ
lðbþlÞ

2
664

3
775:

The characteristic equation for E3 is

�dlðb þ lÞ þ ehðb þ lÞ þ k1ðal� bhÞ

lðb þ lÞ
� m

� �

� m
bh

l
þ m

� �
þ

lþ bð Þh

l
al� bh

b þ l

� �� �
¼ 0

and hence the eigenvalues are

m1 ¼
�dlðb þ lÞ þ ehðb þ lÞ þ k1ðal� bhÞ

lðb þ lÞ
40

ðfor P�40Þ

and the other two roots are given by

m2 þ ml þ l0 ¼ 0

where,

l ¼
bh

l
40; l0 ¼

ðlþ bÞh

l
al� bh

b þ l

� �
40:

It is clear that existence of a positive interior equilibrium
implies that m140 and hence E3 is unstable.
Now, we shall study the dynamical behaviour of

system (3) around the positive interior equilibrium (E�).
We choose l as the bifurcation parameter. The interval
[lmin; lmax] within which E� exists is given by Eq. (7).
Here we show that in the interval [lmin; lmax], there exists
a critical value lcr, where a supercritical Hopf bifurca-
tion occurs. Thus under the conditions k4c and k14e,
and in the interval [lmin; lmax], the interior equilibrium is
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asymptotically stable between lmin and lcr. For l
between lcr and lmax, a limit cycle exists.
To find lcr, we use the variational matrix for E�

V� ¼

�bS�
�ðlþ bÞS� �cS�

lI� 0 �kI�

eP� k1P
� 0

2
64

3
75: ðA:1Þ

The characteristic equation is given by

m3� þ d1m2� þ d2m� þ d3 ¼ 0 ðA:2Þ

where

d1 ¼ bS�;

d2 ¼ kk1I
�P� þ l2I�S� þ ceS�P� þ lbS�I�;

d3 ¼ kk1bS�I�P� � kelS�I�P� þ clk1S
�I�P�

� kebS�I�P�: (A.3)

By the Routh–Hurwitz criterion, a set of necessary and
sufficient conditions for all the roots of (A.1) to have
negative real part is d140, d240 (which are obvious)
and d1d24d3 (a sufficient condition for this is ke ¼ ck1).
Also, d340 if k14e and ke ¼ ck1. Thus system (3) is
locally stable around the positive interior equilibrium
(E�) when ke ¼ ck1 along with k14e.
Necessary and sufficient conditions for Hopf bifurca-

tion to occur are that there exists a l ¼ lcr, such that

ðiÞ diðlcrÞ40; i ¼ 1; 2; 3;

ðiiÞ gðlcrÞ 
 d1ðlcrÞd2ðlcrÞ � d3ðlcrÞ ¼ 0

and

ðiiiÞ Re
dmj

dl

� �
l¼lcr

a0; j ¼ 1; 2; 3:

The condition d1d2 � d3 ¼ 0 is given by

H 
 bceP�S�2 þ bl2I�S�2 þ kelP�S�I� � clk1S
�I�P�

¼ 0: (A.4)

Since d240 at l ¼ lcr, there is an interval containing lcr,
say ðlcr � �; lcr þ �Þ for some �40 for which lcr � �40
such that d240 for l 2 ðlcr � �; lcr þ �). Thus for
l 2 ðlcr � �; lcr þ �), the characteristic Eq. (A.1) cannot
have real positive roots. For l ¼ lcr, we have

ðm2 þ d2Þðmþ d1Þ ¼ 0; ðA:5Þ

which has three roots m1 ¼ þi
ffiffiffiffiffi
d2

p
; m2 ¼ �i

ffiffiffiffiffi
d2

p
; m3 ¼

�d1:
For l 2 ðlcr � �; lcr þ �), the roots are, in general, of

the form

m1ðlÞ ¼ b1ðlÞ þ ib2ðlÞ;

m2ðlÞ ¼ b1ðlÞ � ib2ðlÞ;

m3ðlÞ ¼ �d1ðlÞ:
Now, we shall verify the transversality condition

Re
dmj

dl

� �
l¼lcr

a0; j ¼ 1; 2: ðA:6Þ

Substituting mjðlÞ ¼ b1ðlÞ þ ib2ðlÞ into (A.5) and calcu-
lating the derivative, we have

KðlÞb01ðlÞ � LðlÞb02ðlÞ þ MðlÞ ¼ 0;

