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RATES OF CONVERGENCE TO NORMALITY
FOR SOME VARIABLES WITH ENTIRE
CHARACTERISTIC FUNCTION

By RATAN DASGUPTA

Indian Statistical Institute

SUMMARY. Nonuniform rates of convergence to normality are studied for standardised
sum of independent random variables in a triangular array when m.g.f. of the random variables
necessarily exist but the r.v’s may not be bounded. The assumed condition (2.1) implies that
each variable has an entire characteristic function of order 2. As application of these results,
rates of moment type convergences and non-uniform L, version of Berry-Esseen theorem are
obtained. The results are generalised to the general non-linear statistics. As for example
linear process is considered.

1. INTRODUCTION

Consider a double sequence {Xg;;:1< i< n,n> 1} of r.v’s where
variables in each array are independently distributed and satisfy EXys = 0.
Then defining

S,= 2 Xp, 8= % EX% and F () = P(s3! 8, < )
f=1 i=1

we have, under very moderate assumption that F, == ¢. Ini.i.d case the
uniform rate of convergence of | F,(t)—®(t)| to zero is provided by classical
Berry-Esseen theorem and was later extended by Katz (1963).

Through very helpful, these uniform rates are inappropriate for many
purposes, e.g. since F,, =—= ® it is natural to ask when does a L, version of
Berry-Esseen theorem holds, or given that Hg(T) < oo where T is a normal
deviate and g is a real valued non negative, even and non decreasing
function over [0,00), when does |Eg(sp! S,)—Eg(T)|— 0 and at what rate?
Note that Eg(T) < oo if g(x) = O((1+ |x|)~® exp(«?/2)) for some & > 1.
We explain further in the followings.

Consider the double sequence X,; which along with EXy; = 0 also
satisfies
sup n‘liﬁl EX2 g(Xni) < 00 .. (11)

n=1

where g is non negative, even, non decreasing on [0, o).
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‘The whole spectrum of g can be broadly classified into three categories :
(i) g(x) < |x]* for some k > 0.

(i) |z|* < g(x) € exp(s|z]),¥ k> 0 and some s > 0

(iii) g(x) > exp (s|z]|), ¥ 8 > 0.

The first case where a finite moment higher than second exists has been
dealt by various authors. Von Bahr (1965) considered convergence of
moments with g(z) = |#|¢ ¢ > 0. Michel (1976) derived non-uniform rates
with same g in i.i.d case and used these to find a normal approximation zone,
ie. a zone of ¢, where 1—Fy(ly) ~® (—t,)~ F,(—t,),t,—> 00 and to
find out rate of moment convergences. His results were extended to
triangular array of independent random variables with slightly more general
g by Ghosh and Dasgupta (1978), the results were also extended to
non-linear statistis in general. A non-uniform L, version of Berry Esseen
theorem was also derived.

The situation (ii) has also been studied extensively, e.g., see Linnik
(1961, 62), Nagaev (1979) in the intermediate case and under the assumption
of existance of m.gf by Chernoff (1952), Plachky (1971), Plachky and
Steinebach (1975), Bahadur and Rao (1960), Statulevicius (1966), Petrov
(1975) etc. That the necessary and sufficient assumptions for the normal
approximation zones are the same is shown in Dasgupta (1989) with allied
results.

In this paper we study the situation (iii) when m.g.f. of the r.v’s exist
but the r.v’s may not be bounded. We only partially cover the spectrum
(iii) as it turns out that better result may not be possible in general even when
the r.v’s are bounded, see remark 1. Also since it is known that normal
approximation zone, i.e., the zone of ¢, such that 1—F, (¢,)~®(—t,)~F,(—t,)
t,— o0, cannot be extended in general, even for bounded r.v’s compared to
weaker assumption of the existance of m.g.f. (see e.g. Feller p-520, (6.21))
we shall not proceed to study normal approximation zone in this case which
has already been considered in Dasgupta (1989).

We shall assume without loss of generality

EXpi=0%npl 1L£i<n .o (1.2)
and
n
lim »~1 82 > 0 where s2 = X F X2, .. (1.3)
B fm ]

A2-9
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* .. With the assumption that all the odd order moments are vanishing i.e.,
EXoH —oxnn> 1, 1<i<nm=123,.. o (L4)

we shall show that a sharper result is possible. As one may note this is satis-
fied for symmetric r.v’s.

