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SUMMARY. Givon k samplos of n; umu from k normal populations ¥ {m;, o) (i=1.2,.., k)
a confidenco intervel for apy linear function 2 e;m; (whero ¢; are known coefficients) with confl-

dence cooficiont not lesa than somo pre-assignod pmbnbmly ais possible in terms of sample cstimates
of population means and variances and tebulated valuos of Student's 1table. Some generalizations of
the result including testing of hypothesis have beon considored.

1. INTRODUCTION

Given two ssmples of n, (i = 1, 2) units from two normal populations with
means m, and m, apd variancos o} and o7 & confidence interval for any linear function
¢ym,+-cymy (Where ¢; and ¢, are known coefficients) in terms of sample estimates of
population means and variances is of interost. It was shown by the author (Banerjee,
1960) that given k-samples of #; units from k normal populations N‘(m =1, 2

., k) and some pre-assigned probability a, & confidence interval for Z. c;m; with confi-

dence coefficient not Jess than pre-assigned probability «, could be bm.lt up from the
relation

E B2t
prob l:{zllﬁ(ie—m() }' <§ % :l Sa v (LD

where 2, and &} (i=1,2,...,k) are sample ecstimates of population means and
variances, ¢; (i = 1, 2, ..., k) are known ooefficients and £, (i = 1, 2, ..
that

., k) are so chosen

13 '.!+J

3
71_«—-3(1—1) i (1+%‘) d=a (y=n-1i=12.,k.

The probability statement (1.1) or the confidence interval associated with the proba-
bility statement (1.1) is applicable to more general situations. Some generalizations
are considered in this paper.
2, NotaTIoNs
The following notations have been used throughout this paper:
f(xd) denotes the frequency funotion of a x} variate which is distributed as
@ X® variate with v; degress of freedom.
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k() denotes the frequency function of a x? variate which is distributed as a
x* variate with one degree of freedom.

fltfv) denotes the frequency function of o (-variate which is distributed as
Student's t-varinte with v; degrees of freedom.

The terminology that ¢ (i = 1,2, ..., k) are t-values of Student’s t-table of
v; (i=1,2,..,k) df. corresponding to confidence coefficient & denotes t-values of
Student’s ¢-table so that

]
T fv)dt = ee.
._1(

8. THEOREMS

Theorem 1: If u be a normal variate distributed about zero mean and unit
variance and X% (i =1, 2, ..., k) be x* voriales distribuled mutually independenily and
also independently of 1 with v; (£ = 1, 2, ..., k) degrees of freedom and w0, {i = 1,2, ..., k)
be a set of arbitrary weights satisfying the relation

Zwy=1 w20 (i=12..k

kg
then prob {u’ P ER xf} >a . (3])
1Y
where & (i=1, 2,..., k) are tabulated values of Student's t-lable of v; (i = 1, 2, ..., k)
degrees of freedom corresponding to confidence coefficient a.
Proof : We have
r 1 t" 0 0 o R
2 i =
prob L < 21‘. wpd ]—!; !; ! ]:[f(xf‘) {Ih(xl)dxi} dd.dxit ... (39

]

: L L xt
1% 3 ”
[a +> Tu, | onaxe. o (3.3)
[]
oy
»

It can be shown [0 {] momdxs Jid=a G=12.08 . (34
[\]
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As }.Zw, =1, from (3.2), (8.3) and (3.4),
1

ko
2
prob {u <;‘JT‘w‘x§} >a o (3.5)
Theorem 2 : Let ¥ be a normal variale disiributed abowt mean M with variance
}E/\‘ﬁ + éo,a'}, where A; and 6; (i =1,2,..., k; j=1,2,...,1) are known positive
1 1
constants. If 03 (j=1,2,...,1) be known and s} be estimales of o} (i = 1,2,..., k)
where vis¥jol (i = 1, 2, ..., k) are mutually independently (and also independently of Y)
distributed as x* with v, (i = 1, 2, ..., k) degrees of freedom, then
!
prob [ (Y—Mp < TS+ 2003]>a Y
1 1
where t, (i == 1, 2, ..., k) and d are respectively tlabulated values of Student’s l-table
of v; i=1,2,..., k) d.f. and the normal probability table corresponding to confidence

coe fficient a.

