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I this paper we introduce a formulation of the quantum mechanical feedback system in order
to understand the quantum system in interacting Fock space which generalizes the transfer
function approach to the guantum mechanical feedback system studied in bosonic mode.
A mathematical model of the feedback control of the cavity quantum electrodynamic
system in the interacting Fock space with the second cavity in the feedback path is described

using a beam splitter.

1. Introduction

The feedback technique has been used for several years
by electrical engineers to prevent noise from rendering
a system unsiable and this technique is now applied in
optical systems, for example, to stabilize the phase or
intensity of a laser oscillator. Feedback controls are
important because, by taking into account the state of
the system at each moment, they allow for updating
and stabilizing control action. By the feedback method
we can improve considerably the performance and
robusiness of the system, even if the system includes
some uncertainty in its environment to which the
system is highly structured. In classical engineering,
control theory has been applied in space navigation
and flight technology. Controlling quantum stochastic
evolutions arises naturally in fields like quantum
chemisiry, quantum information theory and quantum
engineering. In modern atomic and molecular physics,
preparing atoms and molecules in a predefined state
plays an important role. In particular such a problem
arises in atom optics and quantum information.
At the advent of the progress in quanium electronics,
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it is now possible to specify the quantum state at our
disposal whenever we need it. This means we can control
the quantum states for the use of computation and
communication.

In this paper we discuss the formulation of the
quantum mechanical feedback system in the interacting
Fock space in order to introduce the concepts of control
theory for the cavity quantum electrodynamics (QED).
In recent papers (Yanagisawa and Kimura 2003a,b),
the transfer function approach to the quantum feedback
system has been developed using interaction of the
cavities in the bosonic mode. The feedback control
system in the bosonic mode is shown to be a special
case of the general model described in the interacting
Fock space.

The paper is organized as follows. In §2, we discuss
the basic notions of the interacting Fock space,
interaction of the optical cavity and the external field,
quantum stochastic process and quantum stochastic dif-
ferential equation. In § 3, we discuss state space model
for the open quantum system. In §4, we discuss in
details quantum mechanical feedback control system.
In §5, we describe state space modelling of the quantum
mechanical feedback system and in §6, we give a
conclusion in which the phase margin (PM) and gain
margin (GM) of the control system are discussed.
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2. Basic concepis

Here we shall discuss some basic concepts which will be
utilized throughout the paper.

21 Interacting Fock space

As a vector space one mode interacting Fock space I'(C)
is defined hy

I(C) = @EM_ (1)

=il

for any n € B where Cjn} is called the n-particle sub-
space. The different n-particle subspaces are orthogonal,
that is, the sum in (1) is orthogonal. The norm of the
vector |n} is given by

{nln} = Ay, (2)

where {4} = 0 and if for some n we have {4,} = 0, then
{hu} =0 for all m =n The norm introduced in (2)
makes [(C) a Hilbert space.

An arhitrary vector f'in T'(C) is given by

f=all)+ally+ a2} + -+ el + -+ (3)

for any s € B with | f]] = (300, leal*An)'? < oc.
We now consider the following actions on I'(C):

A*ny  =|n+1}
bl 4
Amn+1y = W En>

A* is called the creation operator and its adjoint A4 is

called the annihilation operator. To define the annihila-

tion operator we have taken the convention 0/0 = (.
We observe that

nlny = {A%n — 1), n) = {(n— 1), An)

=-i-{n—1,n—1}=--- (5)
i—1
and
- )'-Jr -J'-u|—| )L| )LJr
= — e—m — ')
[Ifr} AT Gl (3]
By (2) we observe from (6) that dg = 1.
The commutation relation takes the form
Ayl Aw
A A% = - 7
[ ] N (N

where N is the number operator defined by N|n} = njn).

