
?ankhy? : The Indian Journal of Statistics 
1992, Volume 54, Series A, Pt. 2, pp. 198-214 

RATES OF CONVERGENCE TO NORMALITY 
FOR SOME VARIABLES WITH ENTIRE 

CHARACTERISTIC FUNCTION 

By RATAN DASGUPTA 

Indian Statistical Institute 

SUMMABY. Nonuniform rates of convergence to normality are studied for standardised 

sum of independent random variables in a triangular array when m.g.f. of the random variables 

necessarily exist but the r.v's may not be bounded. The assumed condition (2.1) implies that 

each variable has an entire characteristic function of order < 2. As application of these results, 
rates of moment type convergences and non-uniform Lp version of Berry-Esseen theorem are 

obtained. The results are generalised to the general non-linear statistics. As for example 
linear process is considered. 

1. Introduction 

Consider a double sequence {Xni : 1 < i < n, n > 1} of r.v's where 

variables in each array are independently distributed and satisfy EXni 
= 0. 

Then defining 

8n = S Xni, s*= S EXli and Fn(t) = Pfa1 Sn < t) 
? ? i ? = i 

we have, under very moderate assumption that Fn-* <]>. In i.i.d case the 

uniform rate of convergence of \Fn(t)?<b(t)\ to zero is provided by classical 

Berry-Esseen theorem and was later extended by Katz (1963). 

Through very helpful, these uniform rates are inappropriate for many 

purposes, e.g. since Fn ==? <?> it is natural to ask when does a Lp version of 

Berry-Esseen theorem holds, or given that Eg(T) < oo where y is a normal 

deviate and g is a real valued non negative, even and non decreasing 
function over [0,oo), when does \Eg(s?1 Sn)?Eg(T) |-> 0 and at what rate? 

Note that Eg(T)<oo if g(x) = 0((l+ \x\)~? exp(#2/2)) for some 8 > 1. 

We explain further in the followings. 

Consider the double sequence Xni which along with EXm 
= 0 also 

satisfies 

sup rr1 S EXli g(Xni)< oo ... (1.1) 
n>l <=1 

where g is non negative, even, non decreasing on [0, oo). 
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The whole spectrum of g can be broadly classified into three categories : 

(i) g(x) <^ \x\k for some k > 0. 

(ii) | x | * <^ g(x) ̂  exp(s1 a? | ), V & > 0 and some s > 0 

(iii) gr(#) ̂> exp (s|#| ), Y s > 0. 

The first case where a finite moment higher than second exists has been 

dealt by various authors. Von Bahr (1965) considered convergence of 

moments with g(x) 
= 

\x\c, c > 0. Michel (1976) derived non-uniform rates 

with same g in i.i.d case and used these to find a normal approximation zone, 

i.e. a zone of tn where 1?Fn(tn) 
~ O (?t J 

~ 
Fn(?U> V"*00 md to 

find out rate of moment convergences. His results were extended to 

triangular array of independent random variables with slightly more general 

g by Ghosh and Dasgupta (1978), the results were also extended to 

non-linear statistis in general. A non-uniform Lp version of Berry Esseen 

theorem was also derived. 

The situation (ii) has also been studied extensively, e.g., see Linnik 

(1961, 62), Nagaev (1979) in the intermediate case and under the assumption 
of existance of m.g.f by Chernoff (1952), Plachky (1971), Plachky and 

Steinebach (1975), Bahadur and Rao (1960), Statulevicius (1966), Petrov 

(1975) etc. That the necessary and sufficient assumptions for the normal 

approximation zones are the same is shown in Dasgupta (1989) with allied 

results. 

In this paper we study the situation (iii) when m.g.f. of the r.v's exist 

but the r.v's may not be bounded. We only partially cover the spectrum 

(iii) as it turns out that better result may not be possible in general even when 

the r.v's are bounded, see remark 1. Also since it is known that normal 

approximation zone, i.e., the zone of tn such that 1?Fn(tn)^^0(?tn)^Fn(?tn) 

tn??oo, cannot be extended in general, even for bounded r.v's compared to 

weaker assumption of the existance of m.g.f. (see e.g. Feller p-520, (6.21)) 
we shall not proceed to study normal approximation zone in this case which 

has already been considered in Dasgupta (1989). 