13 1
Proof: We have prob [(Y—M) < & B35 + d* 6,03 ]
1 1

) R
wf T fx { [romdxdat .. ad .. (37)
0 [}

]

ow—g

whero x = (F—Mp (Eagt + Z60%)
= vist =
2 g G=1,2, ..., k)

— Aot -
v = W =12,k

e
vy = 'Ez\,a'}+20, U =12..,1])
g L,
BR=Ihoppt o s
1V 1

and f(x}) denotes the frequency funotion of & y3 variate whioh is distributed as & x
variate with v, degrees of freedom and A(x%) denotes the fr q y funotion of a
x* variate with one degree of freedom.
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Az f Mxt)dx? is an upward convex function of z,

)] ‘—,’-Xl d
[t > S, | " hoee+ 2o, | bk, . (38)
() [] [ ]

‘—.‘ 3]

It can be shown that T/(x:){[ "h(x-)dx'} d=a (i=1,2..8
[ []
4

and [ Mt = . .. (3.9)

prob [(F—M)t < 2: B2} +d* f:o,an > a. ... (3.10)
1

Result 1: Let three samples of N, N, and N, units be drawn from three
pormal populations with means m,, m, and m, and variances not necessarily equal. Let
(. 8%) (s = 1, 2, 3) be respectively estimates for the population means and variances
of the three populations. Suppose, based on previous experiments, we have estimates
(i) 25, 8% ; (ii) Z,, and (iii) s respectively for (i) mean and variance of the first popu-
lation, (ii) mean of the second population and (iii) variance of the third population
based on n), nyand n, unita. Then a confidence interval for any linear function

]
%c‘m‘ of population means, with confidence coefficient not less than some pre-

assigned probability «, may be built up from the relation :

3
prob [{Eq(zu—m‘)}’ < 3 kb ]>¢ o (3.11)
1 1 Ny
where Nm = N1+ﬂ1; 2y = lel;'”!z“

10

Ny = Nytny; By =N'=1'Vﬂ

')

Nep = Ny; Fpo =123

3= (N;—-l)c{ + (m—1)ay,
-Nyt-n,—2

o = 4§

02 = (Ny—1)a§ + (ny—1)sd
Ny+n,—2
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and I, (i = 1, 2, 3) are tabulated values of Studont’s t-table of v; d.f. (v, = N,+n,—2,
ve = Ny—1 and v; = Ny+ny—2) corresponding to confidonce coefficiont .
Relation (3.11) follows direotly from Theorem 2.
Result 2: From two samplos (2. y;; ¢=121 j=12..,n) of =
(i = 1, 2) units from two bivariate normal populations rogression equations of y on
2 are estimated as:
Population I : Y, = #,+b,(X,—%,)
Population II: Y, = Fa+by(Xe—7)).

If B, and g, denote respectively population values of regression coefficients of tho
two populations a confidence interval for f,~ f; may be built up from the result :

prob [(bl_bl_(ﬂl_ﬂt)}‘ < ﬁ:% +~l%?- ] >a (3.12)
t E

ng
where $t = };‘.(:'U—z‘)*. (i=1,2)

ny
E (Yot

6%-—-: B i=1,2).

n—2

Yy = §i+-bilzy—7F)s (t=12)

and 4 (i = 1, 2) are tabulated values of Student's t-table of n;—2 (s = 1, 2) d.f. corres-
ponding to confidence coefficient &.

As b, and b, respectively are distributed normally about means £, and g, with

variances say .'g"} and ‘—7—;’( and s? and s} are estimates of o} and o} with #,—2 and
2

ny—2 d.f., the result follows from Theorem 2.

4. SOME RESULTS ON THE TWO-MEANS PROBLEM

In this section four results on the two-means problem would be presented
as under :

(1) proof that reatricting to class of functions of the form 4,s3+4,s% the only
function which with minimaum values of 4, and 4, would satisfy the relation

2
(Ze@m)) < det+4p}
with probability not less that any pre-assigned probability « is

febt | debet
’h+ﬂ-
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(2) numerical values of upper bounds of probability of the inequality

2 2 12242 lzc%’i
3 . 16181 5
{ 2;' (Z—my) } < " + 7
(3) proof that the confidence interval

1 2 - R
LeZ + \/2 t3c%s%/n; is unbisssed
1 1

(4) non-contral confidonce intervals.

Throughout this section and the following sections, unless otherwise stated
%, and &} denote sample estimates of population mean s, and variance o} based on a
sample of size #, drawn from a normal population N(m,, o). Also Z, and &% denote
sample estimates of population mean m, aml variance of based on a sample of size
ny drawn from & normal population N(mg, 03). Also vi(= n,—1) and v, (= n,—1)
denote degrees of fresdom of s}and s}. Also ¢, and ¢, denote known constants, positive
or nogative, and @ a pre-assigned probability level (between 0 and 1) and ¢(i = 1, 2)

are tabulated values of Student’s t-table of v; (i = 1, 2) d.f. corresponding to con-
fidence coefficient a.

