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Summary

Longitudinal dispersion of passive tracer molecules released in a pulsatile flow through
an annular pipe with a reactive outer wall is studied by emploving the method of integral
moments. It is shown how the spreading of tracers is influenced by the shear flow due to a
periodic pressure pulsation in the pipe and a first-order reaction at the wall. The behaviour
of the dispersion coefficient due to variation of the aspect ratio (the ratio of the inner radius
to the outer radius of the annular pipe) for periodic fow with and without a non-zero mean
is examined. It is shown that an increase of aspect ratio, Womersley parameter or reaction
at the outer wall of the annular pipe inhibits the dispersion of tracers. The axial distribution
of the mean concentration is approximated using a Hermite polynomial representation from
the first four central moments for a range of different aspect ratios and frequencies of the
pressure pulsation. It is interesting 1o note that for low frequencies of pulsation, an increase
of aspect ratio leads to a significant effect on the concentration distribution, whereas for large
frequencies, this effect tends to diminish. The results of this study are of great importance in
understanding the dispersion process in a catheterized artery with a reactive arterial wall.

1. Introduction

The study of longitudinal dispersion of a tracer in a straight tube has a wide range of applications
in the fields of chemical, environmental and biomedical engineering. The dispersion of diffusing
solute in a fluid flowing through a circular impermeable tube was first described by Taylor (1) and
subsequently extended by Ards (2) for pipe Poiscuille flow using the method of moments. They
confirmed that after a sufficiently long time when the tracer was completely mixed across the tube,
any localized initial configuration of the tracer material evolved to a Gaussian distribution moving
with the mean speed of the flow. Using his method of moments, Ars (3) analysed the longitudinal
dispersion of solute in an oscillatory flow of a viscous incompressible fluid under a periodic pressure
gradient. However, his analysis of the dispersion coefficient was mestrcted to asymptotically large
times after the injection of the solute. Watson (4) studied the mass transfer of a diffusing substance in
oscillatory flow through a pipe. Grotberg (5) analysed oscillatory viscous flow in a tapered channel
under conditions of fixed Stokes volume by developing a lubrication theory and Gaver and Grotberg
(6) verfied expenmentally that both theoretical and experimental results show a bi-directional dnft
for all frequencies depending on the value of the Womersley parameter. Rao and Deshikachar (7)
explored the generalized dispersion model proposed by Gill and Sankarasubramanian (8) to study
the dispersion of a diffusing solute in an annular pipe and evaloated the dispersion coefficient for
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all imes. Pedley and Kamm (%) studied the axial mass transport in an annular region by asymptotic
analysis for the limiting case of small annular gap and by numerical solution for arbitrary annular
gapin a curved tube in the presence of an oscillatory flow field. Since the pioneering work of Taylor
(1), dispersion problems have been studied for a great variety of transport problems by Chatwin (10),
Jimenez and Sullivan (11), Mukhegee and Mazumder (12), Hydon and Pedley (13) and others, but
dispersion with boundary absorption in an annular pipe has not received much attention despite the
fact that it is of great importance in environmental and physiological fluid dynamics.

Smith (14) used a delay-diffusion equation to study the effect of boundary reaction on longitudi-
nil dispersion in shear flows. Purnama ( 15) investigated the case of reaction and retention at the flow
boundaries when the racer is chemically active. Mazumder and Das (16) and Jiang and Grotberg
(17} studied the effect of wall conductance on the axial dispersion of solute in oscillatory tube flow
and found that the frequency parameter and wall permeability play important roles in the transport
of the solute concentration. Jayvaraman ef af. (18) analysed solute transport in a fluid flowing within
acurved tube with absorbing wall. Their results, based on perturbation and spectral methods, con-
firmed that the influence of secondary lows on dispersion is reduced if the tracer 18 heavily soluble
in the wall.

Pulmonary artery catheterization is now extensively used in medical science for the measurement
of various physiological fow charactenstics as well as for the diagnosis and treatment of varous
arterial diseases (19, 20, Jayaraman and Tiwar (21) showed that catheterization in a curved arery
keads 1o an increase in the axial wall shear sress. Dash er af. (22) studied the Casson model o
understand the flow pattern for both steady and unsteady flows in a catheterized artery. Recently,
Sarkar and Jayaraman (23) analysed pulsatile blood flow through a catheterized artery with an
elastic outer wall.