LðlÞb01ðlÞ þ KðlÞb02ðlÞ þ NðlÞ ¼ 0; (A.7)

where

KðlÞ ¼ 3b21ðlÞ þ 2d1ðlÞb1ðlÞ þ d2ðlÞ � 3b22ðlÞ;

LðlÞ ¼ 6b1ðlÞb2ðlÞ þ 2d1ðlÞb2ðlÞ;

MðlÞ ¼ b21ðlÞd
0
1ðlÞ þ d 0

2ðlÞb1ðlÞ þ d 0
3ðlÞ � d 0

1ðlÞb
2
2ðlÞ;

NðlÞ ¼ 2b1ðlÞb2ðlÞd
0
1ðlÞ þ d 0

2ðlÞb2ðlÞ:

Since LðlcrÞNðlcrÞ þ KðlcrÞMðlcrÞa0, we have

Re
dmj

dl

� �
l¼lcr

¼
LN þ KM

K2 þ L2
jl¼lcr

a0

and

m3ðlcrÞ ¼ �d1ðlcrÞa0:

The stability and the direction of bifurcation is given in
Appendix B. These results are obtained by applying the
algorithm due to Hassard et al. (1981), which depends
upon the centre manifold theorem.
Appendix B. Stability of bifurcating limit cycle

We have already mentioned that we shall use the
centre manifold theorem to investigate the stability of
the limit cycles arising from Hopf bifurcation. It is
worthwhile to mention that the centre manifold theorem
is a powerful device for reducing the dimension of a
system of differential equations in the vicinity of an
equilibrium (for mathematical details and applications
of the theorem, see, Guckenheimer and Holmes, 1983;
Carr, 1981).
For the present system, given by Eq. (3), we find that

the variational matrix V� [see Eq. (A.1)] has real
negative eigenvalue and a pair of purely imaginary
eigenvalues at Hopf bifurcation. We may therefore
analyse this system on a two-dimensional centre
manifold. The flow transverse to the centre manifold is
relatively simple, i.e., exponentially contracting.
To describe the centre manifold and analyse the flow

therein, we first translate the origin of the coordinate
system to the equilibrium ðS�; I�;P�Þ by writing

S ¼ S � S�; I ¼ I � I�; P ¼ P � P�: ðB:1Þ
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Then Eq. (3) can be written in the form

d

dt

S

I

P

0
B@

1
CA ¼ V�

S

I

P

0
B@

1
CAþ

h1

h2

h3

0
B@

1
CA: ðB:2Þ

Here the variational matrix V� is given by Eq. (8) and
the nonlinear terms are

h1 ¼ �bS
2
� cP S � lI S;

h2 ¼ lS I � kP I ;

h3 ¼ eP S � k1I P:

At Hopf bifurcation, Eq. (A.3) holds and the eigenva-
lues of V� are m1 ¼ a and m2;3 ¼ �iw, where a ¼ �bS�;

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk1P

�I� þ l2I�S� þ ceP�S�

q
: ðB:3Þ

If the eigenvector of V� associated with m1 is W 1 and the
eigenvectors corresponding to m2;3 are W 2 � iW 3

(W 1;W 2 and W 3 real), then it can be shown that the
matrix R ¼ ðW 3;W 2;W 1Þ is non-singular. Furthermore

R�1V�R ¼

0 �w 0

w 0 0

0 0 a

0
B@

1
CA: ðB:4Þ

We find that

R ¼

wcS� �lkS�I� �lkS�I� þ caS�

wkI� lcS�I� þ bkS�I� clS�I� þ kI�ðbS�
þ aÞ

�wcS� �w2 � l2S�I� �aðbS�
þ aÞ � l2S�I�

2
64

3
75

ðB:5Þ

and

Q ¼ R�1 ¼
1

A1

q11 q12 q13

q21 q22 q23

q31 q32 q33

2
64

3
75; ðB:6Þ

where

q11 ¼ I�½abclS�2 þ ab2kS�2
þ a2clS� þ a2bkS�

þ w2ðclS� þ kbS�
þ akÞ � l2akS�I��;

q12 ¼ lS�I�ðabkS�
þ a2k þ alcS� þ kw2

Þ � caw2S�;

q13 ¼ akS�I�ðklI� þ c2lS� þ bcS�
Þ;

q21 ¼ �kwI�ða2 þ l2S�I�Þ þ bwS�2I�ðclþ bkÞ;