We shall assume without loss of generality 

J0Xn< = 
0Vn> 1, 1 <?<n ... (1.2) 

and 

lim nr1 si > 0 where ?J = 2 E X% ... (1.3) ? 
t-i 

A 2-9 
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With the assumption that all the odd order moments are vanishing i.e., 

EX2n?+l 
= 

QVn> 1, 1 <i<n,ro= 1,2,3,... ... (1.4) 

we shall show that a sharper result is possible. As one may note this is satis 

fied for symmetric r.v's. 

In section 2 we prove the results for independent r.v's in a triangular 

array and these are generalised to non linear statistics in Section 3. As for 

example linear process is considered in Section 4. The implications of the 

assumptions made and some examples are discussed in Section 5. 

2. The results on the row sums of random variables 

in a triangular array 

We start with the following theorem : 

Theorem 2.1. Let {Xni 
: 1 "^ ? < n, n > 1} be a triangular array of 

r.v's where variables within each array are independent and satisfy (1.2)?(1.4) 
and 

sup {nlsSp? S EXff?<l-m (2m)!/m! 

1<Z< 2, m = 2, 3,... ... (2.1) 

then there exist a constant b (> 0) such that 

\Fn(t)-Q>(t)\ < b exp (??2(1?Z-1)), -oo < t <oo. ... (2.2) 

Remark 1. The bound in (2.2) cannot, in general, be substantially 

improved even for bounded r.v's is evident from the fact that Fn(t)?0(?) 
= 1 ? 

?>(?) for t>a w1/a, W being sufficiently large and -X"m's bounded. 

~ 
(277)-^ i"1 exp(-?2/2), ?-> oo. 

For a particular r.v X, (2.1) implies E exp(cZ2) < oo for some c > 0, which 

in turn implies that the c.f of X is an entire function of order < 2, possibly 

having zeroes (see Feller, 1969, 498-499). In the followings b represents a 

generic positive constant. 

Proof of the theorem. Since 1?$(?) < frM""1 exp(?i2/2) sufficient to 

show that 

Pis;1 Sn > t) < exp (?|i(l??-i)), t > 0. ... (2.3) 

Now 

Pf?1 Sn >t)< ? ?i exp(-?8nt) ... (2.4) 
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where . 

# 
= 

#[exp(A?^],i==l,2,...,*K ... {2.5) 

Let h = t?sn then 

(M) P(s?Sn>t)< ( 
H 

?) exp (-**). 

Now 

n /?, < exp (A2 4/0 ... (2.7) 
?=i 

since 

n ^ 
OT=0 (2m)! \ n w / m-o \ w / m! 

from (1.4) and (2.1). Hence (2.3). 

Remark 2. K odd order moments are non-zero, still we may have 

/?, < JB(a"** + e~AXni) < 2 S 
-^ ??Zl? 

??=o \?m>) 
' 

Pfi-'S.XX^expKl-l-')). 
... (2.8) 

Hence we have the following. 

Theorem 2.2. // the assumption (1.4) is omitted in Theorem 2.1 then 

\Fn(t)-?(t) \<b2* exp (-ji(i-J-i)) ... (2.9) 

In the following we continue to assume that odd order moments are 

zero, our next theorem states moment type convergences of Yn 
= 

\s~l 8n\ 

to that of r= |^(0,1) |. 

Theorem 2.3. Let the assumptions of Theorem 2.1 alongwith inf n~x s\\ > 0 

be satisfied, let g : (?oo, oo)-> [0, oo), g(x) even, g(0) = 0 be such that E g(T) < oo 

and 

g'(x) 
= 0 {(1+a;)-1-* exp(x2(l--fr*))}, a; > 0, ? > 0. ... (2.10) 

Then 

\Eg(Yn)-Eg(T\ 
= 0(n~>*) ... (2.11) 

**= 
13+(?F1) 

A 
2"} 
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Proof. Under (2.1) since the m.g.f. of Xni exist (as ?i < oo for fixed h) 

we have, in view of inf n"1 s2 > 0 and (1.4) with m-?= 1, by an application 

of Theorem 2.2 of Dasgupta (1989), 

I *??)-*(*) I < b exp(-*2/2)r?, 0 < \t\ < Mn ... (2.12) 

where rn 
= 

(rr1 Mi) V (n'1*), Mn 
= 0 (nV*). 