The main purpose of the present paper is to explore the combined effiects of aspect ratio, fre-
quency of pressure pulsation and first-order heterogeneous chemical reaction at the outer wall on
the streamwise dispersion of tracer material released in a pulsatile flow through an annular pipe.
More precisely, results are obtained numencally for the time evolution of the flow, showing how
the spreading of tracers 1% mfluenced by the shear low caused by a penodic pressure gradient with
and without 4 non-zero mean, how the tracer molecules are depleted or protected by boundary re-
action, how the centre of mass moves, and what pattems of axial mean concentration evolve in the
presence of reaction at the wall, The axial distribution of concentration is approximated by using
a Hermite polynomial representation. The solute is initially uniform over the cross-section of the
annular pipe and the Péclet number is large. The work is significant in the analysis of dispersion
through a catheterized arery in the presence of a boundary reaction and the results may allow a
comection 1o be made for the catheter-induced error based on the longitudinal dispersion of tracers
by the combined acton of convection, diffusion and reaction.

2. Mathematical formulation

Consider an unsteady fully developed viscous, meompressible, axisymmetric pulsatile laminar flow
through an annular pipe (Fig. 1). The length of the pipe is assumed to be large enough compared
o its diameter that entry effects can be neglected. The radial and axial coordinates are »* and =%
respectively, where the astensk denotes dimensional quantities. The flow 1s diven by a periodic
axial pressure gradient with a non-zero mean given by

2P _ bl 4edoT), (1)
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Fig. 1 Schematic diagram of an annular pipe

where g is the density of the homogencous fluid, P.. is the mean pressure gradient and £ and o*
are the amplitude and frequency of the pressure pulsation. The axial velocity u®(r®, 1) satisfies the
Navier-Stokes equation

0 AP 18, (,,wﬂ") 2
ar* g az* r* or*

with no slip conditions at both walls of the annular pipe, that is, #*(r*,1*) = 0 at r* = g and

r* = b, and where v 15 the kinematie viscosity of the fluid. When a passive solute of constant

molecular diffusivity I is released into the time-dependent flow, the concentration Cir, r, ) of the

solute satisfies the non-dimensional convective-diffusion equation

AC <[ . S A o . L o
rT+PtI!{F',f}rT: —:— ("rﬂ_) +rn = (3)
at dz rar\ dr gz
with dimensionkess quantities defined by
£t zt De* u* La
r=—; I=— I=—7; UW=—, P = —
a a a- o D

Here wir, 1) 1s composed of a steady velocity component wg(r) and a periodie velocity component
wy{r, 1) due w the imposed pressure gradient, L7 is the time averaged axial velocily IfP:-ﬂl,.-'él-,u}l
considered as the reference velocity, where g is the coefficient of viscosity of the fluid and Pe is the
Péclet number which measures the characteristic time of the diffusion process (a?/D) relative to
the convection process (a/U7). The initial and boundary conditions are

C(0,r,z) = B(r)dlz) (L <£r=1),

il

r_ﬂ +AC =0 at r=1,

or

aC

S on arai ) (4)
or

C  finite at all points,

1 1 | 2 o0
- —[ f [ rC(0, r, 2)drdBdz = 1,
l—dxf; o Jox

where B(r) is a specified function of r, 4 is the Dirac delta function, f (= f%a) is the first-order
reaction rate or absorption parameter and 4 = B/a 15 the muo of the inner adius & 10 the outer
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rudius @ of the annular pipe. The final condition in (4) represents the fact that the total amount of
material in the annular pipe is taken o be unity at ¢ = 0 assuming Bir) = 1/(1 + ) ford <r < 1.

The flow velocity ulr, i) in {3} is obtained from the solution of equations (1) and (2), together
with the no-slip conditons ¢ = 0 at the walls r = 4, 151t 15 given by

wlr, t) = uplr) + w1 (r, 1), (5)
where
wplr) = ll—i’z— _1‘_ Inr] S | 2 (6)
In A
die e t5r
uii{r, 1) = Re ﬂi'[F{r}_lEfj T (7
and
F(r) Koliai'?) — KolaiV™®)] Iylrai'?) + [Io(ai''?) — Iy(iai V)] Ko(rai'?)
rj= L 3

[Kolhai' ) Ip(aiV?)y — I(iai' ) Kolail/?)]