q22 ¼ wcS�ða2 þ l2S�I�Þ þ wblkS�2I�;

q23 ¼ wcS�2I�ðclþ bkÞ þ lwk2S�I�
2

;

q31 ¼ wkI�ðl2S�I� � w2Þ � wbS�2I�ðclþ bkÞ;
q32 ¼ wcS�ðw2 � l2S�I�Þ � lk2wS�I�
2

;

q33 ¼ �wcS�2I�ðclþ bkÞ � lk2wS�I�
2

and

A1 ¼ wða2 þ w2ÞS�I�ðlc2S� þ bckS�
þ lk2I�Þ:

We now use the linear transformation

S

I

P

0
B@

1
CA ¼ R

I1

I2

I3

0
B@

1
CA; ðB:7Þ

which can be written as

Z ¼ RW ; W ¼ R�1Z; ðB:8Þ

where Z ¼ ðS; I ;PÞT and R is given by (B.5).
Substituting (B.8) into (B.2) gives d

dt
ðRW Þ ¼

V�RW þ F1ðRW Þ where, F ðZÞ ¼ ðh1; h2; h3Þ
T which

implies that

dW

dt
ðR�1V�RÞW þ R�1F 1ðRW Þ; ðB:9Þ

where W ¼ ðI1; I2; I3Þ
T and R�1V�R is a constant

matrix given by (B.4).
Now we can write (B.9) in the following manner:

_x ¼ Ax þ F1ðx; yÞ;

_y ¼ By þ G1ðx; yÞ; (B.10)

where x ¼ ðI1; I2Þ
T; y ¼ ðI3Þ, A and B are the constant

matrices

A ¼
0 �w

w o

� �
; B ¼ ðaÞ ðB:11Þ

and F 1 and G1 are both C2 functions. System (B.9) can
now be written as

d

dt

I1

I2

I3

0
B@

1
CA ¼

0 �w o

w 0 0

0 0 a

0
B@

1
CA

I1

I2

I3

0
B@

1
CAþ Q

h1

h2

h3

0
B@

1
CA: ðB:12Þ

We now use the following two theorems.

Theorem 3. System (B.12) has a local centre manifold

y ¼ cðxÞ; xod where c is C2. The function cðxÞ can be

approximated arbitrarily closely as a Taylor series as

proved by the following theorem.

Theorem 4. Let f : Sn ! Sm be C1 in a neighbourhood

of the origin, fð0Þ ¼ 0;f0
ð0Þ ¼ 0 and MfðxÞ ¼ OðjxjpÞ as

x ! 0 where

MfðxÞ ¼ f0
ðxÞ½Bx þ G1ðx;fðxÞÞ� � AfðxÞ � F1ðx;fðxÞÞ

and p41. Then cðxÞ ¼ fðxÞ þ OðjxjpÞ as x ! 0.

Hence by following the result of Theorem 4 in the
present case the centre manifold up to a quadratic
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approximation, can be described by

I3 ¼ cðI1; I2Þ ¼
1

2
ðb11I

2
1 þ 2b12I1I2 þ b22I

2
2Þ þ h:o:t:

ðB:13Þ

where h.o.t. stands for higher-order terms.
Then it follows that:

dI3

dt
¼

dc
dI1

dc
dI2

� � dI1
dt

dI2
dt

 !
; ðB:14Þ

which leads to

ðb11I1 þ b12I2 b12I1 þ b22I2Þ
0 �w

w 0

 !
I1

I2

 !

¼ I21
a
2

b11 � q31bp211 � q31cp11p31 � q31lp11p21

h
þ q32lp11p21 � kq32p21p31

þ eq33p31p11 þ k1q33p21p31
�

þ I1I2½ab12 � 2bq31p11p12

� cq31ðp11p32 þ p21p12Þ

� lq31ðp11p22 þ p12p21Þ

þ lq32ðp11p22 þ p12p21Þ

� kq32ðp21p32 þ p31p22Þ

þ eq33ðp31p12 þ p11p32Þ

þ k1q33ðp21p32 þ p22p31Þ�

þ I22
a
2

b22 � bq31p
2
12 � cq31p12p22 � lq31p12p22

h
þ lq32p12p22 � kq32p22p32

þ eq33p32p12 þ k1q33p22p32
�
: (B.15)