Result 1: Lot P{A,, 4,} denote the probability of the inequality

(Bate—m)" < dttant . (@)

It can be easily shown that P {4,, 4,} is equal to

® o ayw y1+as(l —or)ya
1 1 1 Yi—ys it -1 .
['_ —p') T ! !e ) (vs) {je 2zt dz } dydy, ... (42)
where Pi=v2; = %‘TIE $=1,2)
010'2/”1
aad 51; T, cgdln,

Further, it can be shown that P{4,, 4,} as defined in (4.2) is continuous in 1w, for
o 1.

Let numerical values of 4, and A, be eo taken that
A4, < ﬁ
"y

(4.3)
d
an 4, %

™y
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With numerical values of 4, and A, so determined by (4.3) as w, tends to unity
P(4,, 4,} tends to a' where a! is defined as
o 4,
1 1 i praf ¢ Glm AN p a4
I‘(p,)'l‘TiT'-[' () {! ez dz} Yy e (44)

which is less then a.
Since P{d,, A,} is continuous in w, it is possible to chooso a value of w, near
w, = | such that P{d,, 4.} < «. 'Thia means that even if A, is made arbitrarily

large,
1 £
prob “ z o@—m) } < dpt+agl)
1
2,2
where 4, < ? depending upon the value of w;, would be less than the pre-
13

assigned probability level for some of the populations. Hence the only function of the
form 4,s§+ 4,63 which, with minimum values of 4, and 4,, would satisfy the relation

2 1}
{ ?5:(5«—”‘()} £ 4pi+4
with probability not less than a is
n Ny

2.2
Result 2: From (4.2), P { et s ":ﬁ} standing for the probability of the
n ¢}

inequality
2.2 2
(Baem)' g ot s
1 O
is equal to
®© 0 a1+ 21wy
1 —-n-y p-1 p—
ey r‘(p,) m) H e @) (9 {l; e zhdz }dy,dy. e (48)
where po=wl2; a="tv; (=12)

clotim .
Zxa ¥n+ckoding

and w, = 1—w,.

foi £ ; . ; i
P{_”_, _} is essentially o function of w, and it tends to & when w, tends to
1 T
. X Bt B2
26ro or unity. For values of w, between zero and unity P { ol }m numerioally
1 2
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) - et ey .
greater than a. Differentiating P{-‘?‘—, . } with respect to w, within the sign of
1

integration (such difforentintion is permiseible for vy, vg > 2 and for v, vg = 1 if
0 <6< wy < 1—¢) it can be shown that

d prhd ddy_g_
d—wlP{ N ;} =1,-1, .. (4.8)
where for (i) agwy > ayw,,
=K 4P . F 1 1. =6
L=x T+a;0, G {l.m+ y Pt o ) (4.7)
- BaPa | g, et )
L= K. T+ay0, ‘ F[{, Pu Pr+PetL; o } . (4.8)
and for (ii) aw, > a0y,
—K BP A . &—¢
L=k e F {i:?.-m+p.+l.—icl } . (49)
— K HP - p 1 . C—Cy
L=k Fam, {LP.+ Pt S } (4.10)
= 4% o % . 404 Kig a function of dw (i =1
where ¢, I+a, T+ago, ' and K is a function of 2, a; and w; (i =1, 2).

If vy=vg=v, 80 that g, =a; =6, from (4.7) and (4.8) for the ocase
Gy, > agw; (ie. 0y < })

1 v Wy—w

=K. . SRR RS PR il Y . 411
h= K F{b g+ 1w i) ®19

1 v Wy — W,
=K. . y — vl —2 L o (412
L=K- e Flb 5.0+ w.(1+a.,w,)} (4.12)

v . v .

As F{g,_2+1,v+1,z}>r{§.T v+l,z},(z>0)

from (4.11) and (4.12) it follows for 1w, < §,
I,>1, e (413)

2
which means P {[‘—f, li_c’,"} increases aa w, increases. Further from (4,11)-and
s

(4.12) it is evident that at w, =}
L =1, v (4.14)
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OONFIDENCE INTERVAL FOR TWO-MEANS PROBLEM
Also from (4.9) and (4.10) for the case a,w; > a,w, (i.e. w, > %) it can be shown that

. thed 18} TTIR . .
I, is greater than I,. P {T' T} for variation in w, takes & maximum value af

—©
o

tie , '—gc— } for suitable values of

w, = }. In Table 1 below maximum value of P {T o

v (= n—1) and e (i) 0.90; (ii) 0.95 and (iii) 0.98 are presented. The values have been
worked out from Table 9 (Probability Integral P(¢/v) of the ¢t-distribution) of Biometrika
Tables, Volume I, using the relation :

P {ﬁ t?,c§} = _'f S2v)de

%8 oy
whers {, satisfies the relation
L
§ fepvat= a.
ty
Also, occasionally, Incomplete Beta Function tables were used.