Here iy, Ky are the modified Bessel functions of first and second kinds of order zero respectively
with imaginary arguments (Tsangaris and Athanassiadis (24)). The functions [y and Ky can be
expressed as fy(xi'?) = ber(x) + ibei(x) and Ky(xi'?) = ker(x) + ikei(x), where ber, bei, ker,
and ket are Kelvin functions of order zero (Abramowite and Stegun (25)). Also a = ﬂm 1%
the dimensionless frequency parameter or Womersley number which is a function of the product of
two dimensionless parameters, the Reynolds number Ua /v and the Strmouhal number e%a/ U7, The
parameter @” is a measure of the ratio of the time (@ /v) required for viscosity to smooth out the
ransverse varation in vorticity to the time period of the oscillation (1/w*). Another way of looking
at @ 1% that, for penodic fow moan annolar pipe, itis the mtio of the outer radios a Lo the thickness of
the Stokes boundary layer /v /m*. Thus we may reat a” as a kind of unsteady Reynolds number,
The Schmidt number S{= v/ D) represents the mtio of viscous diffusion to molecular diffusion,
and @8 is a measure of the ratio of the characteristic time of ransverse diffusion to the period of
oscillation. When the aspect ratio 4 approaches (), equations (6) and (7) reduce to the low due o
mein and penodic pressure gradients through a circular pipe:

uglr)y =1—1r2, 7
It {F’, _r} - R.I:[qli -Fk{r} = 1] f]'¢25Ii| 1 fg}
al t

where

e Iplrai'’?)
= i)

Figure 2 shows the periodic flow (7) in a pipe of annular cross-section for various values of the
frequency parameter a, aspect ratio 4, phase difference @St and for ¢ = 1. It is observed that
increase of the aspect ratio 4 leads to a decrease in the velocity and it approaches a symmetric
parabolic profile similar to that for the flow through a pipe. Also, as the frequency parameter o
mereases, the velocity decreases. Equation (8) comesponds to pipe Poiscuille flow, which leads to
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Fig. 2 Velocity profiles for different values of the aspect ratio 4 and frequency parameter & = 0.5 (solid ling)
and 2.0 (dotted line), for different phases a2 St = 0,7 /4, 37 /4, 7 for A = 01 and a28r =0, 7 for 4 = 03

a maximum velocity at the centre-line of the pipe r = 0, and equation (9) comesponds o periodic
flow through a pipe.

Following the method of integral moments proposed by Aris (2), the diffusion equation ( 3) subject
o the initial and boundary conditions can be wntlen as

S R G (r, YPe Cp_y + p(p — 1C (10)
e e ey e = oy - o b —3
&t ror \ ar UL IS p1 T PP P2
with
C.l:-“}, rj= “ t A}B{r] r.{}r ik {}1 ‘
0 for p = 0,
2Cs - (11

+ﬂl:"|;.=ﬂ' a r=1,

aC, ;
— =0 at r=4,
ar J

where it s assumed that Bir) = 1/{(1 + ) ford < ¢ = 1, and Cplt, r)is the pthintegral moment
of the distribution of tracer in the filament for all z at ame ¢ given by

O
Cplt,r) = f 2PC(t, r, 2)dz. (12)
— i
Averaging over the annular eross-section, equations (10) and (11) become
dM —_— _ 2
d—r" =pPeulr,)Cp 1 +plp —1)Cp2— l—ﬁﬂcpfﬁ 1} (13)
T

and

Mpih=1 for p=0, M, =0 for p=0, (14)
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where an overbar denotes the eross-sectional mean and M (t) 15 the pth moment of the distribution
of tracer over the cross-section of the annular pipe,

2x l
[ ﬂ'ﬁ'[ rCpli,r)dr
= Jo i

Mplt) =Cp = Tr ] : {13)
f dt! /. rdr
1] JA
The pth central moment of the concentration distribution about the mean can be defined as
1 1 I Ir ]
i [ f [ rlz — ug)PCdrdfdz
l—dix Ja g
e s (16)

1 x oo i
1 i [ /. [ rC(0, r, z)drdfdz
e U E | R G

where g, = M /My is the centroid or first moment of the solute, which measures the location of
the centre of gravity of a slug with mean velocity in the annular flow initially located at the source,
and My represents the total mass of the reactive solute in the whole volume of the annular pipe.
From (16), g2 represents the vanance related to the dispersion of the tracer about the mean position
and the third (g3) and fourth (pg) central moments represent the skewness and kurtosis of the
distribution of the tracer respectively. The vanance r?:l = uz, and the coefficients of skewness (43)
and kurtosis (44) are the important critena for measuring the degree of symmetry and peakedness
of the concentration distribution of solute respectively, and are given by