To see this note that from (2.6) of Dasgupta (1989) for 0 < t < aw,1/4 where 
a > 0 one has | ? | 

~x 
\exv(0(n-1t*))-l\ 

= 0(*-V) = Ofo-1^) with *< 
at*1'4 = 

0(itfn). In the same region of t, exp(?i^+O^-V))^2 < 6 exp 

(-?2/2)^-1/2 and S P(|-Xm| > r*J*|)< &M~2 e"'***1'2 for some r* > 0 

-J2/2 
since m.g.f. exists < bn~1/2 e f or ? < anlf*. 

Again from Theorem 2.1, 

|J?(*)-*(*)I < ftexpf-^l-Z-1)), Jf. < |/| <oo. ... (2.13) 

Hence with the representation 

\Eg(7n)-Bg{T)\ < J flr'WIPik^?J <t)-P(\N(0, 1)| <*)| A 
o 

and that 
(2.14) 

J (1+x)-1-6 dx<oo, J (l+o;)-1^ dx = 0(M;6) 
o Mn 

we have 

\Eg(Yn)-Eg(T)\ = 0(rn)+0(M;*) ... (2.15) 

Equating the order of M;5 and rn, the result follows. 

The following theorem provides a non uniform Lq version of the 

Berry-Esseen theorem. 

Theorem 2.4. Under the assumptions of theorem 2.1 for any g> 1 

Hexp^l-l-1)) (1+ Ml)-***? (Fn(t)-d>(t))\\q 
= 0(n"?*) ... (2.16) 

where S > 0 and 8* is defined in Theorem 2.3. 

Remark 3. The bound in (2.16) is quite sharp. For symmertic point 

binomial variable this asserts 

exp(~)(l+1* | )-<8+W(j.n(0_4,(0) = 
O??-1/2) 
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whereas the weaker known result given in Bhattacharya and Rao (1976) 
states 

l^0-*?l<exp(-?) 
The proof of (2.16) follows along the lines of theorem 2.3 expressing l.h.s. of 

(2.16) in integral form. 

Next we consider moment convergences and Lq version of the Berry 
Esseen theorem when the assumption (1.4) is not satisfied i.e., odd order 

moments are non-zero. 

Theorem 2.5. Let the assumptions (1.2), (1.3) and (2.1) be satisfied. 
Then for any g : (-co, oo)-? [0, oo), g(x) even g(0) 

= 0 such that E g(T) < oo 

and 

g'(x) 
= 

O(exp(x*v)),x>0 ... (2.17) 

and 0 < v < min(c*9 (1?Z-1)) 
= v* the following holds 

\Eg(Yn)-Eg(T)\=0(n-W) ... (2.18) 

c*( > 0) being a constant depending on distributions of {Xni}, via 

c" = min sup ? S [(2r?3)E\Xni\Hxp(2r\Xni\ )-l]r. 
0<r<? n*ln <=1 

1 n 

[Note that since k(r) = sup 
? 2 E \ Xni | 3exp(2r | Xni \ ) t oo as r t oo there 

n^l n ?-1 

3 
exists a r* such that r* = .,, ? , hence c** < ? 

r*/2 < 0. 
4Jc(r *) 

Proof. First of all we shall show 

\Fn(t)-<t>(t)\ Orr^expi-/*2), -oo <t<oo ... (2.19) 

then the theorem will follow from (2.17) with the representation (2,14) 

Without loss of generality let t < 0. Since the m.g.f. of Xn exist under 

(2.1) delating the last term of r.h.s. of (2.2) Theorem 2.1, of Dasgupta (1989) 

and following the proof of Theorem 2.6 of Dasgupta (1989) we have 

I Fn(t)- O (t) | < b n~112 exp(-a?2) ... (2.20) 

for t2 > (p-2a)-1 log n, 0< a 
<-|, 

0 < p< 1 and t < f(p)n^2 where f(p) > 0. 