In a recent paper {Accardi and Bozejko 1998) we have
proved that the set {(Jn}/ ), n=0,1,2,3,...} forms
a complete orthonormal set and the solution of the
following eigenvalue equation

Afu = afy (8)
is given by
. . - ot
= = ! — 5 ‘-]
Jo = (lel”) ,,E:n " I} 49

where Uf|ul’) = T ™ /h,). We call £, a coherent
vector in T(C).
Mow, we observe that

At = g AN
Ay An_

We further observe that ({(Aye /2w — (/i)
commutes with both 4*4 and A44*.

22 [Interaction of the cavity and the external field

We consider the interaction of an interacting single-
mode of quantized field confined in a cavity with a
noisy external field. Let H 4 and Hp be Hilbert spaces
of the cavity and the external field respectively. The
composite system is expressed by the tensor product
space ‘H.q @ Hg. The total Hamiltonian is given by

-leei'rar.l' = -Hl‘d ) ;H =+ 1.4 ] -Hlﬂ‘ =+ H‘jarr {1{}}

where M ; describes the Hamiltonian of the cavity mode.
This Hamiltonian may be further decomposed into two
parts

H.‘i:-'qa'aw'i'H- {11}

Here H is the residual Hamiltonian determined by
the optical medium in the cavity, referred to as a
free Hamiltonian. g is the Hamiltonian of the
external field.

The interaction Hamiltonian £, consists of four
terms. We drop the energy non-conserving terms
corresponding to the rotating wave approximation and
obtain the simplified Hamiltonian as

Hiu ) = i/ al)b™ (1) —at (Ob(1)] (12)
with

[Bie). bT(] = e — ©) (13)
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and y is a coupling constant. Here « is the annihilation
operator of the cavity and b is the annihilation operator
of the external field.

The operator A(¢) is a driving field at time ¢ and we
interpret the parameter ¢ to mean the time at which
the initial incoming field will interact with the system
and not that h{¢) is a time-dependent operator at time ¢.

2.3 Quantum stochastic process

In order to describe quantum stochastic process we
define first an operator

Byde, fo) =f Py (5 el (14)

iy

where by, (1) satisfies the commutation relation (13).
This k(1) represenis the field immediately before it
interacts with the system and we regard it as an input
to the system.

MNow,

(Bt t0), Bt 10)] = [ f Bid €)', f b;{:”w]

I

= f (o £, BE () )eld de”

Iy Fyy

- f f S — " wlede”
:f (f E{!’—f]d!”)d!’
o f df

= — g (15)
MNow, we write down the increments

dBy i) = Byt +dt)— Bl dBLin

i

= Bi(t+di)— Bi(0). (16)
Then
Byie 4 de, 1y = Byt + dfy — Byl6) = dBin) {17

and

Bi(t+diny=B(t+d)— Bl (t)=dB}(1). (18)

T &

From (13}, (16), (17) and (18) we get

[dBi(0). dBL(0] = [ Budt + de. o). B (t + de. )]

El g

={t+dt)—t =dt. (149)
From {19}, we have
[dBi(0). dB}(1)] = dt. (20)

This leads to the natural definition of quantum
stochastic process as

dB (B0 = (N + D)dt
dBt

I

(el Byt = Nt
(21)
d B (0 By i) = Mt

dB;

1

(NdBE(1) = M*d.

and all other products higher than the second order in
d B, are equal to zero. N' and M are real and complex
numbers satisfying

N(N +1) = IMP. (22)

24 Quantum stochastic differential equation

Mow we shall describe the quantum stochastic differen-
tial equation via evolution process. The evolution of
an arbitrary operator X is given hy

X6 = Utinxu (23)
in which the unitary operator U{¢) is generated by the
Hamiltonians (10) and (11). H., and Hg drive the
cavity and the external field respectively. We shall

assume here H to be zero. The unitary operator of the
system is then given by

U{d!} — E‘."ﬂaranrﬂ;—erhn'.ﬂhj_ {2&}
Also we have
U—k{d” o E\_.-'ﬂarh.'.ﬁ_“—em'.ﬂ:;l_ {25]

The increment of an arbitrary operator r of the system
driven by the stochastic input by, is given by

dri) = rlt + dt)y — 1) = U dw OUdn — r6). (26)
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MNow
U w0 dn

o Eﬂ_.l'?{arh.'.ﬂf“ —grgF.H’_; :|”: ”e‘_."?hrd% —atd B

— E‘."Fhr" AR —grgw_;]r{ !}t"_ WA it il B —ad B )

=i+ [.,.-'{_}—'{a*'c.’ﬁ,-,, —adB]). r'{!]]