#3

/2
Ha

and Ay 28 (17)

2
Ha

A3 =

For a Gaussun distnbution both Az and 44 are zero, and non-zero values of skewness and kurtosis
mdicate deviations from normality. A negative value of the skewness indicates an asymmetne profike
with a tail to the left of the maximum and negative and positive values of 44 represent leptokurtic
and platykurte distributions respectivel y.

3. Numerical solution

Owing o the complexity of the analytical solution of the moment equations {(p = 1) subject o
the initial and boundary conditions for ff % 0 and 4 = 0, a finite difference method based on the
Crank-Nicolson implicit scheme was adopted to study the problem. The scheme has been discussed
in detail in the work of Mazuomder and Das (16). The derivatives and all other terms are wrilten at
the mesh point (i 4 1, j), where § = 1 corresponds 1o the time + = 0 and j = | to the inner wall
of the annular pipe at v = 4. The mesh point (i, j) indicates a point where t; = At x (i — 1) and
ri=4i+{j— 1) x Ar, with At and Ar the increments n ¢ and r respectively. The resulting finite
difference equation becomes a system of linear algebrie equations with a tn-diagonal coefficient
malrix,

PiCpli +1,j+ 1)+ Q;Cpli + 1, )+ RCpli +1,j — 1) = §;, (18)

where Py, ;. Ry and §; are the matnx elements.
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The finite dif ference forms of the mitial and boundary conditions are

) 1 forp=10,
Cpll )= : 19
0 forp=1, (19)

Cpli +1,2)=Cpli+ 1,0
at the inner wall, and
Coli+ LM+ =Cpli+ 1L M—1)=2FArCpli + 1, M) (20})

at the outer wall of the annular pipe for p = (0, where M is the value of j at the outer wall.

This wi-diagonal coefficient matrix was solved using the Thomas algorithm (Anderson et af. (26))
with the help of the presenbed imitial and boundary conditions. For the periodie low with or without
a4 non-zpero mean, a mesh size Ar = 000001, Ar = (1 — A)/M, where 4 vares from 0402 to 0-4
and M = 31, gives satisfactory results for values of the frequency parameter & = 0-5, 1-0, 2.0 and
30, In all cases we have takene = 1.

4. Results and discussion

In order to validate the numencal scheme with the analytical results, a check was made on the
statistical properties (mean, variance, skewness and kurtosis) of the concentration distribution an
longitudinal dispersion coefficient for the periodic flow with and without a non-zero mean, with th.
aspect ratio 4 = 0 and in the absence of reaction (f = () at the boundary. The results show good
agreement with those of Gill and Sankarsubramanian (8), Barton (27), Rao and Deshikachar (7)
for time independent flow, and with Mukherjee and Mazumder (12) and Mazumder and Das (16)
for penodic flow with and withoul a non-zero mean, so the numencal scheme was then extended o
the penodic low with non-zero mean inoan annular pipe with absorbing wall.

It is observed for periodic flow with zero mean that the first moment (g ) which measures th
centre of gravity of the solute moves eyclically with the same frequency as the oscillatory currer
whin the frequency parameter @ and aspect ratio 4 are fixed. The amplitude of the oscillation |
creases with the boundary reaction f; that is, the mean displacement of the solute increases wi
each complete period of oscillation. When A mereases the centroid displacement of the solute moves
in a wavy manner but the amplitude of the oscillation decreases. For penodic flow with non-zero
mean, the centroid of the solute moves eyclically with the oscillatory nature of the flow; the ampli-
twde of the oscillation increases with the boundary reaction § and decreases with increase of A

According o Ars (2), the effective longitudinal dispersion coefficient D, may be defined as

1 de?

D(a, S, e, 8,1)= Spe2 di

(21)
where 4":I 15 the variance of the longitudinal concentration distribution. If the variance increases lin-
early with time, the longitudinal dispersion is constant. Here the dispersion coefficient D, depends
on the Womersley number o, the amplitude of the pressure pulsation €, the Schmidt number 5, the
aspect ratio A4, the reaction parameter § and the dispersion time 1.