Comparing the coefficients of the terms with I21; I1I2 and
I22 we obtain a system of linear equations for b11, b12 and
b22

�a=2 w 0

�w �a w

0 �w �a=2

0
B@

1
CA

b11

b12

b22

0
B@

1
CA ¼

Q1

Q2

Q3

0
B@

1
CA ðB:16Þ

where

Q1 ¼ � bq31p
2
11 � cq31p11p31 � lq31p11p21 þ lq32p11p21

� kq32p21p31 þ eq33p31p11 þ k1q33p21p31

Q2 ¼ � 2bq31p11p12 � cq31ðp11p32 þ p21p12Þ

� lq31ðp11p22 þ p12p21Þ þ lq32ðp11p22 þ p12p21Þ

� kq32ðp21p32 þ p31p22Þ

þ eq33ðp31p12 þ p11p32Þ

þ k1q33ðp21p32 þ p22p31Þ

Q3 ¼ � bq31p
2
12 � cq31p12p22 � lq31p12p22

þ lq32p12p22 � kq32p22p32

þ eq33p32p12 þ k1q33p22p32:
We easily find that

b11 ¼ �
½w2ðQ1 þ Q3Þ þ

a
2
ðwQ2 þ Q1aÞ�

ða
3

4
þ w2aÞ

b12 ¼ �
½
a2Q2

4
þ wa

2
ðQ3 � Q1Þ�

ða
3

4
þ w2aÞ

b22 ¼ �
½a

2

2
Q3 �

a
2

wQ2 þ w2ðQ1 þ Q3Þ�

ða
3

4
þ w2aÞ

: (B.17)

Then the flow on the centre manifold is governed by the
two-dimensional system

_x ¼ Ax þ F ðx;cðxÞÞ: (B.18)

The next theorem, called the centre manifold theorem,
tells us that (B.18) contains all the information needed
to determine the asymptotic behaviours of solutions of
(B.10).
Theorem 5. Suppose that the zero solution of (B.18) is

stable (asymptotically stable) (unstable), then the zero

solution of (B.10) is stable (asymptotically stable)
(unstable).

(For the proofs of Theorems 3–5 see Carr, 1981).
In detailed form, (B.18) can be written as

d

dt

I1

I2

� �
¼

0 �w

w 0

� �
I1

I2

� �
þ

f 1

g1

� �
ðB:19Þ

where

f 1 ¼ q11h1 þ q12h2 þ q13h3 þ h:o:t

g1 ¼ q21h1 þ q22h2 þ q23h3 þ h:o:t

with

h1 ¼ � bðp11I1 þ p12I2Þ
2
þ bp13Aðp11I1 þ p12I2Þ

�
þ cðp11I1 þ p12I2Þðp31I1 þ p32I2Þ

þ
cAp33
2

ðp11I1 þ p12I2Þ þ
cAp13
2

ðp31I1 þ p32I2Þ

þ lðp11I1 þ p12I2Þðp21I1 þ p22I2Þ

þ
lAp23
2

ðp11I1 þ p12I2Þ

þ
lAp13
2

ðp21I1 þ p22I2Þ

�
;

h2 ¼ lðp11I1 þ p12I2Þðp21I1 þ p22I2Þ

þ
lAp13
2

ðp21I1 þ p22I2Þ
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þ
lAp23
2

ðp11I1 þ p12I2Þ

� kðp31I1 þ p32I2Þðp21I1 þ p22I2Þ

�
kAp33
2

ðp21I1 þ p22I2Þ �
kAp23
2

ðp31I1 þ p32I2Þ;

h3 ¼ þ eðp31I1 þ p32I2Þðp11I1 þ p12I2Þ

þ
eAp13
2

ðp31I1 þ p32I2Þ

þ
eAp33
2

ðp11I1 þ p12I2Þ

þ k1ðp21I1 þ p22I2Þðp31I1 þ p32I2Þ

þ
k1p23A

2
ðp31I1 þ p32I2Þ þ

k1Ap33
2

ðp21I1 þ p22I2Þ;

A ¼ b11I
2
1 þ 2b12I1I2 þ b22I

2
2:

The stability of the limit cycle arising from a Hopf
bifurcation is determined by the sign of the quantity

B ¼ f 111 þ g112 þ f 122 þ g222 þ
1

w
½f 12ðf 11 þ f 22Þ

� g12ðg11 þ g22Þ � f 11g11 þ f 22g22�; (B.20)

where f ij denotes the partial derivative @
2f =@I i @I j at the

origin and the quantities with three subscripts represent
third-order partial derivatives. For example, g112 ¼