+ % [ﬁ{a"’dﬂm —adB}),

= [ﬂa"’dﬁ;,, —adB}).r :]]] 4= )

=ri)+ ﬁ[ﬂ"’ dBy, —adB, r'{:]]

4

+ %" [ﬂ+ By —adB, atdB,r

i

—ad B r—ra"dB;, + r'm.fE'."]

1.

=r{i)+ ﬁ[ﬂ"’ dBy, —adB, r'{:}]

+ :{;M{{"-H"-J" — (N + DNatar — Matrat + (N + Datra

— Naatr + M*aar + Nara™ — M*ara

—Matrat +(N + Datra+Narat — Mara

+ Mratat —(N + Vet a—Nraat + M'rm{}n’!
=i+ ﬁ[ﬂ"’ dBy, —adB, r'{!]]

+ %r{{ N+ Watra—atar+atra—rata)

¥
+ Niara® +ara™ —aatr—raa™)
+Mata r—atra™ —arat +raTah)
+ M (aar —ara — ara + raa)bdt

=11+ ﬁ[u"'dﬁ,-,, —adB r(N)]

+ %" {{ N+D2a ra—a ar—rata)
+ N 2ara™ —aatr—raa™)

+ Mat(aTr—rat)—(atr—ra ™)

+ M alar — ra) —{ar — raa) }d'!. 27
Hence equation (26) reduces to

dr(f) = vli + i) —rit)

UNdtyr( ) Uldt) — (1)
- ﬂa"’dﬂ,-,, — adB], r'{!]]

+ % 1{;’*.-” + D2atra—aar —rata)

+ N 2arat — aar — raa™)

+ M[ﬂ"’, [a. r]] + M*[a. [a. r']]id'!. (28)

3. State space model for open-loop quantum system

The first step of analysis and design of quantum control
system is the mathematical modelling of the controlled
process. In general, given a quantum controlled process,
the set of variables that identify the dynamic character-
istic of the process should be first defined along with the
input—output relation of the system.

3.1 Dynamics of the cavity

To describe the dynamics of the operator alf) in the
open quantum system we replace r in (29) by o to get
da = ali + o) — ali)

-— y[a*'dﬁ;., - ﬂdE;;,a]
Yiun 3.t - -
-+ 5 {{ N 4+ I 20 aa — o aa — aa a)
+ NQQaaa® — aata — aaa™)

+ M [c:"', [at, a]] + M*[a.[a, a]] }d':

" _ﬁ()“—::' = ):” | )b,-,,{:]d:
¥ . Anpl  Aw
et [t W 1 A 1}(———)::
2 I v Awo
o LT
+ Na (_)-. e ) }df
_ I_ 4 ()i"t_' _ *_*f)ﬂ
20 v Aao
—ﬁ()“f*' ~ :“” )b,-,r{:}]d:. (29)
N N_1

ali) = I —% (}L'H - i)n{:]
£ N

A An
Angl Aw
R4S el LG

The state equation represented by equation (30) of the
dynamics of the cavity « is a generalization of the well
known Langevin equation of the cavity in the boson
Fock space. This is due to the fact that the commutator
[4,4*] given in (7) of the creation and annihilation
operators in the interacting Fock space is not necessarily
unity. In the case of boson Fock space the value of the
commutator described in equation (7) becomes unity,
that is,

[4.4*] =1
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or,

e Ay

Ay Ano
The dynamics of the cavity given by (30) then reduces to

i(0) = —La() — ypbuln)

which is the usual quantum Langevin equation in the
boson Fock space.