For an oscillatory cumrent v = wy{r,f) and whene = |, Pe = § = li}'j", the vanation of 0,
with respect to time is depicted for different values of § in Fig. 3Jabfora = 0-5and 1 = 0-1;
in Fig. 3¢ d for & = 2-0 and 4 = 0-1; and for different values of 4 in Fig. 3ef fora = 14 and
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Fig. 3 Temporal variation of the dispersion coefficient D, for periodic low with zero mean for various
values of f# and 4: (a), (c). (e) for small time and (b). (d), () for large time whene =1, Pe =5 = 1P
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f = 1. It 15 seen from the figures that for periodic flow with zero mean the dispersion coefficient
Dy, changes eyclically with a double-frequency penod and it reaches a non-transient state afler a
certain eritical time i, which 1s related to the cross-sectional mixing time :41,.-’D. In the case of low
frequency & = 0-5, the amplitudes of oscillation of D, during the first and second half of the period
of oscillaion are almost equal, whereas for large frequency a = 20, the amplitude of I3, 15 more
significant during the first half of the period than the second one (Mazomder and Das (16)). Itis also
observed that when the frequency parameter a 1 small, D, reaches 4 non-transient state earlier than
in the case of high frequency. However, this dispersion process completely stabilizes after a certain
tme and then the solute disperses at a fairly uniform rate with oscillation. Further, the dispersion
coefficient D, for a given frequency parameter o decreases with increase in the reaction parmmeter
A Itis also clear from the figures that the dispersion coefficient D, meduces with merease of the
Womersley number . This is because merease of the Womersley number reduces the flow within
the annular region, hence the reduction of I3,. From Fig. 3ef, it 1s interesting Lo note that in an
annular pipe (4 = 002}, the dispersion coefficient D, suddenly, drops compared with its value
for a tube (4 = 0). Also it 15 seen that as the aspect mtio 4 inereases the dispersion coefficient
Dy decreases, that 1s, decrease of the annular gap size inhibits the dispersion process. This can be
explained by the fact that an increase of 4 leads to a deerease of the flow within the annular region
which causes a lower dispersion mate. The temporal variation of 3, due w the combined effects of
a steady and perdodic current for e = 1, Pe = § = 10" have been plotted in Fig. 4a,b for various
values of Land @ = f# = 1; and in Fig. 5a.b for vanouws values of § and o = 0-5, 4 = (1. In all
cases, Dy varies with a single period of oscillation and in terms of its magnitude, the amplitnde of
oscillation increases ininally up o a certain time, and then becomes stable for a long tme, which
implics that the dispersion coefficient [, for the steady Qow plays 8 more significant role than that
for the periodic flow. It is also observed from Fig. 5ab that for fixed Womersley number @ = (-5
and A = (-1, an increase of the reaction parameter at the wall leads w a deerease of the dispersion

ooors| e=1.8=1 |
3
i_

a-001
Dﬂ Dﬂ
(HO00E

G ke 5! I

i

(a) |

4] 005 D-01 015 Qo2
t i

Fig. 4 Dispersion coefficient 1, for periodic flow with non-zero mean for different A: (a) for small time and
(b} for large time whene =1, Pe= 8§ = 1@
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Fig. 5 Variation of the dispersion coefficient I, for periodic flow with non-zero mean for various values of
JAu(a) for small time and (b) for large time whene = 1L Pe = 5§ = 10}

coefficient D,;. Thus, one would expect that an inerease in § leads to an inereasing number of moles
of reactive solute undergoing chemical reaction or absorption, and hence there 8 a drop in 0.
From Figs 4a.b and 5a.b it is elearly observed that, for fixed . f and A4, the dispersion coefficient
Dy no longer has the double-frequency penod and it is always positive unlike the oscillatory flow.
Figure 6 shows the variation of the coefficient of skewness with time for periodie flow with zero
mean when e = 1, Pe = § = 1P, & = 0-5 and for various values of § and 1. It is observed that
the skewness in the periodic flow changes eyelically with a single-frequency period and it decreases
with dispersion time f. The effect of the macton purameter § on the skewness coefficient 1s not
significant (see Fig. 6a.b) with respect to the dispersion time ¢, but the influence of the aspect matio A
on A3 15 significant and 15 shown in Fig. 6c.d. It is observed that as 4 increases the amplitude of
oscillation of A4 deereases, which shows that with increase of the aspect mtio, the concentration of
solute tends to a Gaunssian distribution at large tme.