Similarly for t2 < (p?2a)-1 log n from theorem 1 of Ghosh and Dasgupta 
(1978) choosing c therein sufficiently large, 

I *.(*}- *\t)\< bn-1'2 expi-o^),0<a1 < 
\. 

... (2.21) 
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There c is taken to be sufficiently large to make (p?2a)-1 < cK]2 and the 
order of the second term of (2.1) of Ghosh and Dasgupta (1978) is 

lp(\Xni\<rsn\t\)^b\t\ -H-{rm)2 ct& see (5.1), (5.2) ; 0 < c < ?/4. 

< bt~2 e~rcnt2 

< bn-1'2 e-t2l2} for t2 < (p-2a)-1 log n. 

Also from Theorem 2.2 

\Fn(t)- <t> (t) | < b 2? exp(-?2(l-Z-i) 

> 6 ?i-1/2 exp (-a2i2), a2 > 0 ... (2.22) 

if ?2 > ?2 n for some ? depending on I and a2, 0 < a2 < (1??-1). 

Finally for the zone f(p)n112 < t < ? w1/2 we imitate the proof of 

Theorem 2.5 of Dasgupta (1989) with g(x) = 
exp(|#|) and h = 2H$-J log 

(ty(r*nO) == 2r, 0 < r < oo to obtain 

I Fn?-*? \<b{t g(rsnt)}-MMr)/s 

< b er,?'(2f*(')/3-D 

where k(r) is defined in the Theorem 2.5 

< 6 eV**, c** < -^*/2 < 0 ; ... (2.23) 

So for /(p) n1'2 <t<\ nW, t = 
0e(n^2) 

= 
0e(sn), one gets 

\Fn(t)-<!>(t)\ <6r1/2e-^2J ... (2r24) 

c* > 0 depends on c** and A. (2.19) follows from (2.20), (2.21) and (2.24). 
Hence the theorem. 

The following corrollary on a nonuniform LQ version of Berry-Esseen 

theorem is also immediate from (2.19). 

Corrollary 2.1. Let the assumptions (1.2), (1.3) and (2.1) be satisfied. 

Then for any S > 1 and q > 1. 

||(1 + I #I)-*/^ ea9 (vV) (jpA(#)_0 (#))||ff = 0(m-^) ... (2.25) 

where v* is defined in Theorem 2.5. 

3. Rates of convergence for general non-linear statistics 

This section generalises the results of section 2 for non-linear statistics 

of the form 

Tn 
= 

s-iSn+Bn 
... (3.1) 

where Sn 
= S Zn?, s2 = S ?7Z2,, inf tt1*2 > 0 
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Xnl, Xn2, ...,Xnn being independent r.v's with vanishing expectation. Also 

let 

E(R*m) < c(2m) n~m (log n)n ... (3.2) 

for some h > 0, m = 1, 2, 3 ... where c(2m) < Lm m ! for some L > 1. It 

may not be out of place to mention that similar type of analysis are carried 

out for Tn with c(2m) = 0(1) for some m > 1 in Ghosh and Dasgupta (1978) 
and with c(2m) < Lm (2m) ! in Dasgupta (1989). 

Because of (3.2) with c(2m) < Lm m ! we have the following 

sup #[exp (An1/2 (log ft)-?/a|J?j) 
1 

1+ S (A 7i1/2 (log n)~h/2 ) ER*mlm ! 1 
m=i \ / J 

< 1+ S (A L)2 < oo if 0 < A < L-1. ... (3.3) 
w=i 

Consequently 

P(\Bn\ > an(t)) = 0 
(exp (-(An*'? (log n)-?? 

an(t)f) ), 
0< A < L-*. 

... (3.4) 

Also note that due to representation (3.1) 

|P(Tn < t)-0 (t)| < \P(s^ 8n < t+an(t))-m?an(t)) \ 

+ \<?>(t?an(t))-^(t)\+P(\RJ>an(t)). ... (3.5) 

w.o.l.g. let t > 0 ard take an <t) 
--= n~v% (log w)<?+1)/21 A"1 then 

| P(Tn < i)-<& (01 < t> n~1/2 & exp(-i2/2)+6 a"1? 