£30% $30%
TABLE 1, MAXIMUM VALUES OF P {‘;l—‘, —9#-}

FOR VARIATION IN w,

a—value
r=n—1

0.90 0.905 0.98
(0) m (2) (3)
1 9768 9039 9990
2 0567 .0873 9978
8 8430 .9809 9081
4 9342 97690 9943
[ 9283 L9721 9928
8 9239 .9691 9916
8 9183 .9851 2805
10 8149 .9628 9880
12 9126 96056 9869
14 9108 0691 9860
18 8000 .9579 0854
18 8080 .9672 0848
20 9565 9844
22 9062 .9559 2840
24 0065 . 0564 9836
30 9051 .9542 0830

Result 3: The confidence interval
ToF & of il | tel . (4.15)
™ Ty

is unbiagsed,
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Let
P, = prob [{ }:' "13:—%%‘“: }. < % i:‘d—]
(4.18)
and P, = prob [{ 2:20‘5‘—31’ }' < %‘. “?:, ]

2
Since for fixed (s,, 8), b ¢2; is distributed normally about mean 21 ¢;m; with variance,
1

say 0%,
= = ¢y} do da
Py 6[ .[ 7l81)9(es) {-!;‘IO Vo "} 1 doy
® © T/
1 -y
and P=[famae| | 75 e du ) doyde,
00 =T/
where g(s,) = frequency function of &,
g = " of 5
7=,/ z‘ic_ﬁ and M ='>:: cm—M'.
(3
As f ol ays § e gy
L 2%

unbisessdness follows.

Result 4: The confidence interval so far considered for the two-means problem
is central by nature. Non-central confidence interval with confidence coefficient not
less than any pre-assigned probability level is, however, possible. Consider the
confidence interval :

[~met s < LaFom) < Tk o ) . (1)

P % ey O
whero Tyl &) = -J‘uch"l_l_ t_f;::_zs,
]

Tys}, of) = \/W
1
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where #; (i = 1, 2,; j = 1, 2) have been so dotermined that

9 ha ]
{. St = ey [ fltpn)dt = ani

[ b
Sva)dt = agy; [ flt]ve)dt = agg;

—tn o

where P, j=12)
and @y togy = antag=a.
Now prob (—7, € EZ¢;(2—m) < Ty)
©w T,8
1 —u®
= (3,) g(s9) —_: e ds, ds,
al.‘!. 1 2 {—il!' ‘/2" } 1 t]
) THee T
=t [ [ sooged { [ moxt+ [ haihaxt ) dds,
00 ° °
where
g(8,) = frequency function of s,
9(8;) = ' " of 8
M= . " of x* variate with 1.d.f.
and &= ﬁ + .&ﬁ.
et 7y
/e thetlot thskio}
Now I Mt > I et (1w | hxtMx®
whero < ddim oy,

wy =gt
! cioiny+ciodin,,

From (4.19) and (4.20)

prob [—T, < Zef{z—my) € T4l > Hnlay+a)+(1—1w))ay +ap)) = o

5. TEST OF HYPOTHESIS

(4.18)

(4.19)

(4.20)

The problem of the two-means hes so far been considered from the approach

of estimation by confidence interval corresponding to the region B

Loy e theisd
{?C‘("« ”"‘)} <T+ S

The region R’, complementary. to the region of acoeptance R, may be used
as & oritical region for testing hypothesis H regarding population means. . For example,
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if it is required to test the hypothesis H that m, = m, the corresponding statistic
T may be defined as
-2,

™ Ny

t, and ¢, being suitably chosen. If such tests are applied, the first kind of error, i.e.,
the probability of rejection of the hypothesis when true, will not be exactly equal to
an assignod value 1—a but would depend upon w, or the variances of the two popu-
lations. For w, tending to zero or unity, the error of the first kind would tend to the
assigned value 1—a. Hence, one can go in for such tests, if one is prepared to accept
tests whose first kind of error would not be exactly equal to a given value 1—a but
would depend upon the values of the free parameters (here o3, 0%) in such o way that
the first kind of error would always be less than or equal to 1 —a. Such tests, however,
would be unbiassed as the complementary region R, the region of acceptance, as
proved earlier is unbiassed

Two examples have been considered below. Example 1 has been taken from
Biometrika Tables, Volume I, 1954 and Example 2 from Slalistical Tables by
Fisher and Yates.