The vanation of 43 due to the shear effect of a perniodie current with non-zero mean has been
plotted in Fig. Ta,bfore = 1, Pe = § = 1P and for various values of £ and 4. It is seen from Fig. Ta
that the skewness initially decreases with time and then mereases; and moves asymptotically w a
constant value after a certam tme. Also it is observed that for small § the distribution is asymmetric,
but when (= 5) s large, it has 4 tendency to reach a symmetric form at large tme. A similar resull
15 also observed in Fig. Th—the magmtude of the skewness of the distnbution mereases up o a
certain value with increase of 4, and then decreases with further inerease of 4 as the distribution
moves owards a Gawssian distribution. The temporal vanation of the kunosis Ay due to the shear
effect of periodic flow with zero mean is depicted in Fig. 8 for e = 1, Pe = § = 10" and for various
vitlues of § and 4. It is seen from Fig. 8ab that for & = (-5 and 4 = -1, the effect of the reaction
parameter f on the kurtosis s significant with the dispersion time ¢ except at very small time. This
15 because at very small tme the solute does not interact with the reaction at the pipe boundary and
as f increases it is observed that the amplitude of the kurtosis inereases, which leads to decrease of
the peak of the mean concentration distnbution. In Fig. 8cd it s observed that the kurtosis moves
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Fig. 6 Skewness (A3) of the distribution for periodic flow with zero mean for different f# and A: (a), (c) for
small time and (b}, (d) for large time, whene = 1, Pe =5 = 1@

cyclically with the dispersion timde ¢ and it is interesting 1o note that at large tme the kartosis ends
o zero as A increases, which implies that the distribution approaches the Gaossian distribution.
Using the central moments g2, A1, 44 of the distnbution, it 1s possible 10 compute the mean axial
concentration distribution Cy, (¢, 2) of tracers within the annular region with the belp of a4 Hermite
polynomial representation for non-Gauossian curves (Chatwin (28) and Giliven er all (29)):

o
Coult,2) = Mo(De™ Y a, (1 H,(x),

=i

(22)
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Fig. 7 Temporal variation of the skewness (43) of the distribution for periodic flow with non-zero mean: (a)
for different ## and (b} for different A whene = 1, Pe= § = 107

where x = (z — ,t.rxi,-'{luﬂ""l, pe = M /Mpand H; are the Hermite polynomials, satisfying the
recurrence relation

Ho ) =2xHx)—2%H_(x), i=0,1,2,... (23)
with Hpl(x) = 1. The coefficients a; ane
ap =1/ {Eﬁli.rﬂl':l , =am=10, @1= 2'-’1:4;],5.3,.-“24, dy = dpdg /90,

The vanation of the mean concentration distribution C,, (#, z) 15 presented in Fig. 9 as a function
of the axial distance (z — p) for periodic flow with zero mean through an annular pipe fore = 1,
Pe = § = 107 It is seen from Fig. 9a (with a = 0-5, f# = 3.0, 1 = 0-2 fixed) that as the
dispersion time ¢ inereases, the peak of the distobution decreases and tends to become flat (sohid
line). It 15 also elear from the figure (dotted line) that for @ = 30, f = 02, 1 = 0-2, an nerease
of the reaction pamameter & leads o a depletion of the amount of reactive matenal, and therefore
the peak of the mean concentration distribution gradually decreases. Figure 9b shows that for ¢ =
02, L = 01, § = 1.0, the peak of the axial distribution of mean concentration increases with
inerease in the Womersley number a. It 1 interesting to note from the figure that for low frequency
(= 0-5), an mcrease of 4 has a significant effect on the distribution, whereas at high frequency o
this effect diminishes. Therefore, as @ increases, the effect of 4 tends o become msignificant in the
concentration distribution. This may be explained by the fact that with increase in both 4 and & the
dispersion of tracer molecules decreases, and hence tracer materials concentrate in a smaller region
in the axial direction. From Fig. 9¢ it is observed that, for two different frequencies @ = 025 (dottled
lines) and a = 3-0 (solid lines) with # =0, ¢ =0-2, a5 1 mereases from O (pipe Poiseuille flow) to
0.4 (annular flow) the peak of the distribution increases and the axial distance gradually decreases.
It is clearly seen that for @ = 3 and § = 0 the effect of aspect ratio 4 on the mean concentration
distribution is insignificant compared with that for low frequency o = -5 and § = 0.
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Fig. 8 Temporal varistion of the kurtosis (44) of the distribution for periodic How with zero mean for
different f and A: (a), (¢} for small time and (b), (d) for large time, whene = LLPe =8 = 10?