(logtt)<?+1>/2?exp(-?2/2)+&Kr1/2 exp(-?2/2) ... (3.6) 

for ?2 < & log ?, using Theorem 2.1 of Dasgupta (1989) and (3.4), where k may 

be taken to be arbitrarily large. 

For i2 > k log ft, under the assumptions of Theorem 2.1 one has, using 

(2.2) and (3.5) with the same choice of aH(t) as above 

\P(Tn < *)-*(*)| < b n-1'2 exp?-?^l-Z-1)^) 

+b n-1'2 (log n)<*+ *f>xp{-P?2) 

+b rr1/2 exp(-i2/2) ... (3.7) 

where 0<p<l since exp(?i^l?f-^X ?-1/2 exp(-i2(l?i"1^) if 

<a > (2o(l?jj))-1 log ?, which can be ensured choosing k sufficiently large. 
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As a consequence of (3.6) and (3.7) we have the following non-uniform 

bound over the entre range of t. 

Theorem 3.1. Under the assumptions of Theorem 2.1 and (3.1), (3.2) there 

exists a connstant b( > 0) depending on 0 < p < 1 such that 

[P(Tn < t)-4> (t) | < b n-v2(log n)^1"2 exp^t^l-l-^p), -oo < t < oc. 
... (3.8) 

Subsequently the following two theorems are immediate from (3.8) taking 

p>p*. 

Theorem 3.2. Under the assumptions of Theorem 3.1 for any g : (?oo, oo) 
-> [0, oo), g(x) even, such that Eg(T) < oo, ^(0) 

= 0, T = 
N(0,1) and 

g'(x) 
= 0 (exp(x2(l-l~1)p*)), 0<x< ... (3.9) 

and for some p*, 0 < p* < 1, the following holds 

|Eg(Tn)-Eg(T) \ = 0 (n~^2(log n) o^'2). ... (3.10) 

Proof of the above follows from (3.8) along the lines of (2.14) since the 

representation (2.14) remains valid even if Yn 
= s"1 Sn is replaced by a general 

nonlinear statistics Tn converging weakly to a N(0,1) variable T. 

Theorem 3.3. Under the assumption of Theorem 3.1 

\\exp(t2(l-l-i)p) {P{Tn < t)-d>(t)\\q 
= 

0(n-1/2(logn)<h+1)'2)foranyq^ land0<p< 1. ... (3.11) 

Next we consider the case when odd order moments of Xnt are non-vanishing. 
As before for t2 < k log n it is possible to obtain (3.6). However for 

t2 > k log n one may use (2.19) in (3.5) with the same choice of an (t) viz., 

an(t) 
= 

ftr^log nyh+1)/2 111 A"1 to obtain 

\P(Tn < *)-<D(*)| < bn-1'2 exp(-v*?2) 

+&7?r1/2(log n) u^'2 
111 exp (-?2/2) +bn~1/2 exp(-?2/2) ... (3.12) 

For t2 > k log n, where v* is defined in Theorem 2.5. Hence combining (3.6) 
with (3.12) it is possible to obtain the following non-uniform bound. 

Theorem 3.4. Under the assumptions (1.2), (1.3), (2.1), (3.1) and (3.2) 
there exists a constant b ( > 0) such that 

| P(Tn < J)-* (t)\ < b n-1'2 (log n) <*+?/? 
\t\ exp (-v*t2), -oo < t < oo 

where v* is defined in Theorem 2.5. ... (3.13) 
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Hence we have the following theorem from the representation (2.14) 

and (3.13). 

Theorem 3.5. Under the assumptions of Theorem 3.4 and g satisfying the 

conditions of Theorem 2.5, the following holds 

| Eg(Tn)-Eg(T) | 
= 0(n~1/2 (log n) <*+?/*). ... (3.14) 

The next theorem is also immediate from (3.13). 

Theorem 3.5. Under the assumptions of Theorem 3.4, for any S > 2 

||(1+ 11| )-"? exp(v* t2) (P(Tn < ?)-<D (?))||, 
= 

0(n~v2(log n)M+1)/2) ... (3.15) 

for any q ^ l^where v* is defined in Theorem 2.5. 