Ezample 1 : Two ssmples of sizes #, = 10 and n, = 15 furnish the follow-
ing estimates :

population mean variance
I 73.4 51
I 47.1 141

To test the hypothesis about the equality of population means with maximum value
of error of the first kind fixed at (i) 0.10, (ii) 0.05 and (iii) 0.02 three statistics (i) T,,
(ii) Ty and (i) T, respectively may be computed as under :

73.4—47.1 268.3

HoF G=128); T,= =283 _ 31
=- j=1,2,8) Ty= 200 =9 g
! \/‘1,,__’;? + “,’_7; V/803¢ 833
™ Ry
134471 _ 263 _ BA—4T1 283, 0

T,= "L _— =__ =387, Ty = =
Y Ty T 6.80 ' V10531 10.28

where t,; are 100., percentile points of Student’s ¢-table of v, d.f. with v, = 9, v, = 14
and a; = 0.10, a; = 0.056 and a, = 0.02. All the statistics are numerically greater
than unity. It is seen that with meximum value of the error of the first kind fixed
even at 0.02 the hypothesis cannot be accepted.
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Apart from the question of testing of hypothesis, confidence intervals I, I,
and I, for the differonce of population means with confidence coefficient respestively
not less than (i) 0.90, (ii) 0.95 and (iii) 0.98 may be built up as

(i) I,—26.3 & 6.80— (19.50— 33.10)
(i) I,>26.3 + B.33 (17.97— 34.63)
(iil) I, 26.3 4 10.26— (16.04— 36.56)

80 per cont confidence limits, according to Weloh's solution for this case is 10.8 to
32.8 which corrosponds to interval /, having a range 19.6 to 33.1.

Example 2: A physical constant evaluated by a new method gives a mean
of twelve determinations,

2, = 4.77383

and that the sum of squares of the deviations of these values from their mean is

I (#y—2z,)* = 0.11680% 10-!
s

50 that from 11 degrees of freedom the variance of the mean is estimated to be
a(z,) = 0.8778 x 10—+
and the estimated standard deviation of the mean is
8y(F,) = .9366x 1071,
Numerous previous determinations, using different methods, have given the value,

2, = 4.744

where %, has a standard error based on a large number of degrees of freedom with
8y(2,) = .00382.

To test the hypothesis about the equality of population means with maximum
value of error of the firat kind fixed at (i) 0.10, (ii) 0.05 and (iii) 0.02 three statistics
(i) T,.(ii) Ty and (iii) 7' respectively may be computed as under :

O . W p,o— 02088  _ 2083 _ ., ...
VTR Amr, Am T Tk vasis | E9 :
7, -02983 _ 2083 e g 02803 1 R

=107, 33246 1-80 10-9% v/7-2704 270

where f,; are 100-a, percentile points of Student's t-table of v; d.f. with v; = 11 and
vy = 0 and @, = 0:10, a, = 0-05 and &, = 0-02. All the statistios are numerically
groater than unity. It is seen that with maximum value of the ‘error of the first
kind fixed even a¢ 0.02 the hypothesis cannot be accepted.
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6. BeHBENS-F1I8HBR AND WELCH'S SOLUTION

Fisher (1935) indicated that by means of fiducial argument in atatistioal in-
ference given two samples of ny(i = 1, 2) units from two normal populations with

z;ond s2 (¢ = 1, 2) as sample estimates of population find variances, the relation
_‘—_m,)a(z.%m,) 2, 8in 6—1, co8 O (6.1)
1
e
where u; =Z"™ (; — 1,2) and tan § = alv/ny
8lvng sfv/ny

originally due to Behrens (1929), could be used to test the hypothesis that d( = m,—m,)
has tho value zero. Sukhatme in 1938 published ecritical .values of Behrens-Fisher
test as defined in (6.1) for 5 per oent level of significance for v,, v; = 6, 8, 12, 24 and
for 0 = 0°, 15°, 30°, 45°, 60°, 76°, 80° where tan 8 is /Y™ . Further critical values
ENAVEN

for 1 per cent level of significance for v,, vy = 8, 8, 12, 24 and co were published later.
To calculate critical values of (6.1) Sukhatme assumed that for given value of 0, u,
and u, were independently distributed as Student’s ¢-variate with n,—1 (i = 1, 2,) d.f.
Critical values of Behrens-Fisher test for small odd degrees of freedom vy, v =1, 8, 5
and 7 were published by Fisher and Healy in 1966.