Finally, for comparison, the profiles of Cy, (¢, z) along the axial direction are plotted n Fig. 10a.b
for periodic flow with non-zero mean fore = 1, Pe = § = 107, Figure 10a fora = 05, § = 30,
A = 0-2 (solid line) shows that as the dispersion lime ¢ increases, the peak of the distnbution be-
comes flatter and moves to a Gaussian distribution; and fora = (-5, ¢t = 0-2, 4 = (-2 (dotted line)
it 1% observed that as the reaction parameter f inereases, the peak of the distribution gradually de-
creases. Figume 10b fora =0-5,1 = 0-2, § = 34, shows that as 4 increases from 0 (pipe Poiscuille
flow) to (-4 (annular fow) the peak of the dismibution inereases and the asymmetne distribution of
mein axial concentration moves towards a symmetncal one. IUis worthwhile to note that the mole of
the Womerskey number @ in the mean concentration distribution for perodic flow with 4 non-zero

san 1% less significant compared with that for periodie flow with zero mean.
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Fig. 9 Axial distribution of concentration Cy, (1, 2) for periodic flow with zero mean fore = 1,
Pe = § = 10°: (a) for different dispersion times 1 {solid lines) and for different § (dotted lines):
(b) for different & and 4 = 0.1 (solid lines), 4 = 04 (dotted lines); (c) for different 4 and
a = (.5 (dotted lines), & = 3-0 (solid lines)

5 Applications to a catheterized artery

The results discussed in section 4 are important in understanding the dispersion process through a
catheterized artery with a reactive arterial wall. The tube of mdivs @ can be considered as a blood
vessel and the insertion of another tube of radius & (that is, the catheter) into the blood vessel caoses
the formation of an annular region between the catheter wall and the atterial wall. The parameter 4,
the ratio of the catheter radius b to the artenal radius a s vaned from 0-02 to (-4 to analyse the ef-
fect of the catheter spee on dispersion. The catheterization increases the frictional resistance to flow
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Fig. 10 Mean concentration distribution Cy, (1, 2) for periodic flow with non-zero mean for e = 1,
Pe = § = 10™: (a) for different dispersion times ¢ (solid lines) and for different # {dotted lines) and
(b} for different A

through the artery and hence alters the fow field owing to changes of haemodynamic condiions in
the artery. In order o make an accurate pressure reading in an annular region, 1t 1s essential Lo un-
derstand the catheter-induced erron The results of the present problem may provide a comection for
catheter insertion in the light of the behaviour of the longitudinal dispersion coefficient and the mean
concentration distribution of tacers. To relate the present study with artenal blood ow, the Schmidt
number § is restricted to the order of 107 for diffusion in blood {Waters (30)). Figures 3, 4 and 5
describe the temporal vanation of the dispersion coeflicient By, Tor different values of the frequency
parameter a, absorption parameter § and catheter size A for Pe= § = 1F and ¢ = 1. It is seen that
merease of the Womerskey parameter, absorption parame ler or catheter size inhibits the dispersion
process {Sarkar (31)). It is observed that when a catheter (4 = 0.02) is introduced into an artery,
the dispersion coefficient I3, suddenly drops in comparison o that of an un-catheterized (4 = ()
artery. From Figs 9 and 10 showing the mean concentration distribution of tracer molecules, it is
seen that the peak of the distribution increases with increase of both the catheter size (Sarkar (31))
and the Womersley number, and it decreases with increase of the dispersion tme ¢ and boundary
absorption #. It is clearly observed that the imsertion of a catheler (Fig. 9b) in the artery leads 1o an
msignificant effect for high Womersley number a.