4. Rates of convergence for linear processes 
00 

For a sequence of constants a? with S a2 < oo consider 

30 00 

Xn= 2 ailn-i+i orIn= 2 o^?.^! ... (4.1) 
*=1 i=l 

where ?*'s are pure jwhite noise, w.o.l.g. assume EZ = 0 and E ?2 = 1. 

Under the assumption of finiteness of (C2+2)th moment of |Babu and Singh 
or 

(1978) proved the moderate deviation result decomposing the sum Sn 
= 2 Xi 

?-i 

as follows 

Sn = 
?X?+ I (Xi-Xu) ... (4.2) 

where i=1 i==1 

m 

The representation (4.2) is clearly of the type (3.1). Now assume 

#??"< f-?(2m) !/m!. ... (4.3) 

Then by Minkowski's inequality 

E 
n 
2 (X??Xu) 

2m i oo V 2W 
2 

for some L > 0 assuming 

(oo 

v 2m 
2 i|?<| El\m <L m! ... (4.4) 

S t|<K| <oo. ... (4.5) 

n n ? 

Again for S'n 
= S X? = S ?w_<+1 & 

~ 2 ** ?< 

a 2-10 
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where 
i 

ti = 2 aj 
;=i 

one may use the results of section 2 for the independent r.v's i|&. Observing 
that 

? 2 ?2m->Z2 ... (4.6) n ?=al 

where 

which for m = 1 implies lim w-1 F(?Q 
= Z2, one may also check that (2.1) 

with sup replaced by lim is satisfied for r.v's t% ?| under the assumption 

(4.3). Normalisation of Sn in (4.2) may be done by [V(Sn)]~1/2 since for 

nZ\ 
= 

V(8'n), \Z\-Z2\ -=0(n-x) as shown in Babu and Singh (1978). 

Therefore from (4.2) 

[V(8n)rw sn = msjr s?+nn ... (4.7) 

where 

Rn 
= ms?)Ym s (J,-z?) 

satisfies (3.2) with A = 0. Consequently all the results of Section 3 hold for Sn. 

5. Discussion and some examples 

The assumption (2.1) imples that each of the random variables in the 

triangular array has an entire characteristic functon. To see this write 

cn = 
(sfjn)1/2, cn > 0 Y n. Then from (2.1) one gets for c> 0 

sup n-1 S E exp(c(Xntlcn)*) = nr1 S (l+ S E c (Xnilcn)2mlm ! ) 

= 1+ S (tt1 S Ec^(Xnilcn)2^lm ! ) < 1+ S t??J-?(2m) !/(m !)2? ... (5.1) 

Since for large m, m ! ~ 
(27r)1/amw+1/2 e~w the above sum is finite if c is suffi 

ciently small e.g. if 0 < c < i/4, 1 < I < 2. This is turn states that there 

exist c* = c*n 
? 

c\c\ > 0 for which 

E exp(c* ZJi) < 00, ? = 1, ...,n ... (5.2) 
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which implies that the characteristic function of Xni is an entire function 

of order < 2 (see page 498, Feller Vol. II) ; (5.2) also specifies the tail behaviour 
of the distribution of Xnf. 

P(\Xni\ >x) 
= 

o(exp(-c* x2)), #~>oo. ... (5.3) 

Some examples are provided below where (2.1) are satisfied. 

Example 1. Xm are uniform on the range [?kni, kni\ where kni e[a, b] 

a, b > 0 are to be specified later. Then 

EX^k 
= k2TI(2m+l). 

The l.h.s. of (2.1) in this case turns out to be 

sup (n-1 
2 

?2r/(2m+l)) 
+ 

(nr* 
S 

^ ) 
< 

-?^ 
(b/afm ... (5.4) 

Require it to be ^ l~m (2m) \\m ! so that (2.1) is satisfied. Therefore one may 

require 

' 
,. (l~1/2(b/a))2 < (2m) \\m\ m = 2, 3, 4, .... 