Critioal values of Behrens-Fisher test have been tabulated for different values
of 6 where tan 0 = :?’;—:;.;:—_‘ . For 6 = 0° oritical values of Behrens-Fisher test is

2/ VT

equal to t-values of Student’s ¢-table with v, d.f. Also for 6 = 90°, critical values of
Bohrons-Fisher test is exactly equal to t-values of Student’s t-table with v, d.f. For
intermediate values of 6, critical values of the Behrens-Fisher test for v, = v; = v
and v = 6, 8, 12, and 24 is numerically less than tabulated critical values for § = 0°
(or 90°, which are numerically equal in such cases) for 5 per cent and 1 per cent level
of significance. For v; # v, and vy, v, =6, B8, 12, 24 and oo critical values of
Behrens-Fisher test for intermediate values of § usually lies in between tabulated
oritical values for § = 0° and 6 = 90° and is ocoasionally less than both of them.
For v, = vy = 1 critical values of the test for intermediate values 8 are, however,
numoerically higher than corresponding oritical values for 6 = 0°(or 90°) for 10 per cent,
6 per cent, 2 per cent and 1 per cent level of significance.

Weloh (1947) considered the problem of finding a function which is such that

prob [-l{—__"’l— < Ve, o, ---.3§)j| =a . (8.2)
\ PA‘ﬂ
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for all valuos of a3, 0%, ... oF, where 4 is a normal variate distributed about mean 7
k
with varianes E A,0% and o} ure independent estimates of o% and A; are known positive
1

constants (i =1,2,....k). For y=2z—2, Weldh's problem is to find V(s}, s2)
which is sitch that

£—2,— — 2 .
prob [ Ll_';%,: _"(m:sM‘ < Vet x§):| e .. (83
“uy T e

Wilks (1940) stated thal an exaet solution of the form (8.3) is not possible; no proof
has, howover, heen publishod, Welch has put forward a sories for the case (6.2) (which
includos the enso (6.3) as woll ) na under:

Vst oo = £+ SUEED $ i ) - HFE ¢ £ )
3

2
BE5ELEY [ &
¥ E‘..";ifi‘.‘i(yyﬁ) otc. - (64)
k
whoro o = At X Ae%:
1

fi=df of &; (i=12..4
and £ is tabulated value of normal probability table so that

1 ¢ v

T ‘L e~ Zdy=a

In the words of Bartlett (1958) “‘thore is a permissible criticism of Welch's solution,
namely, that the existence of an exact solution in his sense has never been rigorously
established.” According to Wallace (1058) “it is still not known whether a non-
randomized similar level « test exists.”

Critical values of Welch’s solution for the two sample case only have been
caloulated by Aspin and are given in Biomelrika Tables, Volume I (Table No. 11, 1954
print). The values given in Biomelrika Tables cover the range (i) v,, v, = 6, 8, 10, 15,
20 and 20 for @ = 0.90 and (ii) v, v, = 10, 12, 15, 20, 30 and oo for & = 0.98. Also
further critical values for & = 0.05 and 0.99 are given in Welch, Trickett and James
(1956). Critical valuos of Welch's solution for very small degrees of freedom (v,
vy & 6) have not been published.

Critical values V(o vy, vy, &) of Woloh's solution have been tabulated for given
A
vy, vg 80d @ for the ratio ¢ = /\F}-‘}-‘/‘\;{ . This, of course, does not mean that critical

values of Welch'a eolution refer to sub-sets having observed variance ratios.
Both Welch’s solution apd the present solution refer to unrestricted variation of £,
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Ey, of ond &5 For ¢ = 0 critical values of Welch's solution are oxactly equal to ¢-
values of the Students /-values with v, degrees of freedom. Also for ¢ = 1 ecritical
values of Wolch's solution are exactly equal to f-values of tho Student's ¢-values with
vy degreos of freedom. For intermediate values of ¢, V(c, v,, vy, @) numerieally lies in
betweon (0. v, vy, &) and (1, vy, vy, ).

To compare the solution derived in this paper with Welch’s solution, the
solution derived in this papor can be written as under :

(y—n)t 2,08+ A58 _
(R < Fag | >« - (63)

Using relation (8.5), critical values of (i) Welch's solution and (ii) the present
solntion for the cases (i) @ = 0-95; vy = 8;v, = 8, 12 and co and (ii) & = 0-99; v, = 12;
v, = 12 ad oo havo been given in Tables 2 and 3. Critical values of the present
solution us given in column (4) of Tahlos 2 and 3 have boon worked out from the
relation;

Ve riI—0)

c= /\"}_
A5

whore

for different values of ¢ as indicated in column (1) of Table 2.