3.2 Input—output relation of the open-loop system

Due to the interaction of the evolving incoming field
with the cavity an outgoing field is produced.
To describe this we need to define an operator

P
err{L !EP] = f bmrr{*"'}d:ﬂ'1 {3 1]
]

where
B t) = U™ ()b (1) Uil (32)

Here b, is the output after the interaction at time ¢
We then have
dB,, (1) = Ut(d)dB, () Uldt)

— E‘_."ﬂarafﬂ_:—ar"'n'.ﬁ_hll'dgm{ ”E‘_."ﬂgrgnr.ﬂ;—ar"u'ﬂm]

= dB {0+ [ﬁ{dﬁg,ﬂ"‘ —dBta), dﬂ,-,,] + -

I3

— nll-'{’1'1'."": ” + ﬁ(“[ﬁ:&ﬂn (IEL]_

(33)
Using equations (20) and (33) we now hawe
bu (0t = byl et + JSyadt (34)
which implies
Bourlt) = N yalt) + bu1). (35)

Taking Laplace transform of the operators we pet the
transfer function modelling of the input—output system
of the cavity as shown in the figure 1.

His) B 5]

by (5)
dylr) —F bt

1-‘l'i:|1 fn—

Figure 1. Transfer function of the open-loop system of a
single cavity.

33 Transfer function for the open-foop quantum system

We can now describe the transfer function model of the
open-loop quantum system with the help of dynamics
and input—output relation of the cavity in the following
way.

Equations (30) and (335) can be rewritten as

alty = A'alh) + Bhy,in) ] a8
bmrr{” = C’“{ ” + Hb.ﬂr{!L
where
o ¥ Ax
=73 ( Ay _l.-.'—l)
Awpr Ay )
B =— —_—— 37
VI?( Av o Aw— @1
=0y
D=1

Equations (36) represent the interacted state space
model of the cavity.

As in the classical control system the state space
model of the quanmum control system for an open-
loop single cavity is represented as

A | B
[
¥ M_i_-*f) - ()ﬁ_l_'ﬂ)
2()-.,-,1 An_i ‘ vy Av o Aao

(38)
P

In usual bosonic mode (38) reduces to

(39)

The transfer function relation of the output function
busls) and the input function byls) for bosonic case
is given by

.I'err{.'l'] = -'tj{tll']b.ﬂr{tlf} {m]
where
Hs)=Cul—AYV'B+ D

4 a1
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is the open-loop transfer function of the cavity in the
bosonic mode.

4. Quantum mechanical feedback system

At the advent of advanced experimental technology in
the fields of cavity QED one can now monitor quantum
systems continuously with very low noise and can
manipulate on the time scales of the system evolution.
For this reason it is quite natural to apply feedback to
control the individual quantum systems in real time.
The control of noise in optical systems has entered the
quantum domain, squeezing noise within the constraints
of Heisenberg’s uncertainty principle which states that
no action can be done without introducing inevitable
disturbances to quantum system. The noise reducing
capabilities of feedback in quanmum optical systems
have been recently explored by Wiseman and Milburn
(1993) by deriving a master equation which describes
quantum-limited feedback of a homodyne current to
control an optical cavity. Wiseman—Milburn theory
was applied to protect and generate non-classical
states of light field and to manipulate motional state
of atoms or the mirrors of optical cavities.

A cavity is thought of as a unit of a quantum system
with a single operator valued state variable, an operator
valued input and output on the associated Hilbert space.
A quantum mechanical feedback 5 constructed
through the input—output which store the information
of the cavity. We consider here two cavities, A and B,
that are positioned to interact with each other
through the external field as depicted in figure 2. Let
ay and ag be the annihilation operators for the modes
of A and B respectively. These fields are treated as
statistically independent. Because of the closed loop
of the travelling field, A is influenced by B and
vice versa. That is, these two systems are entangled,
and this entanglement gives the control resources.
The cavities are connected through a beam splitier
forming a composite feedback control system.