?*m-\~ i 

From Stirling's approximation it is easy to see that r.h.s. of the above has 

higher order of growth than that of l.h.s. So the restriction on a 6 comes 

from first few m. For m ? 
1, (2.1) is trivially satisfied. For m = 2 this 

states 

l-v2(b/a) < (20/3)1'4 = 1.6068 

For m = 3 l'^b/a) < (280/9)1'6 
= 1.773 

For m = 4 l^2(b??) < (1680/9)1'8 = 1.923 

For m = 5 l-v*(b?a) < (12320/9)1'10 = 2.059 

As expected upper bound increases with m and therefore the restriction on 

a and b comes from the first bound for m = 2. This states 

6/a < 1.6068 Z"1'2. 

For Z = 2 one gets bja < 1.13622 ; a < 6. Here the choice of &n('s are 

completely arbitrary ; kn% e[a, b] with the restriction that bja < 1.6068 

l~112 ; a < b. Theorem 2.1 holds for Xn*'s with 1 < I < 2 in this region 

of a and b. 

Example 2. X*i has probability density function 

M = h!i(Ki-\*\); \*\<h* 
= 0 otherise 
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where kni e [a, &]. This means that the density function has a triangular 

shape with vertices (kni, 0), (?kni, 0) and (0, k"^j. 

Here EXni - 0, EX2% - fc2S/((m+l) (2m+l)). 

The r.h.s. of (2.1) then becomes 

supirc-1 S k2%l((m+l)(2m+l))\ ~( (n'1!, kfj?) 

6m_ 
/ b v 2m 

^ 
(m+l)(2m+l) Va) 

In order that this is < l~m(2m) ! \m ! one may need 

\m+in^Wl~Wbia)im<{2m)[lm- 
- (5-5) 

As in Example 1 the restriction on a and b comes from first a few m. For 

m = 2, (5.5) states 

l~xi2b\a < 51'4 = 1.4953 

For m = 3 Z~1/2 6/a < (140/9)1'6 
= 1.5799 

For m = 4 l~^2 b\a < (175/3)1/8 
= 1.6624. 

The restriction for m = 2 is most stringent : &/a < 1.4953 Z-1/2, a < 6. 

Theorem 2.1 holds for X?' in this region of a, b. For I = 2 this states 

6/a < 1.05737. 

This bound for b\a is more restrictive than that in Example 1. This is 

due to the change of the type of denstiy. In both the examples, for i.i.d 

set up with a = b i.e., kni 
== 

k, the upper bound of|X|'s may be taken 

arbitrarily large. 

Example 3. (i) Xn% 
? X% where X% is symmetric point bionomial variable 

i.e., Xi=?l with probability 1/2. EX2 \(EX2)m\(EX2)m = 1, (2.1) is 
satisfied with I = 2. 

(ii) Xw? = X?, where X* is asymmetric point binomial variable 

Xi = ?a with probability ?l(a+?)9 a, /? > 0 

= /? with probability a/(a+/?). 
The mean is zero and the variance is a/?. Without loss of generality take 

? 
= or1 so that the variance is 1. Then 

EX2 = 
(a2 +a2-2 )/(l+a2). 
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We need EX2m < l~m(2m) ! ?m !. This imposes some restriction on a. 

As before r.h.s. has higher order of growth than l.h.s. For m = 2 one needs 

a4+<x"2 < 12 Z"2(l+a2). For Z = 2 one gets a4+a~2 < 3(1+a2) i.e., 

0.518 < a < 1.9305. 

For m = 3 the restriction with Z = 2 is a6+a~4 < 15(1+a2). This is 

satisfied by a on .518 < a <J 1.9305. The restriction on a is more stringent 

for m = 2. In this case the random variable is not symmetric unless 

a = 
? 

= 1. Theorem 2.5, Corollary 2.1 hold for Xn% with 1 = 2 whenever 

.518 < a < 1.9305. 

Example 4. Truncated cauchy distribution : Xn% 
= JT< where X< ~ 

/(s) = (2 tan-ifc)-1 
-y^, 

I ?I < * 

EX2 = 
(fc/tau-1*)?1, #X2 < ?^?-?[(Jfc/tan-1*)?1] 

EX2 /(EX2) < ^-?[(fc/tan-1 *)?l]-^-i) < (Jfc tan-1*)?-1. 