It is scen from Tables 2and 3 that for ¢ = 0 or 1, thereia no difference between the
eritica) values of the two solutions. For intermediate values of ¢ there are differences
in the valnes but the magnitude of tho differences falls off as the number of degrees
of freodom increases.  Maximum magnitude of the differences expressed as percentage
critical values of the Welch's solution are of the order of (i) 11 per cent (ii) 7 per cent
and (iii) 4 per cent rospectively for the cases v, = (i) 8, (ii) 12 and (iii) o with v, = 8
snd « = 0.95. Difference in the mathematical expectation of the lengths of the
two confidenco intervals, which would be a weighted average of the difference in
the longths of the two intervals at different ¢ values, properly weighted by the
frequency of occurrence of ¢, would, howevor, bo smaller than the maximum magnitude
of tho differenco.

A comparison of the oritical values of the present solution with the oritical
values of the Bohrens-test as given in Statistical Tables (by Fisher and Yates) may
be of i t. This parison, however, would not be atrictly valid because the
present solution is based on the theory of confidence interval whereas the tabulated
values as givonin atatistical tables aro based on the theory of fiducial inference. Further,
presumably the Bek Fisher test caloulates oritical values restrioting to sub-sets
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TABLE 2. CRITICAL YALUES OF (i) WELCH (ii) BEHRENS-FISHER AND
(ili) PRESENT SOLUTION FOR »; =~ 8: r; = 8, 12 AND &
FOR 5 PER CENT LEVEL OF SIUNIFICANCE

Weleh's HBebeens- Fisher present differenco differonro
solution toat® nolution col, (4)rol. (2)  col. 4)-eol. (3)
[ 2) (5) (L]
0.0 u.00 0.
0.1 0.08 0.01
.2 0.11 0.0
0.3 0.17 0.02
0.4 2.10 . 0.2 0n.02
0.5 2.08 2. 0.23 0.02
0.8 2,10 2 2.3 0.2 .02
a7 2.4 2,29 2.3 0.7 0.02
0.8 2.20 2.30 2.3 o.Nn 0.01
0.9 2.9 2,30 2.31 0.08 0.01
1.0 2.31 2.31 2.3 0.00 0.00
rs=8; 7 =12
0.0 2.3l 2.3 2.31 0.00 n.na
0.1 2.25 2.20 2.20 0.04 0.00
0.2 2.20 2,27 2.28 .08 0.01
0.3 2.15 2,28 2.27 012 a.01
0.4 2.10 2,24 2,28 0.16 0.02
0.5 2,07 2,22 2. 0.17 0,01
0.8 2.07 2.22 2.23 0.18 0.0t
0.7 2.08 2.2) 2.22 0.14 o.nt
0.8 2n 2.20 2.20 0.00 0.00
0.9 2.4 2.10 2.19 0.05 0.00
1.0 2.8 2.8 218 0.00 0.00
¥y =8 y o= C

0.0 2.31 2.31 2.31 0.00 0.00
0.1 2.28 2.27 2.27 0.02 0.00
0.2 2.20 2,28 2.24 0.04 0.01
0.3 2.4 £.20 2.21 0.07 0.01
0.4 2.00 2.18 2.17 0.08 0.01
0.5 2.08 2.13 2.14 0.09 0.01
0.6 2.01 2.00 2.10 0.00 0.01
0.7 1.00 2.08 2.07 0.08 0.01
0.8 1,07 2.03 2.08 0.08 0.00
0.8 1.90 1.89 2.00 0.04 0.01
1.0 1.96 1.08 1.98 0.00 0.00

® Values have boon worked out from tabulated values as given in Table VI, Statisiieal Tables by Fisher
ond Yates, by interpolation,
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TABLE 3. CRITICAL VALUES OF (i) WELCH (ii) BEHRENS.FISHER AND
(iil) PRESENT SOLUTION FOR r; -~ 12; »; =12 AND &
FOR 1 PER CEN1 LEVEL OF SIGNIFICANCE

c Weleh'a Bohrons- Fighor presont ilifferonca differenco
rolution Logt® nolution col. {(3)-col. (2)  col. (4)-v0}. (3)
) (2) (3) (#) (3) (8)
rr=12; 7 =12

3.05 3.00 3.06 0.01 0.00
0.1 2,98 3.02 3.00 .08 0.04
0.2 2.01 2.09 3.08 0.156 0.07
0.3 2.84 r.97 3.08 0.22 0.09
0.4 2.78 2.98 3.00 0.28 0.10
0.5 2.78 2.05 3.08 0.30 0.11
0.8 2.78 2.00 3.08 0.28 0.10
0.7 2.84 2.97 3.08 0.22 0.09
0.8 2.01 2.09 3.08 0.15 0.07
0.9 2.98 3.02 3.00 0.08 0.04
1.0 3.05 3.08 3.08 0.0l 0.00