In section 2 we prove the results for independent r.v’s in a triangular
array and these are generalised to non linear statistics in Section 3. As for
example linear process is considered in Section 4. The implications of the
assumptions made and some examples are discussed in Section 5.

2. THE RESULTS ON THE ROW SUMS OF RANDOM VARIABLES
IN A TRIANGULAR ARRAY

© We start with the following theorem :
Theorem 2.1. Let {Xni:1< 1< n,n> 1} be a triangulor array of

r.v’s where variables within each array are independent and satisfy (1.2)—(1.4)
and

sup (n)sE)ym —:@— T EXRSUE™2m)! [m)
=1

- 1<1<2,m=2,3,.. . (2)
then there exist a constant b (> 0) such that

| F,0)—0()| < b exp(—2(1—I1)), —o0 < ¢ < 0o. . 22)

Remark 1. The bound in (2.2) cannot, in general, be substantially

improved even for bounded r.v’s is evident from the fact that F,(¢)—®(f)

‘=1—0() for t > a n'? ‘a’ being sufficiently large and X,’'s bounded.
~ (2m)~V2 -1 exp(—1t3(2), t—> 00.

For a particular r.v X, (2.1) implies E exp(cX?) < oo for some ¢ > 0, which
in turn implies that the c.f of X is an entire function of order < 2, possibly
having zeroes (see Feller, 1969, 498-499). In the followings b represents a
generic positive constanb. ‘

Proof of the theorem. Siuce 1—®@(t) < b|t|~! exp(—¢?/2) sufficient to
show that
P(s;1 8p > t) < exp (—83(1—171)), £ > 0. . (2.3)
Now
| P8, > ) < ‘ﬁl By exp (—h s, £) . (24)
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where L T
ﬂ‘ = E[BXP (hX,"')],'i = 1, 2, ey My s (2.5)
Let h =t/s, then
n
Pyt s,,>t)<( il ,8.) exp (—82). . (2.6)
Now }
14 < exp (2 a3l @)
since )
1 [ h2m 1 2 o hes2 \m 1
1/ —_ A el om n =t
MRS - BH< I g (o ZEXR) < X (5% -

from (1.4) and (2.1). Hence (2.3).
Remark 2. If odd order moments are non-zero, still we may have

=hzp; —hap; x W2 2m
ﬂ‘<E(e +e )<2m§0WEX”‘
P(s;1 8, > 1) < 27 exp (—&(1—11)). .. (2.8)
Hence we have the following.

Theorem 2.2. If the assumption (1.4) is omitted in Theorem 2.1 then
|F,()—®()| < b2% eap (—2(1—IY)) e (29)

In the following we continue to assume that odd order moments are
zero, our next theorem states moment type convergences of ¥, = |s;1 8, |
to that of T = |N(0,1)].

Theorem 2.3. Let the assumptions of Theorem 2.1 alongwith inf n~1 s% > 0
be satisfied, let g : (—oo, 0)—> [0, ), g(x) even, g(0) = 0 be such that E g(T) < oo
and

g @) = 0 {(142)? exp(@(1—I-1)}, 2 > 0,8 > 0. .. (2.10)
Then , o
|Eg(Ya)—E g(T| = O(n=*") e (2.11)
where : ‘ ‘ .

8 = {'5'-1'—'(7?8717 A %—}
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Proof. Under (2.1) since the m.gf. of X,; exist (as f; < oo for fixed &)
we have, in view of inf »~1 s2 > 0 and (1.4) with m = 1, by an application

of Theorem 2.2 of ﬁa:glupta (1989), : _

| F\(t)—D(t)| < b exp(—2),, 0 < |¢] < M . (212)
where 7, = (01 M3) V (n7V2), M, = O (n'/).
To see this note that from (2.6) of Dasgupta (1989) for 0 < ¢t < an'/4 where
@ > 0 one has [t|™! [exp(O(n'#))—1| = O(n~) = O(n~1M3) with ¢ <

onV4 = O(M,). In the same region of ¢, exp(—t2/24-O(n14))n¥/2 < b exp
(—#2/2) /2 and 2 P(| Xni| > rs,|t]) < b]t]| 2 er*enl2 for gome »* >0
since m.g.f. exists < bn12e aalk for t < anl/t. 7
Again from Theorem 2.1,
|F,()—D@)| < bexp(—e1—I1), M, < |t] <oo. .. (213)

Hence with the representation

| B 9(Y)—E9(T)| < }:y'(t)lP(I&;‘Snl <H—P(IN(O, 1)| <] di

(2.14)
and that

T (4aritde < oo, [ (142)=*de = OM;?)
0 My,
we have
|E g(Y,)—E g(T)| = Olra)+0(M7°) . (2.18)
Equating the order of M;% and r,, the result follows.