As m increases l~m(2m) \\m ! has higher order of growth than that of (itan_1i)m. 

So the restriction on k comes from first few m. As for example, for m = 2 

with Z = 2 one may need jfetan-1^ < 2-2 4 ! \2 ! = 3. 

For m = 3 one requires (k tan^A)2 < 15 or, fctan"1^ < 3.87. 

The first restriction is more stringent : k tan-1/; < 3 or, k < 2.5158. 

Therefore Theorem 2.1 holds for Xi with k < 2.5158 and Z = 2. Incidentally 

for a standard cauchy variable Y, 

P(Ye(-k, k)) 
= ? tanr1*! >0.759 for k = 2.5158. 

Example 5. Let X = i with probability C"1. e 
' 
i = 0, ?1, ?2, +3, 

+4, ..., where C = 2 e < oo ; /? > 0 and let Xn< be i.i.d copies of X. 
?=-oo 

The following result of Poisson (1827) may be found in Whittaker and 

Watson, page 124, chapter VI : 

2 e =(nl?)1/2e {1+2 2 e eos 2nna\ ; 

i e-n?' = Wr 11+2 S e "} 
... (5.6) 

,=-00 V 1 J 

where the second summations in brackets go to zero very fast as ? decreases 

^see Davis, page 117). 
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This gives 

S e-nZ?+hn = 
(nl?)V>en2lM h+2 i e^' cos (nnhI?)\ ...(5.7) 

?=-00 l fl=l J 

For fixed ? denoting the l.h.s. as f(h) one gets /'(O) 
= 0 as expected since 

EX = 0. Also 

var(X) 
= #X2 = 

C~1f"(0), 
where 

0= ? f*1" = (nl?)1'* (l+o(l)) ... (5.8) 
t=?00 

where o(l) represents negligible term for small ? (? < 1/2 suffices). Now 

f(0)=(?/r. ?+(7r/A)1/2277^S^e""V/"+(W^)1/2 
S e^'. 

* 

Therefore 

var(X) = 

^ 
(l+o(l)). ... (5.9) 

From (5.7) and (5.8) one gets 

Ee*x = eh2/4? (l+o(l)) 

In view of the above, (5.9) and (2.7), Theorem 2.1 holds for Xni with any 
0 < I < 2. It may be mentioned here that we essentially used (2.7) to oblain 

Theorem 2.1. 

Example 6. Linear combination of random variables satisfying Theorem 

2.1 : Let {Xnu Yni, w>l,l<i<w} be two independent triangular array 

of random variables satisfying the assumption of Theorem 2.1, then for any 

fixed real co-efficients ax and a2, the theorem holds for Zni = 
^Xnt+^Yni 

Now Xni and Yni have mean zero. Theorefore Zni also have zero expecta 

tion. Note that to prove Theorem 2.1 we used only the equation (2.7) i.e., 

n ?t < exp(A2s2/?), V Ae(-oo,oo) ... (5.10) 

where ?t 
= E exp(AXni), s2 = S EX2ni. 
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Similarly for the second set of variables Yni 

II ?t < exp(A2<2/Z) ... (5.11) 

where ?* 
= E ex^(hYni), s*n2 

= 2 EY\{ 

Then denoting ?]* 
= E exp(A2<), one gets 

n #* = n ??/aix*' Il E e^Yni < exp(A2(a24+a2O/0 

from (5.10) and (5.11). 

Nowdenotirg C2 = S ^ ̂  

C2 = ?? S ^X2t+a2 2 ??r2< = af?+aK1 
?=i i=i 

Hence 

n #* < exp(^r2/z). 

Therefore Theorem 2.1 holds for the random variables Zni. Although shown 

for the linear combination of two arrays of random variables it obviously 
holds for arbitrary number of combinations of variables in triangular arrays. 

The p^oof is similar. 

Since (2.1) with Z = 2 is satisfied for N(0, a2) variables, one may take 

N(09 cr2) variables in the linear combinations with other variables satisfying 

(2.1). This makes the range of the combined variables unbounded in both 

directions. 
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