L J

by b,

Ly

4
L J

Beam Splitter

by G
ig

F

Figure 2. Design of a quantum mechanical feedback system.

The beam splitter is an optical device which allows us
to perform the manipulation of quantum signals. The
input field A, is sent to one port of a beam splitter,
which is chosen to have reflectivity « and transmitivity
f. and b+ is the feedback output of the cavity from B
to the other input port of the beam splitter.
Meanwhile, one of the transmitted fields from the
beam splitter is sent back to the cavity A. Assume that
the time of propagation between the systems is negligible
as the feedback system does not include time delay in
the closed-loop.

5. Siate space model of the feedback system

The mathematical modelling of the controlled process in
the feedback system consists of describing the dynamic
characteristics of the process along with the input-
output relation of the system. Let us first derive the

dynamics of the cavity 4 in the forward path of the
composite feedback control system.

5.1 Dynamics of the cavity in the feedback system

In the feedback system an arbitrary operator r obeys
the following evolution law

Kt + dn = UH(dDr LD, {42)
where U{df) is a unitary operator given hy
U(dr) = e~ (43)

with

| B
= f[{ s b — ajh)

#
+ {T+_u] ﬁ{a :’r — HE.I’J‘J-"}
+ M{ﬂjﬂﬂ —HAHE}]. (44)

To derive the dynamics of the cavity 4 we take r =a,
and write down equation (43) as

Lty = expl—iHdi)

8
= exp [m ¥A {ﬂ_.,dﬁ,-,, — adBy,)

+ a iﬂ!] JyelusdB, — ﬂ'gdﬂgr}
+ é {Yavelajagdt — H_.qﬂgrﬂ}] (45)
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and

Lty = expliH " dr)

A
= exp I = [m...-’ V4 {::_4(1’3,-,, — adBy,)

8
+ P Jﬁ{ﬂ,ﬂdﬁ-;} — afdBy)

+% {Yavslajapdt — a_mgr.’!}] ] (46)

MNow,

aqlt +df) = e Ya,et
e e‘_”'\a_.,e'_‘_m

=ay — [X a4] + % [ X aq]]+ -+, 4T)

where
X= [ —ﬁ_ '\.l' VA (’“.‘ddgﬂr 7 Hji-dg""}

{1+ }r{:;yf T —agdBy)

+ 3 Vyayslaiapdt —ay ﬂgcﬂ}] : {48)
Now

[X,a4]= VyalaadB, — ﬂ_"jdﬂj,}

[eis a
- m VVelapdB), — aydB;,)

1
+ 5 vayslajapd — aqagdi), ::_4]

_ A AN
“ +u1"ﬁ’_( v A |)“rE”’

]. J"LN_'_| )LN
=5 ?’.m( ot Jasdr. @9)

Again

[X [ X, aq]] = JF {:udﬁ,,, ajdﬁ,-"}

|:{1 + o)
{1 + ]F{:;g(f  —agdBy)
+ ;ﬁ.fyjyg(a::md! — aqugdt), %ﬁa’}q

Angl  Aw
s — {5,
Ay Awo )( '

An An
(]
Av o Ao

[ e

5

Anpr Ay
TRVE it = It
{1 +a) kg 4( A Ano :
? Anvpl Aw )
— = of i1 a0
(1 7 ?’.4}”3“3( i )U. : [t (30

Hence

d m(”“”*' " Van,

H_.q{!'i‘(-lr!]—ﬂ.d“]:_“+u} An An_)

1 X o
+§¢?’.4?’HHH( f“—i 4 )ﬂ'!
2 N

N-1

1
i fil (}'NH — A )a_.,d!
{1 +a)? 2\ Ax  Ano

3

"1 +a)

A A
2 o

Av o Ao
(51)

MNow

B m_ (1-dya
(1+a)° 2 (I4ey?2

L LN
(14+e)2 (14w 2

¥d o
-0 ; 52
5 +{1+a}h (32)