- The following theorem provides a non uniform L, version of the
Berry-Esseen theorem.

Theorem 2.4. Under the assumptions of theorem 2.1 for any ¢ > 1
lexp(*(1—1-1)) (1+ | ¢] )=+ (F, () —D@)llg = O(~") ... (2.16)
where & > 0 and 8* is defined in Theorem 2.3.

Remark 3. The bound in (2.16) is quite sharp. For symmertic pom.t
binomial variable this asserts

oxp( )L+ [H] -0, (0)-00) | = O~
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whereas the weaker known result given in Bhattacharya and Rao (1976)
states o
2

| Fo)—00)| < exp(— & ).

The proof of (2.16) follows along the lines of theorem 2.3 expressing Lh.s. of
(2.16) in integral form.

Next we consider moment convergences and L, version of the Berry-
Esseen theorem when the assumption (1.4) is not satisfied i.e., odd order
moments are non-zero.

Theorem 2.5. Let the assumptions (1.2), (1.3) and (2.1) be satisfied.
Then for any g :(—00,00)—> [0,), g(x) even g(0) = 0 such that E g(T) < oo
: e g'(x) = O(exp(z®)),z > 0 . (227)
and 0 < v < min(c’, (1—1I1)) = v* the following holds
| Eg(Y,)—Eg(T)]| = O(n=27%) . (2.18)
¢’( > 0) being a constant depending on distributions of {X,}, via

n
c**= min sup

[(2r/3)E | X y; |3exp(2r | X ps | )—1]r.
0<r<o nl 1

1
n ¢=

n .
[Note that since k(r) = sup —11%- ‘EIE' | Xni|2exp(2r | Xps|) T 0 as # 1 oo there
n21 -

. * * — 3 (2] - *
exists & 7* such that r* = o)’ hence ¢** < —7°/2 < 0.
Proof. First of all we shall show
| F,6)—®@)| < bn 2 exp(—v" ), —0 < t < 0 .. (2.19)

then the theorem will follow from (2.17) with the representation (2.14)

Without loss of generality let ¢ < 0. Since the m.gf. of X, exist under
(2.1) delating the last term of r.h.s. of (2.2) Theorem 2.1, of Dasgupta (1989)
and following the proof of Theorem 2.6 of Dasgupta (1989) we have

|F,¢)— @ ()] <bnY2exp(—at?) . (2.20)
for 2> (p—2a)tlog n,0<a <L, 0 < p<1andt< f(p)nl/* where f(p) > 0.

Similarly for # < (p—2a)~! log n from theorem 1 of Ghosh and Dasgﬁpta
(1978) choosing ¢ therein sufficiently large,

|F\0)— ® ()] < b1~ exp(—ast), 0 < 03 < . . 221)
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There ¢ is taken to be sufficiently large to make (p—2a)~! < cK/2 and the
order of the second term of (2.1) of Ghosh and Dasgupta (1978) is

%1 P\ Xm| <rs,lt]) < blt| 2" %) 06 (5.1, (5.2) 5 0 < ¢ < /4.
‘ < b2 e—rent
< b2 e2)2, for £ < (p—2a)~tlog n.
-Also from Theorem 2.2
|F,6)— ® ()] < b2mexp(—i(1—11)
= bnV2exp (—ayt?),a, >0 .o (2.22)
if 2 > A2n for some A depending on [ and a,, 0 < a, < (1—1-2).
Finally for the zone f(p)n'/? <t<A n'? we imitate the proof of

Theorem 2.5 of Dasgupta (1989) with g(z) = exp (|z|) and b = 2¢-15-} log
(tg(rs,t)) ==2r,0 < r < oo to obtain

| F,(0)—@F) | < bt g(rsnt)}—1+hk(r)/a

r8qyt(2rk(r)/3—1)

Kbhe
where k(r) is defined in the Theorem 2.5
S hesntt™, c** < —1*2<0; .. (2.23)
So for f(p) n'2 < t < A2t = Oy(n'/?) = Ogls,), one gets
[F(6)—® (t)] < bnV2eon® . (2:24)

>0 depends on ¢** and A. (2.19) follows from (2.20), (2.21) and (2.24).
Hence the theorem.