=12 0 = «

0.0 3.05 3.06 3.08 0.01 0.00
0.i 2.98 3.00 3.01 0.03 0.01
0.2 2.01 2.94 2.96 ‘0.05 0.02
0.3 2.84 2.88 2.92 0.08 0.04
0.4 2.77 2.83 2,87 0.10 0.04
0.5 2.71 2.78 2.83 0.12 0.05
0.8 2.65 2.73 2.78 0.13 0.06
0.7 2.82 2.68 2.713 0.11 0.06
0.8 2.69 2,64 2.68 0.09 0.04
0.9 2.58 2.0 2.63 0.06 0.02
1.0 2.68 2.58 2.68 0.00 0.00

* Values havs been worked out from tabulated valuos as givon in Tablo VI, Statistical Tables by Fishor
and Yates, by intorpolation.

having observed values ’j—gn:“{whereu in the present case critical values refer to
8/ /g
unrestricted variation of the four sample estimates Z;, Z,, s and s}

Bearing in mind the broad limitations of comparing the critical values of the
present solution with the critical values of Behrens-Fisher test, in column (8) of Tables
2 and 3 differences in oritical values of the two solutions have been shown. It is seen
that the differences in the critical values are small.

Further comparison of critical values of the present solution with the critioal
values of the Behrens-Fisher test for small d.f. v;, vq = 1, 3 and 5 has been done in
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Table 4. [Welch's solution has not been considersd because critical values of Weloh's'
solution for v, v, § 5 have not beon published.] It is seen from columns (4) and (7)
that excepting the cases (i) v, = v, = 1; (ii)y; = 1; v, = 3 differences in the critical
values are usually small.

TABLE 4. CRITICAL VALUES OF (i) BEHRENS.FISHER TEST AND
(ii) PRESENT SOLUTION FOR SMALL OOD DEGREES OF
FREEDOM FOR 3 PER CENT LEVEL OF BIGNIFICANCE

* it Louiion eolidyest () Faherteatt bon  cohi0est i6)
(U} 2) 3 [O)] (3] 19) N
el rr=i rpml: py=l
0° 12,508 12.708 0.000 3.182 3.182 .ong
15° 15.562 12,708 —~2.866 4.060 %.501 —.450
30° 17.357 12.708 —t.651 7.123 6.926 —.198
*5° 17.900 12.706 -—b.208 9.303 9,262 —.041
60° 17.887 12.700 —4.051 11112 .ns .008
78° 15.562 12.706 —2_850 12,294 12.300 .006
90° 12.708 12,706 0.000 12.706 12,700 .000
ne=1; =5 n=3; =3
0° 2.871 2,571 .000 3.182 3.182 000
18 4.218 4121 —.097 3.9 8.182 —.000
3n° 6.630 6.732 098 3.226 3.182 —.043
45 9.080 0.188 .078 3.24 3.182 —.062
60° 11.043 1.077 034 8.225 3.182 —.043
5° 12.282 12.292 .010 8.181 3.182 —.008
00° 12.708 . 12,708 .000 3.182 3.182 .000
ry=-3; vy =8 r =8; 73 =B

0 2.571 871 .000 2.871 2.871 .000
18 2.828 2.617 —.009 2.804 2.5 -007
30° 2.758 2,737 —.010 2.562 2.8M 009
45 2.897 2,803 —.004 2.885 2.871 .008
60° 8.028 3.041 .018 2.862 3,572 .008
75° 3.18¢ 3.148 .on 2.664 2.5M 007
90° 8.182 3..82 .000 2.57 2,571 .000

¢ Valuee token from Tuble VI, Stakistical T'ables (1057 edition) by Fishec and Vates.
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7. CONOLUSION

Given two samples of n, ( = 1, 2) units from two normal populations, having
variances not ily equal, a confid interval for any linear function of popu-
lation means in terms of sample estimates of population means and variances and
tabulated values of Student'’s {-tables is possible. If the population variances are
unknown the only function of the form A3+ 4,s% which with minimum values of 4,
and A, would satisfy the relation

{ %ci(!i—ml)}‘ < Ast+4.4

2
with probability not less an « is f"c’_‘d +i"§5_. Further with maximum value of
m 7y

the error of the first kind (probability of rejection of hypothesis when true) fixed at
any given value any hypothesis regarding the equality of population means (or any
linear function of population means) of the two populations can be tested. Such
tests are unbiassed.
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