Then

2 ;A A
£ . 2] ( it )ﬂ_.,d!
{ | + 11}' 2 .Ju.,b.' )L.‘h'—l

__ﬁa (A—NH — A ot
R s YTV T

;(‘“*' AN )m (53)

o
+ 4
T+ ™\ " s

and

2 g -
s 1:[1_1 “1]=‘ﬂ_ (54)
(1 4+a) (1 +a) |+

Therefore

1 Py A -
—J?uruﬂa( Nil_ N )d! g U 5/ VAVBUE
2 N N— 2(1 + a)

=1 J—mma( M —i'?--)cn. (55)
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Finally we get

A
:;_.,{:+d:]—a_.,{:]=—{1fa}ﬁ( ;:I v I)dﬁm

1 Anyl A
+ =/ Vareas L L T
2 Ay Aao

- ﬁE L) }-NH—)‘-N oyt
(1+a)* 2\ Ay dwo !

# Avyl Ay
£¥ S — {1
bt Av o Ao e

21 +a)’
_[_n, (m )
B T v Awo

B Al )

J_{ ( - |)

1+ue ( AN |)

( AN )]n’!.
A

(56)

Hence

Ay
# Npl o Ay
_ﬁl l+ao bt }( Ay )w-l)
P v v
V7 a“-‘“‘( 2 A.«-_.)

Angl _)L_*.)] 57
Hﬂ{ }( Awo Ao ©7)

A A
ﬂ-a“]——};—f Alt ]( w:l ! )

Ty

This gives the state space model of the optical cavity 4
in the interacting Fock space.

Equation {37) representing the dynamics of the cavity
ay in the feedback system in interacting Fock space is a
eeneralization of the cavity in the feedback system in the
boson Fock space. This is due to the fact that the com-
mutator [4, 4*] = (Aye /) — (Ay/dwy—) in interacting
Fock space is not necessarily unity. In the case of
boson Fock space the value of the commutator becomes
unity. Then the dynamics of the cavity in the feedback
system reduces to

bﬂr“}

dglf) = —ga_.,{!] — ¥4 %

—f—-—m{!] J_——rw{!] (58)

5.2 Input—ouiput relation of the feedback system

The input signals Ay, and b, to the beam splitter
described in figure 2 are related to the output operators

by, and by by
b3 o Jﬁ hj'.ll
R A [

where @ and f§ are real and satisfy & + & = 1. From the
input—output relation of each system, we have

b= Jyaaa+ by (60)
= ﬁﬂﬂ + hy.

These relations determine each signal in the feedback
loop. For, from (39) we have

byl _[a B || bl _ [abu+pb 1)
by | | B —a|l b ]| | Bbu—ab |

hence we get

b."l = ﬂbﬂl + .ﬁhl {62}
bﬂ = ﬁhj'.lr —ah
From (60) we now have
= J/¥eap+ b ©3)
= Jyeis+ JYaiq + b

From (62) and (63) we get
by = fbiy — o yeag — wyaaq —aby (6)
or

Similarly, we get

b= Jyatia +bcr _
B ﬂ o (66}
—— 1+ yr+ \l"{_ﬂ"d 1+uv"ﬁ“.ﬂ‘~
again
b = Jysas + 7. ﬂ-a+bu
i (67)
=it m+ {»,-"{_H-a + ./¥sas)
and finally
h3 =~ abﬂr i ﬁhl

B (68)
= b+ m{v‘ﬁﬂg + .\..-"'}"_gﬂg}.
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Each signal in the feedback loop can now be written as

o
b= b= % (Faa + Vi)
b|=1fa ur+ N.r' Vatld — 'Lv'"?r—ﬂ“ﬂ
Bi= : f h“r+ {,J"'_(H +»,-""_.B'H.B‘}
by = by, +1+iu{u’ﬁa.4 + /Vauz). G

5.3 Transfer function of the composite system

We now describe the transfer function of the
quantum feedback system from the dynamics and the
input—output relation of the feedback system.