The following corrollary on a nonuniform I, version of Berry-Esseen
theorem is also immediate from (2.19).

Corrollary 2.1. Let the assumptions (1.2), (1.3) and (2.1) be satisfied.
Then for any § > 1 and q > 1. S

(14 €))7 eap (*8) (Fo(()—® @)l = O ... (2.26)
where v* i3 defined in Theorem 2.5. ‘
3. RATES OF CONVERGENCE FOR GENERAL NON-LINEAR STATISTIOS

This section generalises the results of section 2 for non-linear statistics
of the form '

T, —s18,+R, , e {31)

n n
where S,= X Xp,82= X EX%, inf n~18 >0
- ‘ : §=1 §=1 n=1l
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X1 Xpey ..y Xy, being independent r.v’s with vanishing expectation. Also
let '
E(R™) < ¢(2m) n~m (log n)hm .. (3.2)
for some 2> 0,m =1,2,3 ... where ¢(2m) < Lmm ! for some L >1. It
may not be out of place to mention that similar type of analysis are carried

out for T, with ¢(2m) = O(1) for some m > 1 in Ghosh and Dasgupta (1978)
and with ¢(2m) < L™ (2m) ! in Dasgupta (1989).

- Because of (3.2) with c(2m) < L™ m | we bave the following

2
sup E[exp ()tn”z (log n)-hllenl) ]

— sup [1+ b3 (A n12 (log n)~h/2 )2"' E R2mjm | ]

n m=1

1+ 2 ALPM<ooif 0< A< L .. (33)

m=1

Consequently

P(|R,| > a,#) =0 (exp (—()tn”z (log n)~h/2 an(t))z) ), 0< A< L
(3.4)
Also note that due to representetion (3.1)
[P(T, < 8)—® ()] < |P(s51 8, < t+a,t)—Dlt+La, b))
1 ® (t-£a,©)—® ()| +-P(| R, | > a, (0). . (35)
w.o.lg. let £ > 0 ard take a, /¢) = n~1/2 (log n)*+1/2 [ A1 then
|P(T, < t)—D ()| < bn22exp(—#[2)+bn~12
(log n)#+1/2 t exp(—12/2)+b nV/2 exp (—#3/2) ... (3.6)
for 2 < k log n, using Theorem 2.1 of Dasgupta (1989) and (3.4), where £ may
be taken to be arbitrarily large.
For t2 > k log n, under the assumptions of Theorem 2.1 oue has, using
(2.2) and (3.5) with the same choice of a,(t) as above
|PT, <t)—0@)] <bnV2 exp(—t3(1—1)p)
.-l—b n~12 (log n)#+1)/2exp(—2[2)
+b n~12 exp(—#/2) .. (37
where 0<p< 1l since exp(—(1—I1) < n V2  exp(—#(1—I1)p) if
#? > (2a(1—p))! log n, which can be ensured choosing % sufficiently large.
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':As a conseqﬁence of (3.6) and (3.7) we have the following non-uniform’
bound over the entre range of ¢.

Theorem 3.1. Under the assumptions of Theorem 2.1 and (3.1), (3.2) there

exists a connstant b( > 0) depending on 0 < p < 1 such that
LP(T, < )—® ()] < b n~i(log n)W+V72 eap(—(1—I-Y)p), —00 < t < .
(3.8)

Subsequently the following two theorems are immediate from (3.8) taking
p>p".

Theorem 3.2. Under the assumptions of Theorem 3.1 for any g : (—o0, )
— [0, 0), g(x) even, such that Eq(T) < o0, g(0) = 0, T = N(0, 1) and

g'(x) = O (exp@A(1—1"1)p*), 0 < x < o . (3.9)
and for some p*, 0 < p* < 1, the following holds
| Eq(T,)—Eg(T)| = O (n~12(log n) #+V7%) .. (3.10)

Proof of the above follows from (3.8) along the lines of (2.14) since the
representation (2.14) remains valid even if ¥, = s;* S, is replaced by a general
nonlinear statistics 7', converging weakly to a N(0, 1) variable 7.

Theorem 3.3. Under the assumption of Theorem 3.1
llexp((1—1")p) (P(T, < )—P(®)llg
= O(nY%(log n) "+V72) forany q > land 0 < p < 1. ... (3.11)

Next we consider the case when odd order moments of X4 are non-vanishing.
As Dbefore for 2 <k log n it is possible to obtain (3.6). However for
2 > k log » one may use (2.19) in (3.5) with the same choice of a,, (t) viz.,

a,(t) = n~Y%(log n)*+1/2 || A-1 to obtain
|P(T, < t)—®(t)] < bnV2 exp(—v*?)
+bn-12(log m) W2 |¢] exp (—8/2) 4-bn-V2 exp(—2[2) ... (3.12)

For # > k log n, where v* is defined in Theorem 2.5. Hence combining (3.6)
with (3.12) it is possible to obtain the following non-uniform bound.

Theorem 3.4. Under the assumptions (1.2), (1.3), (2.1), (3.1) and (3.2)
there exists a constant b ( > 0) such that

| P(T, <8)—=P ()| <b w2 (log n) B2 [t] exp (—v*), —00 <t < 0
where v* is defined in Theorem 2.5. .. (3.13)
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Hence we have the following theorem from the representation (2.14)
and (3.13).

Theorem 3.5. Under the assumptions of Theorem 3.4 and g satisfying the
conditions of Theorem 2.5, the following holds

| Eg(T,)—Eg(T)| = Omn=12 (log n) #+D/2), .. (3.14)
The next theorem is also immediate from (3.13).

Theorem 3.5. Under the assumptions of Theorem 3.4, for any & > 2
A+ [£])7 exp(v* &) (P(T,, < O)—P ()llg
= 0 (n7 V2 (log m) B+1/12) ... (3.15)
for any q > 17 where v* is defined in Theorem 2.5.

4. RATES OF CONVERGENCE FOR LINEAR PROCESSES

a0
For a sequence of constants a; with £ a? < oo consider
i=1

fd ©
Xn = .21 aiEﬂ—’5+1 or -Xn = izl a‘£n+l—1 ... (4.1)
1= =

where £s are pure ‘white noise. w.olg. assume E& =0 and E £ =1.
Under the assumption of finiteness of (C242)th moment of £ Babu and Singh

(1978) proved the moderate deviation result decomposing the sum S, = X X

i=1
as follows
n n
S,= 2 Xu+ 2 (Xi—Xu) .. (42)
where =1 =1
m
Xman = ) aeéniyq
The representation (4.2) is clearly of the type (3.1). Now assume
EE L Im(2m) ! m . o (4.3)
Then by Minkowski’s inequality
L4 2m © am
B| X (Xi—Xo)| < (Zilal ) BEM K [mom ! . (44)
i=1 =1
for some L > 0 assuming
izlilatl < oo. . (4.5)

n n n
Again for Sn=3 Xy = 2 ty_t4q & ~ ‘Z t &y
=1

i=1 i=1

A 2-10
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where

1
=X ay
=1

one may use the results of section 2 for the independent r.v’s & Observing
that

1 n
— X ™ Zem .. (4.6)
n 4=

=

where

o]
Z= % a1 #0,
i1

which for m = 1 implies lim n~! V(8S,) = Z2% one may also check that (2.1)
with sup replaced by lim is satisfied for r.v’s¢; &y under the assumption
(4.3). Normalisation of S, in (4.2) may be done by [V(Ss)]~/2 since for
nZ2 = V(8,), |Z:—27?| =O0(n™') as shown in Babu and Singh (1978).
Therefore from (4.2)

(VS 8, =[V(8,)]* 8,+ R, e (47)

where

R, = V(S 2 (Xi—Xu)
i=1
satisfies (3.2) with = 0. Consequently all the results of Section 3 hold for S,.

5. DISCUSSION AND SOME EXAMPLES

The agsumption (2.1) imples that each of the random variables in the
triangular array has an entire characteristic functon. To see this write
¢, = (sin)V%, ¢, > 0 % n. Then from (2.1) one gets for ¢ >0

n n ©
sup n ! T E exp(c(Xani/cn)?) =n1 2 (l—l- % E c™Xpifc,)™/m ! )
=1 m=1

n=1 =1
1+ 3 (vt £ Bom(Xpijejomim 1) < 14 T oml-m@m) Ym VY ... (5.1)
m=1 =1 m=1

Since for large m, m | ~ (2m)/2mm+1/2 ¢~m the above sum is finite if ¢ is suffi-
ciently small e.g. if 0 <c < /4,1 <l 2. This is turn states that there
exist ¢* = ¢, = ¢/c2 > 0 for which

Eexp(c*X%) <o, i=1,..,n ... (5.2)
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which implies that the characteristic function of X4 is an entire function
of order < 2 (see page 498, Feller Vol. II); (5.2) also specifies the tail behaviour
of the distribution of X,;.

P(| Xus| > x) = o(exp(—c* 2?)), x—> 00. ... (8.3)

Some examples are provided below where (2.1) are satisfied.

Example 1. X4 are uniform on the range [—kpi, kni] where kg € [a, b]
a,b > 0 are to be specified later. Then

EXZn = k2m/(2m+1).
The Lh.s. of (2.1) in this case turns out to be

n n
sup (n—l E] kﬁ:”/(2m+l)) - (n_l =

nz1 i=1 3

ﬁ)m < 3m

< gy (BloFm .. (5.4)

Require it to be < I=™ (2m) !/m ! so that (2.1) is satisfied. Therefore one may
require
3am
2m-+1

(-2(bja)m < (2m) | jm ! m =2,3,4, ...

From Stirling’s approximation it is easy to see that r.h.s. of the above has
higher order of growth than that of Lh.s. So the restriction on ab comes
from first few m. For m = 1, (2.1) is trivially satisfied. For m = 2 this
states
1-12(bJa) < (20/3)V4 = 1.6068

For m =3  I-V2(bja) < (280/9)V6 = 1.773

Form=4  [-12(bja) < (1680/9)1/8 = 1.923

For m =5 I-12(bja) < (12320/9)1/10 = 2.059
As expected upper bound increases with m and therefore the restriction on
a and b comes from the first bound for m = 2. This states

bla < 1.6068 [-172,

For I =2 one getls bja < 1.13622 ; a < b. Here the choice of kgs's are
completely arbitrary ; kas €[, b] with the restriction that bja < 1.6068
1-12 ;4 £ b. Theorem 2.1 holds for Xg’s with 1 <1< 2 in this region
of ¢ and b.

Example 2. X75; has probability density function

f(@) = kikns — 12]) 5 || < ks

=0 otherise
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where k,; €[a,b]. This means that the density function has a triangular
shape with vertices (kn;, 0), (—Fky, 0) and (0, k7).
Here EX,; = 0, EX*® = *™/((m+1) 2m+-1)).
The r.h.s. of (2.1) then becomes

n n
sup{ w3 Em(m1) (2m-|—1))} +< 1% k,,2,./6>m

=1 i=1

n=1

gm h o 2m
< (m+1) @m+1) (E
In order that this is < I7™(2m) ! /m ! one may need
6m
(F12bjaym L (2m) ! [ m ! .. (8.5)

(m—+1) (2m-+1)
As in Example 1 the restriction on a and b comes from first a few m. For
m = 2, (5.5) states
-2 pjg < 54 = 1.4953
For m =3 ["V2bja < (140/9)6 = 1.5799
For m =4 [1712bja < (175/3)/8 = 1.6624.
The restriction for m =2 is most stringent : bja < 1.4953 I=V2, a < b.
Theorem 2.1 holds for X in this region of a,b. For [ = 2 this states
bja < 1.05737.

This bound for b/a is more restrictive than that in Example 1. This is
due to the change of the type of denstiy. In both the examples, for i.i.d
set up with a =bi.e., ky =k, the upper bound of|[X|’s may be taken
arbitrarily large.

Example 3. (i) Xpns == X¢ where Xy is symmetric point bionomial variable
ie., X;= 41 with probability 1/2. EX*n|(EX2)m[(EX?%)m =1, (2.1) is
satisfied with I = 2.

(ii) Xnui = Xy, where Xy is asymmetric point binomial variable

X; = —a with probability g/(x+8),,8 >0
= f with probability «/(e¢+8).
The mean is zero and the variance is af. Without loss of generality take

f = a1 so that the variance is 1. Then

EX2m — (o2m 4 o2-2m)[(1 4o2).
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We need EX2m  Im(2m)! /m!. This imposes some restriction on c.
As before r.h.s. has higher order of growth than Lh.s. For m = 2 oue needs
at4-a2 <12 IFY(14a?). For 1=2 one gets at+a? < 3(14a?) ie,
0.518 < a < 1.9305.

For m = 3 the restriction with [ = 2 is af+a* < 15(14«2). This is
satisfied by o on .518 < a < 1.9305. The restriction on « is more stringent
for m = 2. In this case the random variable is not symmetric unless

o =p=1. Theorem 2.5, Corollary 2.1 hold for X4 with [ = 2 whenever
518 < o < 1.9305.

Example 4. Truncated cauchy distribution: X,;= X; where X3~

fle) = @ tan ) g o] <

EX? = (k/tan—1k)—1, EX?m  k*™—2[(k/tan—1k)—1]
EXm|(BX2ym L k2m=2(k/tan! k)—1]-™~D L (k tan ~1k)m-1,
As m increases [=™(2m)!/m! has higher order of growth than that of (ktan=1k)™.

So the restriction on k comes from first few m. As for example, for m = 2
with 7 = 2 one may need ktan=% < 27241 /2! = 3.

Fer m = 3 one requires (k tan—1k)? < 15 or, k tan~1k < 3.87.

The first restriction is more stringent : k tan—k < 3 or, k < 2.5158.
Therefore Theorem 2.1 holds for X with £ < 2.5158 and [ = 2. Incidentally
for a standard cauchy variable Y,

P(Y e(—Fk, k) — % tan-1k >0.759 for k — 2.5158.

—i%p,
Example 5. Let X = i with probability O~ e i = 0, +1, +2, 43,

@ _‘23
+4,...,where C = X e

f=—00

<00 ;f>0andlet X, be iid copies of X.

The following result of Poisson (1827) may be found in Whittaker and
Watson, page 124, chapter VI :

¢ 9]
- 280 2 o) 2”2

o 1§ P ),
n=—on =

® 2 - 2l

S g (1o § oo
n=—co !

where the second summations in brackets go to zero very fast as £ decreases
{see Davis, page 117).
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This gives

—n2B8+hn n2 /(43) {

SR = (B2 ¢

142 3 ™7l oo (nnh/ﬂ)} . (57)

n=1

For fixed f denoting the lLh.s. as f(k) one gets f'(0) = 0 as expected since
EX =0. Also

var(X) = EX2 = C-f"(0),
where

C= ? = (m|B)v2 (140(1)) .. (5.8)

iMa

where o(1) represents negligible term for small g (8 < 1/2 suffices). Now

£ = @, L ipn 2 § e g §
(0) = (m]B) '2ﬂ+ﬂ 3/ n=lne Z ©ap
= (TBY™. 35 (1ol
Therefore
var(X) = ,3 (14o(L)). ..o (8.9)

From (5.7) and (5.8) one gets

EehX — ¢/ (110(1))

In view of the above, (5.9) and (2.7), Theorem 2.1 holds for X,; with any
0 < l< 2. It may be mentioned here that we essentially used (2.7) to oblain
Theorem 2.1.

Example 6. Linear combination of random variables satisfying Theorem

1: Let {Xni, Yui,n > 1,1 < i < n} be two independent triangular array

of random variables satisfying the assumption of Theorem 2.1, then for any

fixed real co-efficients @, and a,, the theorem holds for Z,; = o, Xpi+ Y ut.

Now Xy; and Yg¢ have mean zero. Theorefore Zy; also have zero expecta-
tion. Note that to prove Theorem 2.1 we used only the equaticn (2.7) i.e.,

ﬁ B < exp(h?si(l), ¥+ ke (—oo, 00) ... (5.10¥
i=1

where fi = E exp(hXns), 87 = E EX2,.
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Similarly for the second set of variables Y,

n
Il B¢ < exp(h?s2l) ... (5.11)
i=1

where B = E exp(hY i), $p2 = é'l EYE,
Then denoting 8;° = E exp(hZ;), one gets

EII A = zﬁ1 B Xni iﬁl B oM4a¥mi exp(h2(a2si+a,s2)/l)
from (5.10) and (5.11). |

n’

Now denotirg ;"% = S E 2z
=1

n n
8 2 *
st =of I BXitof I BV = odettafsy

Hence
1 47 < exp(isi?l).
i=1

Therefore Theorem 2.1 holds for the random variables Z,;. Although shown
for the linear combination of two arrays of random variables it obvicusly
holds for arbitrary number of combinations of variables in trianguler arrays.
The proof is similar.

Since (2.1) with I = 2 is satisfied for N(0,0?) variables, one may take
N(0, 02) variables in the linear combinations with other variables satisfying

{2.1). This makes the range of the combined variables unbounded in both
directions.
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