@3gð0; 0Þ=@I21@I2 and so on. If Bo0; the bifurcating limit
cycle is stable and the Hopf bifurcation is called
supercritical; if B40, the limit cycle is unstable and we
have a subcritical Hopf bifurcation. Calculations show
that

f 111 ¼ � q11½6bp13p11b11 þ 3cp11p33b11 þ 3cp13p31b11

þ 3lp11p23b11 þ 3lp13p21b11�

þ q12½3lp13p21b11 þ 3lp11p23b11 � 3kp21p33b11

� 3kp23p31b11�

þ q13½3ep13p31b11 þ 3ep11p33b11

þ 3k1p23p31b11 þ 3k1p33p21b11�; (B.21a)

g112 ¼ � q21½2bp13p12b11 þ 4bp13p11b12 þ cp12p33b11

þ 2cp33p11b12 þ cp13p32b11 þ 2cp13b12p31

þ lb11ðp23p12 þ p13p22Þ þ 2lb12ðp23p11 þ p13p21Þ�

þ q22½b11ðlp13p22 þ lp23p12 � kp22p33 � kp23p32Þ

þ 2b12ðlp13p21 þ lp23p11 � kp33p21 � kp23p31Þ�

þ q23½b11ðep13p32 þ ep33p12 þ k1p23p32

þ k1p33p22Þ � 2b12ðep13p31 þ ep11p33

þ k1p23p31 þ k1p21p33Þ�; (B.21b)
f 122 ¼ � q11½4bp12p13b12 þ 2bp13p11b22 þ 2cp33p12b12

þ cp33p11b22 þ 2cp13p32b12 þ cp13p31b22

þ 2lb12ðp23p12 þ p13p22Þ þ lb22ðp23p11 þ p13p21Þ�

þ q12½2b12ðlp13p22 þ lp23p12 � kp33p22 � kp23p32Þ

þ b22ðlp13p21 þ lp23p11 � kp33p21 � kp23p31Þ�

þ q13½2b12ðep13p32 þ ep33p12 þ k1p23p32

þ k1p33p22Þ þ b22ðep13p31 þ ep33p11

þ k1p23p31 þ k1p33p21Þ�; (B.21c)

g222 ¼ � 3q21½2bp12p13 þ cp33p12 þ cp13p32

þ lðp23p12 þ p13p22Þ�b22 þ 3q22b22½lp13p22

þ lp23p12 � kp33p22 � kp23p32� þ 3q23b22

�½ep13p32 þ ep33p12 þ k1p23p32 þ k1p22p33�;

(B.21d)

f 12 ¼ � q11½2bp11p12 þ cp12p31 þ cp32p11 þ lp11p22

þ lp12p21�

þ q12½lp12p21 þ lp11p22 � kp32p21 � kp31p22�

þ q13½ep32p11 þ ep31p12 þ k1p22p31 þ k1p21p32�;

(B.21e)

g12 ¼ � q21½2bp11p12 þ cp12p31 þ cp32p11 þ lp11p22

þ lp12p21�

þ q22½lp12p21 þ lp11p22 � kp32p21 � kp31p22�

þ q23½ep32p11 þ ep31p12 þ k1p22p31 þ k1p21p32�;

(B.21f)

f 22 ¼ � 2q11p12½bp12 þ cp32 þ lp22�

þ 2q12p22½lp12 � kp32�

þ 2q13p32½ep12 þ k1p22�; (B.21g)

g22 ¼ � 2q21p12½bp12 þ cp32 þ lp22�

þ 2q22p22½lp12 � kp32�

þ 2q23p32½ep12 þ k1p22�; (B.21h)

f 11 ¼ � 2q11p11½bp11 þ cp31 þ lp21�

þ 2q12p21½lp11 � kp31�

þ 2q13p31½ep11 þ k1p21�; (B.21i)

g11 ¼ � 2q21p11½bp11 þ cp31 þ lp21�

þ 2q22p21½lp11 � kp31�

þ 2q23p31½ep11 þ k1p21�: (B.21j)

The sign of B can be deduced by evaluating the various
quantities in Eqs. (B.21) in terms of the system
parameters b; c; l; k; e and substituting the resulting
expressions into Eq. (B.20).
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