Using (57) the dynamics of the cavity A is rewritten as

; ¥ Angl Aw
a=—"a :](—-— = —)
? 2 Al Ay Ay_

_J—(l*m _l_.\')bﬂ

Ay Awo

¥A Ayl Aw
= — = ! _
5 aql ]( Fye )-.a.-_|)
i

[ J—ﬂ(lw A-J_|)“"ﬁ”

Ay

x(-‘:"-_.'\'+| J"L"u' )][byr]- {?ﬂ]
Av  Aa— b

The output equations are given by

by = aby + fhh = [ﬂﬁ][i::'] (73)

b= Yana + b
bj.r
= /Yatq + 5 _ﬂ]|:h ]

In vector notation, we have

(0] S5 2]} oo

(74)

That is
W) = C'x(0 + D'uln), (76)
where
Mk
Hi)= _bT]
I 0
=
]
x(0) = aqln)
gz [® 8 ]
LA —a
0 -h”"]
i = -
L b2

The quantum feedback control system given by (7)) and
(76) in the interacting Fock space is represented as

an

That is
o
O ) 0 ‘
N7
y=Ax+Bu, (71)

where

X=i4

o ()L.-.-+| A )

2N Av Ao

N e 0 O Angl  Aw
_|: Hﬁ( Ay l.w—l)'mu( An -J'-N—I)]
llrJ'J'.lr
= L 72
s [hz] 4
The state equation of the dynamics of the
cavity described by (71) and (72) is an operator

equation with the coefficients as operators in respective
Hilbert space.

i s ¥a (dvel Ax ) (l.'.'+| Ay ) ()LNH Ay )
A B = |- —B./¥a - N
|i . . i| _ 2 ()w Ano Av  Ano Av  Awo
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The state space dynamics of the composite feedback
system  represented by (77) is a generalization
of the state space equation described in the recent pub-
lication by Yanagisawa and Kimura (2003a, b). Thus
the study of the feedback system presents a more gener-
alization of the well known facts of the bosonic mode.

In the bosonic mode the state space model given by
equation (77) reduces to

o w [% | A
[ }: . (78)
o | 0 ‘ a fi

i go—e

The transfer function relation of the output function
¥is) to the input function L{s) in bosonic mode is



Downloaded by [Indian Statistical Institute] at 00:00 25 August 2011

738 P. K. Das and B. C. Roy

ziven by
¥(s) = Gs)U(5), (79
where
y — b:‘ ]
Yis) = [hu_ (80
and
Wﬂ=[2:. (81)

The transfer function G(s) of the composite system is
given by

Gis)=Csl—AV'BE+ D

Ll

[—ﬁ«’ﬁw’ﬂ]*[; —ﬁﬂ]
gy o5 L]

= |: ’ * ] (82)
—Byapls)+ B ayapls) — o

where p(s) = (sf +(ya/2) .

6. Conclusion

The study of the cavity gquantum electrodynamics
(QED) has received much attention in recent years by
different authors (Berman 1994, Doherty et al. 2000).
All the studies in respect of generation of photons
have been made by the authors in the boson Fock
space. The present study described in this paper is a gen-
eralization of all the existing model of the dynamics of
the cavity in the interacting Fock space. The state and

output equations of the cavity in interacting Fock
space has been described in this paper.

The input—output relation of a cavity with a second
cavity in the feedback loop can easily be described as

Bls) = M{)b ),

where Mis) is the closed-loop transfer function of the
form

BG(s)

M) =1 coaE"

with  G(s) =y_4{:.-+{y_4,.-’2]]_' +1 representing  the
forward path gain (transfer) function and His) =
yel(s + (ya/2)"' +1 representing the feedback transfer
function of the closed-loop system.

The phase margin (PM) of the control system
can easily be shown to be zero and the gain margin
(GM) is (1/a)(=1) in terms of the parameters of the
beam splitter.
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