6. Conclusions

We have focused our attention on the dispersion process of tracer molecules in a pulsatile flow and,
for comparison, in a pernodic flow with non-zero mean, through a pipe of annular eross-section
with a reactive wall. We have compared some specific results due o the shear effect with particular
emphasis on the ole played by the combination of reaction at the outer wall of the annular pipe and
the aspect ratio 4. The apparent dispersion coefficient I3, is a functon of the Womersley number a,
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the Schmidt number §, the amplitude of the pressure pulsation €, the aspeet ratio A4, the reaction
parameter f and the dispersion time t. It is observed that the dispersion process is inhibited by
an increase of the Womersley number, aspect ratio or reaction parameter for penodic flows with
or without a non-zero mean. However, the dispersion coefficient D, for a periodie flow with non-
zero mean no longer has the double frequency penod compared with the dispersion coefficient
Dy, for a periodic flow with zero mean. The effect of aspect ratio A4, reaction parameter § and
frequency parameter & on the mean concentration distribution has been studied for periodic flows
with and without a non-zero mean. It is observed that for low frequency an increase of 4 has a
significant effect on the mean concentrution distribution of tracers but for large frequency the effect
of 4 diminishes. [tis also seen that an increase of 4 and the Womersley number a keads to a decrease
of D, and hence the tracer molecules concentrate in the annular region, and are depleted due to
boundary absorption. Results of the present mathematical model are analysed in the context of a
catheterized artery with a reactive artenial wall in section 5.

Acknowledgements

The second author thanks the CSIR, India, for financial support in pursuing this work. The authors
would also like o express sincere thanks to three referces for providing suggestuons for improve-
ment of the paper.

Relerences

G. L. Taylor, Proc. R. Soc. A 219 (1953) 186-203

R. Aris, ibid A 235 (1956) 67-77.

R. Aris, ibid A 259 (1960) 370-376.

E. 1. Watson, J Fluid Mech. 133 (1983) 233244,

1. B. Grotberg, ibid. 141 (1984) 240-264.

D. P. Gaver and 1. B. Grotberg, ibid 172 (1986) 47-61.

A.R. Rao and K. 5. Deshikachar, Z. Angew: Math. Mech. 67 (1987) 189-195.

W. M. Gill and R. Sankarasubramanian, Proc. B Soc. A 316 (1970) 341-350.

T. J. Pedley and R, D. Kamm, J Fluid Mech. 193 (1988) 347-367.

1. P C. Chatwin, thid. 71 (1975) 513-527.

11. C. E limenez and P. 1. Sullivan, ibid. 142 (1984) 57-77.

12, A Mukherjee and B. 8. Mazumder, Acta Mech. 74 (1988) 107-122.

13. P E. Hydon and T. J. Pedley, J. Fluid Mech. 249 (1993) 5335-555.

14. R. Smith, ibid. 134 (1983) 161-177.

15. A Pumama, ibid. 195 (1988) 393412,

16. B. 5. Muazumder and 5. K. Das, ibid. 239 (1992) 523-549,

17. ¥ Jiang and J. B. Grotberg, J. Biomech. Engng 115 (1993) 424431,

18. G. Jayaruman, T. J. Pedley and A. Goyal, 3. Jf Mech. Appl. Math. 51 (1998) 577-598.
19. L. H. Back, E. Y. Kwack and M. E. Back, J. Biomech Engng 118 ( 1996) 83-89.

2. M. R. Back, E. Y. White and L. H. Back, Angiology 48 (1997) 99-109.
21
22
23
24

bt e B B Sl ol

. G Jayaraman and K. Tiwan, Med Biol. Engng Comput. 33 (1993) 1-6.

. R K. Dash, G. Jayaraman and K. N. Mehta, S Biomech. 29 (1996) 917-930.

. A Sarkar and G. Jayaraman, Phys. Fluids 13 (2001) 2901-2911.

. 5. Tsangans and N. Athanassiadis, Z Angew. Math, Mech. 65 (1985) T252-T254,



OSCILLATORY FLOW THROUGH AN ANNULAR PIPE 365

25. M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions (Dover, New York
1965).

26. D A Anderson, 1. C. Tanehill and R. H. Pletcher, Compuiational Fluid Mechanics and Heat
Transfer (Hemisphere, New York 1984).

27. N.G. Barton, J. Fluid Mech. 126 (1983) 205-218.

28. P. C. Chatwin, ibid. 43 (1970) 321-352.

29, 0. Giiven, E 1. Molz and 1. G. Melville, Water Resour: Res. 20 (1984) 1337-1354.

30 5. L. Waters, J. Fluid Mech. 433 (2001) 193-208.

31 A Sarkar, Flow and dispersion in a catheterized artery: a theoretical model, Ph.D. Thesis, 1999,



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg

