Simple sequencing problems with interdependent
costs

Roland Hain®, Manipushpak Mitra"

2 Srudienstiftung des dewschen Volkes, Ahrstrasse 44, D-53 175 Bann, Germany
B Eronamic Research Unit, Indian Staristical nstitere, 208, B.T Road. Kolkata-700008, India

Reveived 4 Sepember 2002
Available online 10 December 2003

Abstract

In this paper we analyze simple sequencing problems under incomplete information and
interdependent costs. We prove the necessity of concave cost function for implementability of
such problems. Implementability means that one can achieve aggregate cost minimization in ex-
post equilibrium. We also show that simple sequencing problems are implementable if and only if
the mechanism is a "generalized YOG mechanism.” We then consider first best implementability,
that is implementability with budget balancing transfer. We prove that for implementable o agent
simple sequencing problems, with polynomial cost function of order (n — 2) or less, one can achieve
first best implementability. Finally, for the class of implementable simple sequencing problems with
“sufficiently well behaved” cost function, this is the only first best class.

JEL classification: C44,CT2,CT78, DE2
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1. Introduction

In this paper we consider the problem of a planner who has o provide a facility to a fi-
nite set of agents. Alternatively, one can also consider the problem of a group of agents who
wants to use a facility. An institute (like a college or a university) that has only one com-
puter is one example.' Providing access of one runway facility to aeroplanes, for landing
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and takeodt, 1s another example. In these situations, cach agent has one job o process using
the facility. It takes different time periods for different agents o process their jobs. The fa-
cility cian be used by only one agentata time in a gqueue. Waiting 15 costly for all agents. In
these sequencing situations, costs are interde pendent since the cost of an agent depends not
only on her own processing time but also on the processing tme of all agents who precedes
her in the gquene. The planner’s or group’s objective is to select an efficient gqueue o mini-
mize the aggregate cost, given that the number of agents, in need for the facility, 15 known.
In these sequencing situations, it is quite natural o assume that the job processing time of
the agents is private information. Moreover, if i 1s costly 0 monitor the agents” action or
o verily the true job processing time, then there s an incentive problem. Agents, il asked,
will announce their job processing time strategically. Given the incentive problem we ask
the following question: Can the planner or group design 4 mechanism such that it is in the
mterest of the agents o reveal their true processing time? We refer to such a problem as sim-
ple sequencing problem (or S5P) with interdependent costs. We call this problem “simple’
because the form of the cost function is assumed to be known and identical for all agents.

Sequencing problems in the absence of interdependent cost were analyzed, among
others, by Suijs (1996) and Mitra (2002). Discrete ime sequencing problems (or quewseing
problems) with single facility and multiple facilities were analyeed by Mitra (2001)
and Mitm (2003), respectively. In all these papers, the Vickrey—Clarke—Groves (VCOG)
mechanisms (due to Vickrey (1961), Clarke (1971) and Groves (1973)) umguely solve
the incentive problem in dominant strategies and guamntees efficiency of decision. In
contrast o these papers, we assume thal processing tme 15 private mformation. As
a result, an agent’s utility from the facility depends directly on the processing lime
of other agents. Hence the VOG mechanism fails to solve the incentive problem.
Given this impossibility, our first objective is w identify the class of mechanisms that
implement an S5P in ‘ex-post equilibrivm.” Implementability in ex-post equilibrium
means that one can find mechanisms that satisfy efficiency of decision and ex-post
incentive compatible. A mechanism is ex-post incentive compatible if cuth-telling is a
best response o truth-telling by everyone else. The results in this direction are, o the
most part, a straightforward extension of the existing terature. We first show that for
implementability, it is necessary that the cost function s concave. We then show that an
S5P 15 implementable if and only if the mechanism is a “generalized VOG (or G-VOG)
mechanism.”

Our main ebjective 15 10 identfy the subelass of first best implementable S5Ps.
An 55P s first best implementable if it s implementable with a transfer scheme
that adds up to zero in all states. Thus, first best guarantees costless information
extraction along with efficiency of decision. In this regard, owr analysis s “similar’
o the analysis on first best with VOG mechanisms under different private values set
up (see Green and Laffont (1979), Hurwice and Walker (1990, Laffont and Maskin
(1982), Liv and Tian (1999), Mitra (2001, 2002, 2003), Soijs (1996), Tian (1996)
and Walker (19800). We show that an implementable noagent 58P, with polynomial
cost of order {(m — 2) or less, 15 first best implementable. Mormeover, for S5Ps with
“sufficiently well behaved” cost function, this is the only first best implementable
class.
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It s important to note that the mechanism cannot be conditioned upon ex-post
observable true processing costs of the agents since we are assuming that it is costly o
monitor the agents” action or o verify the true job processing time. This can happen
in reality. In the institute example, with one research facility (like a computer or a
spectrometer or 4 telescope or a tunnel-micmscope), the institute authorities might have
o hire a person o monitor e actions or o verify the true processing cost of the agents.
This cost can be large since, for certain facilities, the person hired for this purpose
must have some knowledge specific to the facility. Moreover, if one can achieve first
best implementability, by assuming that the mechanism cannot be conditioned upon ex-
post observable information, then information extraction is costless. Clearly, first best
implementability 15 “supenor” to the other option where the institute authonty hires a
person (by incwring a positive cost) either o monitor the actions or to venly the true
processing cost. In general, for other sequencing examples with one facility first best
mnplementability ¢liminates the need to either monitor actions of the agents or verify the
true processing cost of the agents. This gives a strong justification to ook for first best
implementable simple sequencing problems.

The paper 15 organieed in the following way. We conclude this section by relating our
work o the existing literature. We then formalize 55Ps in Section 2. In Section 3, we
provide results on implementability of S5Ps. In Section 4, we address the issue of first
best implementability. We conclude our analysis in Section 5. All proofs are provided in
Appendix Al

1.1, Related literature

Mechamsm design problems with interdependent valuation have been analyzed in
the context of avction (sce Ausubel (1999), Dasgupta and Maskin (20000), Jéhiel and
Moldovanu (2001) and Perry and Reny (2002)) and in the context of tading (sec Fieseler
et al. (2002) and Gresik (1991)). Bergemann and Viilimiiki (2002) address the general
mechanism design problem with interdependent valuation by restricting signals to be one
dimensional. Our analysis of implementability in ex-post equilibrivm follows from the
general results provided by Dasgupta and Maskin (2000, Jéhiel and Moldovanu (2001}
and Bergemann and Vilimiki (2002). However, we adopt the model of Bergemann and
Viilimiiki (2002) for comparing our implementability resalts since it s most suited for this
purpose.

In the partnership context, Fieseler et al. (2002) argue that, with their “genemlized
Groves mechanism,” it s possible o apply expected externality payments (4 la Arrow
(1979 and d”Aspremont and Gérmnd-Varet (1979 to achieve budget balancedness. They
point out that, for the expected externality mechanism, truth-telling is a Bayesian but not an
ex-post equilibrum. We impose more demanding conditions for first best implementability,
namely ex-post incentive compatibility, efficiency of decision and budget balancedness.
In the private value setup, Walker (1980) derived the necessary condition for budget
balancedness of VOGO transfers. We argue that Walker's condition 1s also necessary 1o
balance a G-VOG transfer
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2. Simple sequencing problems

Let W ={1,2,..., n} be the set of agents in need of the facility. Each agent j € N
takes 55 € (0,5] € Ry units of time to process her own job. Since the facility can be
used by only one agent at a time, the agents will have to vse the facility sequentially. By
means of 4 permutation o = (@, ..., T, ) on N, one can describe the position of cach agent
in the quene. Let T be the set of all possible permutations of N. Therefore, a queue o
is 1 mapping from the set of agents N to X. Let Pjig)={peN—{j}| o, =g} be
the predecessor set of § in o and T’j o)=1geN—{j}|o; <a;} be the successor set
of jing. Let Fi§;) measure the cost of agent § € N if her job processing i1s complete
at time point §; € R... Therefore, the cost of an agent is a mapping F:R.. — R..
We assume that F s continuous and strictly increasing. Given 4 processing time vector
s =151, ....5 ) and a quene o, the costof agent j e N is F(5;(g:5)), where §;{o:5) =
ZJ:F'P. () ¥p T 8. The vtility of agent j. in state 5 = (57, ..., $) and in the quewe o 18
Uila tjs) =v; — F(&la:s)) +t; where v; 15 the gross benefit, derived by agent j,
from the facility and #; 15 the transfer thal she receives.

A quewe o¥ € E, given s, is efficient if ¢* € argmin,, _y Z_,I'FN F(§(a:5)). For a stae
F={51,....5:), & queue a® 1s efficient if and only if for all pairs of agents { .1} such that
5; = 57, the condition aj‘ = a'].* is satisfied. Note that there are states for which we can have
more than one efficient gqueue. For example, let 1 = 3 and let s = (5, 52, 53) be a state such
thitsz = s =s. Fors,o=(o =2 om=3m=1lando={(g =3.02=2,0:=1)
are both efficient. Thus, we have an efficiency correspondence. An efficient rule 15 a
single valued selection from the efficiency correspondence. An efficient rule can always
be selected from the efficiency correspondence by selecting an appropriate tie breaking
rule. In this paper we will use the following tie breaking rule: if 5; =5 then o < a}‘ if
f<j.

In many real hife sitwations agents have private information about ther own job
processing time. If the processing Gme vector s = (). ..., 5,) 1% private information, then
the problem is w design o mechanism that will elicit this informaton truthfully. Using the
Revelation Principle, we concentrate on direct mechanisms where each agent reports her
own processing time (or type) and based on this report, the planner (or group) decides on
the queue and the transfer vector for the setof agents. Formally, a direct mechanism M is a
pair {a, t}, where o 2 {0,7]" = Eandt =1, ..., 1) (0, 3" — R". We represent an S5P
(with intewlependent cost)by ' = (N, F_ (0, 5]}, where N s the number of agents, F is the
commaon cost function and (0, 5] 1 the interval of job processing time. Under M = {a. 1},
given an announcement § = (5, ....85;) € (0, 5]" in state 5 = (51, ... 50 € (0, 5", the
utility of agent j is given by Ui(a(8),1;(5); 5) = v; — F(§;{a(5); 5)) +1;(5). Note that
the efficient gqueue is determined on the basis of the announced processing cost of all agents
and the cost that each agent incurs depends on the actual cost of her own predecessors
mn the gquene as well as her own processing cost. We conclude this section by defining
implementability and first best implementability in ex-post equilibrivm.

Definition 1. For an 88P I" = (N, F, (0, 7]}, the efficient gqueue o*: (0L 3" — I is
implementable in ex-post equilibrium, il there exists a mechanism M = {o*, ) such that,
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for all j e N, for all (s}, .1.';.} e (), .1."!1 and for all processing time vectors s_; € (L 5 I"_I i
Us(a®(s). tj(s);5) 2 Uj{ﬂ'*{ﬁ'j-,&'_j}l, tj {.1.';-, 5_j); 5.

Definition 2. For an 88P " = (N, F, ({1 5]}, the efficient queve o®:(0.5]" — X is first
best implementable (in ex-post eqguilibrinwm) if there exists a mechanism M = (ot} that
implements it with a budget balancing transfer, i.e. EJ.FN tils)y=0"oralls £ (0, 5].

3. Implementability in ex-post equilibrium

We start this section by providing a necessary condition for implementability of an S5F.
Before doing so, we need two more definitions. We define the first order incremenial loss
afamount hat v as ARVF(x) = Flx 4+ /) — Fix). Secondly, a cost function F 18 concave
i forall x, v e (0,ns]and forall L [0 1], Fdx 4+ {1 — Ay 2 AF(x)+ (1 — L) F(y).
One obvious property of a concave F s that for all {s;, 1._; s} € (0,5 with 5j = 1.:1 and
for all x = (0, (n —2)5], ﬂ{.ﬂ';}F{_r+:.-j.}| = Asi ) Fix +5;). With these definitions at hand,
we can state a necessary condition for implementabality:

Proposition 1. For an S5P I, o* is implementable in ex-post equilibrivm only if the cost
Junction F is concave.

Concavity of the cost function is the equivalent of the well-known “single-crossing
property” (see Ausubel (1999), Perry and Reny (2002)) in our framework. To elicit private
information, cach agent § has to be compensated for her aggregate incremental loss in a®,
The ageregate incremental loss of agent §,in o*, is the difference between her actual cost
in o* and her own job processing time (that is ‘ﬁ{ZpF'P. () sp)Fisj) = F(Sj(a;s5)) —
Fia ). Since, for implementability, it is necessary that the ageregate incremental loss must
be non-increasing, we need concavity of F. Following Bergemann and Viilimiki (2002)
we now define the G-VCG mechanism. Let C_jla*(s):5") = Z:‘;Ej FiSia®(s):;5) be
the aggregate cost of all but agent j in state 5" and in the quewe o*(s).

Definition 3. For any I, a mechanism M = {g* 1} is said to be 8 G-VOG mechanism
if, for all j € N and for all announcement vectors §_; € {0,5)"!, the transfer scheme

ti o{0L 51" — R satisties the following conditions:

H A g P T = N 3 T, T L S W
(1) For announcements {"'.-'""_;} e (0.5]° such that a'}‘{:.}l - ﬂ'}‘{:.f.:.__,}, t {:.'J.,:._J} =

4
s
(it} For announcements {:."'_,-,:F_;}l £ (0, 7]* with a-}‘{:."'}: aj!‘{:."'j,:."‘_j} -1,
r_,-{fj, ij)—tiE =C_jla™(8):5,5;) — C__,-{cr*{i."j,:."'__,-}: 515 8=5) 1)

where (37, 5_;) is the state for which both o%(5) and a'}‘{i."}.’,:."'_j} are efficient, that is for
the state (57, 5_;), 2 ;o F(Si(@*(5); 57, 50 = Licn F{E,-{fr*{:."'j, R W )
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Propaesition 2. For any I', a mechanism M = {a* 1} iv a G-VOG mechanism if and only
if for all announced processing vime vectors § € (0, 5]" and forall j € N,

Y Ve@ +h(Eg) ifer@#1,

tj(F) =] pePiia*in P
hj(3-j) :]F'aj-‘ i§f1=1,

where Vi (3) = A(Sp ) F(Sp(a®(5); 5)) and where h | is an arbitrary finction of §_ .
The importance of G-VCG mechanism is captured in the next proposition.

Proposition 3. For all I", with strictly increasing and concave cost functions, a* is
implementable. Moreover, fora I, o* is implemeniable if and only if the mechanism is
a (r-VOG mechanism.

We try o provide the reason behind the implementability property of the G-VCG
mechanism. Let pij) be the immediate predecessor of agent § in the queue o, that is
plii=1{ie ?f’_',-{a-} | @i = a; — 1}. We deline the incremental loss of agent §, in state 5 and
N quene o, a4s

ﬂ.{:.'m-]}F( 5 .vq+sj-) ifoj(s)#1,

Vila:s)= JEP ()
0 otherwise.

The incremental loss of agent § is the additional cost that § incurs due to the presence
of her immediate predecessor pif) in the queue o, Consider a state 5 and the efficient
queue a*(s). For the staie s, the incremental loss of agent j is Vila®(s)s) =
ﬁ{.\'pm}F{Z,I.;fp;’l_nia-[_,.]]d.'q + 5;) if cr}‘{:.'}l # 1 and spep £ 5; and Vi(a*(s);s) =0

23 ..-..-.’!'_I[.'u] = * 3 * i P i s
otherwise. Let 5_,‘ = {x (0, 51| a; (x,5_j) =d; ()} Consider all possible processing
i ¢ omaple) ; 3 i . 2
hme s; € §; z of agent j and define her macimum possible incremental loss as
"l)j-‘{a *(s5): 1) = max Lt Vila*(s); :.-;.,;.-_J-}_ Due to concavity of the cost function, we

"_I 1= J,

zet

Vainis) il'a'}‘{s} #1,

Wiet (s =
"'{ (#)ie) ] otherwise.

The maximum possible incremental loss of an agent § € N, in queue position a'}‘{:.‘}l #1,18
the first {}rt!urdil'li:rcnuut}furrn}unt:.'FU-] al time point Sy (o (s); 5) and it isi}il‘a'j.‘{:.'} =1.
Why is the maximum possible incremental loss important? Consider a state s £ (0, 5]",
an efficient quene o%(s) and an agent § with processing time s;. Assume that all agents
have reported truthfully. Simplifying the aggregate incremental loss of agent j we get
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AT e w0 5 F6)) = E pep vy Msp) F(Sy(@*(5):5) + 5,).2 Using concavity
of the cost function F we obtain

Y AGPF(Sple*()s)+5) < D Alsp) F(Sp(a*(s):5))

pe(a*(51) PEF (a*(51)

= ) Ve

PEP (a*is0)
Thus, in state 5, the aggregate incremental loss of an agent §, in an efficient gqueue a*(s),
is no more than the sum of maximum possible incremental loss of her own and that of
all her predecessors in the gquewe. The transfer of an agent § in a G-VCG mechanism s
the maximum possible incremental loss of agent 7 oand that of all her predecessors in the
quene, up to g constant. This ransfer 15 enough o compensate an agent for her aggregale
incremental loss in the queue and it guarantees ex-post incentive compatibility.

4. First best implementability

In this secton we consider the prospects of first best implementability. Given
Froposition 3, achieving first best implies identifying implementable S5Ps for which
one can find balinced G-VCOG transfers. Consider any G-VOG mechanism for an
implementable 7. Note that for each 5 € (0, 5], iff we add up the G-VCG transfer (2)
for all agents and set il to zem, we gel

V(s)+ ) hils—i) =10 3)

ieN
where, in state 5, Vis) = EJ-FN{J'! - a}‘{:.'}}l'r"j{s} 15 the weighted aggregate maximum
possible incremental loss. The general implication of (3) follows from the Cubical Amay
Lemma due to Walker (1980). Before stating the lemma we provide some more notations.
Consider two states 5 = (51, ..., 5 ) and 5" = (s, ... .5, ). We define an index set PC N
and a state 5(P) by meplacing those 57 in 5 by the corresponding tj from 5" for which

j € P.Formally, foraset PC N, s(P)=(51({P), ..., 5,(P)) is a state such that
sj ifjé P,
LEl= I s, ifjeP
5 i ;

Lemma 1. For any I” with concave cost funcrion F, a* is first best implementable only if
Jorall {5, 5"} e (0, 5] = (0, 5],

3 =nFIV(s(p)) =0 (4)
PCN

where | P| denotes the cardinality of the set P.

2 Odhserve that we can always write Alb +clFil@)l =Fla+ b+l — Flal=Fla+ b+¢c) — Fla+ b1+
Fiag 4+ b — Filal = Alc)Fla + b1+ Aib ) Fia). By applying this relation repeatedly in the appropriate order we
get the required simplification.
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Walker (1980) proved Lemma 1 for VOG mechanisms where it is necessary that the
total surplus, in each state, 8 (n — 1) type separable. Like the otal surplus of a VOG
mechanism, the weighted aggregate maximum possible incremental loss for a G-VOCG
mechanism (in condition (3)) must also be (n — 1) type separable for first best. For both
VOG and G-VOG mechanisms, the transfer of an agent has two components. The first
component s a function of the announcements of all agents and the second component is a
function of the announcements of all but one agent. It is because of this similarity that the
Cubical Armray Lemma (due to Walker (1980)) s also applicable for G-VCOG mechanisms.,
Lemma | will be used in proving our main theorem. Before stating i, we provide a relevant
definition.

Definition 4. A function § is sufficiently well behaved if it has a power series representation
n its entire open domain, that is there exists v in it open domain such that the function f
has the form f(y) = Efiuc;{_v = _1‘:]}1.3

Theorvem 1. Considera I” = (N, F, (), 5|} with concave cost function F and with |[N| =n
agents.

(1) Wfor T, F is a polvaomial of order (n — 2) or less then a® is first best implementable.
(2) Givena I' with a sufficiently well-behaved F, a* is first best implementable only if F
ix a potvnomial of order (n — 2) or less.

Before we outline the proof of Theorem 1 we have to present another kemma. We define
the second owder cmoss-partial difference al x of amounts {a), az2) as Aa A {anFix) =
Ala ) [Flx +az) — Fix)]=Flx +a) +az) — Flix +az) — Flx +a)) — Fix). In
general the mth order cross-partial difference at x of amount (a, ..., am) 15 given by
[l_[:."=| Afa;)]F(x). Observe that for a linear function F'{x) = by + byx, the second
order cross parial difference of amounts (a),a2) at some point y is zero, that is
&{ﬂl}ﬂ{ﬂg}Fl (v) = 0. Similardy, for a polynomial function F? of order two (that is for
F2{x) = by + by x 4 bax?), it is easy to verify that Ala;)Afaz) Alaz) F2(y) = 0. The next
lemma is a generalization of this idea.

Lemma 2. [f F is a polvnomial fimnction af order m{= 0, 1, .. ), then for any set of numbers
+1
‘|ﬂ| ,,,,, ﬂm—l,-r}‘ [nj."=| ﬂ{ﬂr”F{-r} =1

Idea of the proof of Theorem 1. To prove the first part, we first construct a generalized
VCOG mechanism for a I having concave and polynomial cost function F of order (n — 2)
or less. Consider the G-VCOG mechanism M* = {*, t*) where forall j € N and for alls_j,
hj”—j} =— E‘;&j gijls_;) where gi;(-) is a function of s_; and is defined as

alls—g1

gijla_j)= ) (=17~

r=1

{JJ'*‘-“'.—_.'.} —r)lin _'7"* (s_;)—1)
(n—r—1)

Zir(s—j)

A A function f issaid to be well behaved if itis infinitely differentiable in its open domain. A sufficiently well
behaved function is well behaved bt the converse is not true.
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where z;,(-) 15 also a function of 5_; and 1s defined as

zir(5-j) = Z :l{.'.‘,'}lF( Z sy + 5-'1')
I EY ) L N ) P Ll Y|

where Prgla™(s_;)) is an e-clement subset of Pila®(s_;)). We then show, using
Lemma 2, that the G-VOG mechanism M* = {o*, t*} is budget balancing.

The second part of the theorem is proved in two steps. The first step will be to construct
a pair of states and then apply condition (4) m Lemma 1 to get a general necessary
condition. Consider any I for which o* is implementable. Consider two states s and 57,
both belonging to (0, 5%, such that s = {5 = x50 = 2x, ... 5, = nx) and 5" = {si =

nx,s3=x,....8 ={n—1)x). Applying Lemma 1 we get the general necessary condition
for first best impleme ntability which is given by
AN F (wy(n)x) = A" @) F (wain)x) + A" ) Fwsn)x) (5)
where
n—1n n—1jn42 nin+1
wyin) = % wailn) = # and  wain) = ¥

The final step is to apply the fact that the cost function is sufficiently well behaved and
denve the result using this general necessary condition.

Observe that for S5Ps with two agents, first best implementability 1s imp{}ssihll:." With
three agents, all 55Ps with linear cost function are first bestimplementable. For four agents,
consider the class of SSPs I™* = (N = {1,2,3, 4}, F* (0.7 ]) where F*(x) = ajx +axx”
for all x £ (0, n5] and only one of the following two conditions holds:

(1) @y =0 and a2 =10, and
(2y ap =0,a2 =0, 5 =< 00, and a| = —2na:s.

It 1s easy to verify that this class s first best implementable. One can similarly obtain
the class of first best implementable S5Ps with more than four agents. Thus, there exists
non-linear cost functions for which an implementable SSP is also first best implementable.

Remark 1. The requirement of polynomial cost of order (n — 2) for first best imple-
mentability of an S5P i “similar” to the conditions obtained in Mitra (2001) for a queoseing
problem. This 1s because of the necessity of condition (4) for budget balancedness of both
VOG and G-VOG mechanisms. In the sequencing problems considered in Mitra (2002),
due to the presence of individual specific cost parameter, first best was possible only with
linear cost. Since this individoal specific cost parameter 1 absent for S5Ps, first best can
be achieved for some non-linear cost functions as well.

Why is a polynomial cost of order (r — 2) important for first best implementability? To

answer this question we need o interpret condition (4) (1e., ZPLN{—1}|F|V{:.'{P}} =)

4 This is obvious from condition (5). Note that sufficient well-behavedness of £ is not mquired for this
impaossibility.
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It states that the weighted total group extemnality must add up to zero while moving from
any stale 5 = (8,.... 8 0 any other state 5" = {.1.'1. v oo &) where the weights are (—1)
for groups (P ) with odd number of members and are 1 for groups (P) with even number of
members. Polynomial cost of order (n — 2) satisfies a particular type of negative weighted
group externality that results from condition (4). Consider two true states 5 = (5,52 =
ooy =a) (L5  and § = (5. 52 = b, .... 5, = b) € (0,5]" where b <5 = a. In
state 5, 7"(s) = | and the cost of agent 1 is F(s) and in state 5, (5 ) = n and her cost is
Fi{n — 136+ 5}, Starting from the state s, consider a state s{P) where actual processing
time of any P (N — {1}) agents changes from a to b, While moving from state s o
state s(P), the queve position of agent 1 changes from o (s) =1 w0 5Pl =[P+ 1
and hence her cost changes from Fis ) o F{| P64 5 }.5 This increase in agent 175 cost s
due o the negative externality imposed bly agents of the set P. Since we can select a group
of size |P| from the set N — {1} in {Jlrf_’l} WHYS, {’lr;ll}lF{lF'Ib + &) is the total cost that
can result for agent 1 il we consider negative extemnality, imposed on her, by all possible
groups from the set N — {1} of size | P|. Therefore, ZF&N-[[;{_”lFl{J];:} F(IP|b+ 5)
15 the weighted aggregate negative group externality, that can be imposed on agent | by
all possible groups of different sizes (from the set N — {1}), while moving from state s
i 5. Here the weights are 1 if the group size is even and are —1 if the group size is
odd. If the cost function 15 a polynomial of order (n — 2) then this weighted negative
group externality is zero, thatis 3 pen_ (=D} )F(PIb +51) = A" (B) F(s1) =
[1‘[‘.#| AEDFs ) = 0.% Observe that this group extemality condition guarantees that the
general necessary condition (given by condition (12)) 15 satisfied. Using Lemma 2, it i
casy to verify that, in general, for all § € N and for all pairs of states 5" = {:.'j., :;'_j.} and
i'= {.‘-’j-,jij]l, such that a'}‘{:."}l =1 and af{:.""} =n, we get [1_[1'.-—‘_.1' &{:.""-r}IF{s_;-} =0 if
the cost function 15 a polynomial of order (r — 2). Thus, a polvnomial of order (n — 2)
guarantees that the weighted aggregate negative group externality that can be imposed on
any agent f. by all other agents and with all possible groups, while moving from a state
where agent | is first in the guene to a state where she is last in the gueue, must add up 1o
zero. It is this group externality condition that guarantees first best for an S5P.

5. Conclusions

In this paper we have analyeed S5Ps with interdependent costs. In the imple mentability
context, we show the necessity of concave cost function. Given that the cost function is
concave, we show that the class of G-VOG mechanism uniguely implements an S5F. We
then address the question of first best implementability of an implementable SSP. This s
tantamount to finding conditions on the cost function under which one can get balanced
G-VOG transfers. In our main theorem we show the important role played by polynomial
costs of order (rn—2) in first best implementing an SSP. We then provide a group externality

5 MNote that s{P1 =5 if P=g mds(P1=Fif P=N—[l).

f MNote that these weights {that is, 1 if group size is even and — 1 if the group size is odd) is due to condition {4)
in Lemma 1.
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argument that captures the impontance of polynomial costs of order (n — 2) for balancing
a G-VOG transfer.

One important observation of this paper 15 that the Cubical Array Lemma, which
is necessary for first best implementability of VCOG mechanisms, is also necessary for
achieving the same with G-VCG mechanisms in any implementable 55F. Even for the
general class of decision problems, that was analyzed in Bergemann and Viilimiiki (2002),
the G-VOG mechanism satisfies first best mplementability only if it satsfies the Cubical
Array Lemma,”

We admit that the necessity of concave cost functions for implementability and
polynomial cost functions of order (n — 2 for first best implementability with sufficiently
well behaved cost functions 1s guite restrictive as it rules oul many interesting cost
functions like exponential functions., However, this simple problem leaves many questions
unanswered. How will the results differ if the cost functons are different for different
agents? What happens if one considers discounted costs? What happens if there are
multiple facilities T These gquestions can be tiken up for future research.

Acknowledgments

The authors are grateful to Debashish Goswami, Erie Maskin, Georg Nildeke, Arunava
Sen and one anonymous referee for their invaluable advice and suggestions. Manipushpak
Mitra thanks the seminar participants at the Indian Statistical Institute, University of
Bonn, University of Warwick and University of Essex, and the seminar participants at
the VIIth Spring Meeting of Young Economists 2002 and at the Sixth International
Society for Social Choice and Wellare Meeting 2002, Financial support from the Deutsche
Forschungsgemeinschalt Graduiertenkolleg 629 at the University of Bonn is also gratefully
acknowledged. The authors are solely responsible for the remaining emors.

Appendix A. Prools

Proofl of Proposition 1. We first consider two states that differ by the type of agent j € N.
We then apply the implementability conditions to get the result. We consider any five
numbers {ﬂ,:.'_,,:.',-,:.';-,b} all belonging to (00, 5] such that a < 5; < 5 < 1.; = b. Using
these numbers we construct the states 5 = (57, 5_; ) and 5" = {.1.':'.,.1.'__,}, where s, = a for
allpe PPEN—{j iland s, =bforallg € §'=N— P’ —{j.i} From the construction
and from the efficiency critenon, it follows that a'}‘{:.‘}l =|Pl+1=gf{s)=|F|+2
and -:'.rj‘{:."}l =|P'|4+ 2= al(s) =|P’| + 1. Therefore, we are considering two states s =
(57, 5_;)and = {:.'j., s_ ;) such that agent i 15 the immediate successor of agenl § in state

7 This can easily be seen from the definition of the class of G-VOG mechanisms given by conditions (14)
and {171 in Bergemann and Vilimiiki (2002,
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5 and is the immediate predecessor of agent j in state s°. Applying the implementability
condition in states 5 = (57, 5_;) and = {.\'j-. s_j), for agent f, we get

U_,-{a’*{:.‘},rj{:;}: :.'} = Uj{a*{:."}, r_,-{:f}::;} and

Uila*(s"), 1;(s7); 5") 2 Ujla *(s).1j(s): 5).
Simplifying these two conditions we get that the difference U{"':." s_j) — tjls) must he
in [ A{s ) Fia| P +:.':I.}I, Asj)Fla|P'| 4 5;)] where a|P'| = EnE'P_.I-‘F'In]] 5p. Hence, it is
necessary that Ads; ) Fia|P| +.1.':|.}| = Alsi )F{a| P’ +5;). Observe that this inequality muost
be satisfied for all possible selection of five numbers (a_5;. 5., \J f) all belonging o (0, 5]
such that @ <5; = 5 = 1.; = b and for all possible selection of P' © N — i, j} satisfying
P'US =N—{i. j}and P'N§ =¢. This implies concavity of F sinces; <s;. O
Prool of Proposition 2. To prove the necessity part of the proposition we denve the
explicit form of the transfer satisfying conditions (1) and (i) in the definition of the G-VCG
ransfer. We fix the announcement of all agents except agent j at §_;. Let §; be the
announcement of agent § such that she gets the first queue position, that is a'}‘{:."'}l =15
Using condition (i) in the definition of the G-VCG transter, we fix 1;(5) = h;{5_;) for
a}‘{:."'} = 1 where fi;(5_;) is an arbitrary functionof 5_ ;. Note that from condition (i) it also

e 5

follows that for all 1._; (3 Sj' l . the transfer of agent j must remain unchanged at f j{5_ ;).
Now consider two states 5 = (s;.5_;) and §" = {:.'j-,a."‘-;}l such that rrj-‘{a."}l =rrj‘{.7r'}l —1
and s; # 1._; From efficiency of decision it follows that there exists an agent p such that
g "'J. From efficiency it also follows that at §; = &,

N F(Silot(0:5.5)) =Y F(Si(o* () 5. 5).

ieN ieN
Using these observations and simplifying (1) in the definition of the G-VCG mechanism,
we gel

HE) — (3 = AE ) F(Sp(a™(3):5) ) (= Vo(3)). ()

Solving (6) recursively, by using 1(5) = h;(5-;) for a'}‘{:?} = 1, we get the transfer given
by condition (2). The sufficiency part of the proposition is now obvious. [

Proof of Proposition 3. Observe that o prove Proposition 3, it is enough to prove the
second statement in the proposition, by making use of the fact that the cost function
is strictly increasing and concave. We start by proving the necessity of the proposition.
Consider an SSP ™ = (N, F_ {0, 5]}. Let M = {o*_ 1} be the mechanism that implements I
We assume (without loss of generality) that the implementable transfer is of the form

His)= 3 Alsp)F(Sp(o*(s):5)) +h;s).
pEPia*is

To prove the necessity part of the proposition, we prove that for all § £ N and for all rrue
s_j e (05" v hi(sj,s_j)= h_,f{:-’j. s-j) forall s and .1.'_;. in (0}, 5].
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Step 1. Consider first the case where 57 and 1.; are such that o®(s;,5_;) = a'*{sj-,s_j}l.
From the implementability requirement for agent j € Nin states s = (s, 5_;) and 5" =
{.1.';.. s_j )it follows that

U_,-{a’*{:.‘}l,f_,-{:.‘}: .1.'} = Uj{a*{:.'l}l, r_,-{.w'l}l::.'} and
Uila®(s), 15037 8) 2 Ujlo *(s).1(s): 57).

Simplifying the inequaliies using a*(s;. 5_;) = a’*{:.'j.,A'_J.'}, Pila*(sj.s_;)) =
P; {a’*{:.';., s_j )b, and the general transfer ¢ (-}, specified above, we get 0 < h s, o) —
hj-{sj,-, s_j) = 0. Therefore, if s; and .1':,- are such that o*(s;.5_;) = a*{:.'j-,:.'-;}, then
hjsf,s_5) =h_|.-{:.'j.,s__|.-}l.

Step 2. Now consider the case where 5; and .1.';- are such that o (s;, s_;) # a'*{:;j..:.'__l.-},
[a’}‘{:.'_,-,:.'__l.-}l - a}‘{s;.,s_jﬂ =1 and hence [|Pjla™(s;.5-))] — I?:’_,-{a'*{:.';.,:.'__,-}}lu =1.
We have two possible subcases

(i) ?:’J'{fl'*{:‘.';-, s_i—Pjle*(sj,s_j)) =g} where s; < s < 1.; (with at least one strict
inequality ), and

(i) Pila™(s;.5_;)) —T’j{a*{s},s_j}} ={p'} whun::.‘j— = &p = ) (with at least one strict
inequality ).

We first consider subcase (1), Applying the implementability requirement for agent j € N
and simplifying it, using the conditions in subcase (i), we get hj-{:.'_;.,:.'_j-} —hj(sj5-j) e
[r’l{:.'j.}l, Alx;)] where the function

Alx) = ma-,f}.ﬂ( 5 p+ .r) o2 m.v,f}F( e Sp +.vqs)_

PEP a5y 5-0) PEP (e (s 5.4

Note that A{x) is continuous and non-increasing in x € [:.'J.-,.vj.l due w concavity of F.
Moreover, A{:.':,-}l 0, Als;) 2 0 and Alsy ) =00 For all 5; € [s;.54), hj(3;.5_;)
hjis;, 5_;) because of o®(s;,5_;) = o®(5;.5_;) and Step 1. Similarly, for all §; €
{.\'qs,s;. L hjis;,8_5) = h_..-{s;.,s_j} sinee a'*{a.':l.,:.'_j} = a*(i;.5_;). Choosing & =
nﬁn_l-g[_,-J._.,-_l,, |54 — x|, wie have shown that §(g) = hjlsy —&.5_;) —hjlsy + 8,5 ) =
const ¥We £ (), £). By continuity of A{x) and since 8(g) £ [A{:.'q.- + £}, A{:.'q.s —£])]. we get
the result that &{z) =0¥e = (), £). Thus, hi{"'j"""—f} = hjls;, 5_ ;). Subcase (i) 18 analo-
gous Lo subcase (1),

Steps 3...n. For i; and 1.'; such that Iﬂ'}‘{i'j,s_j} —rr}‘{i‘_;-,:.'_j}l =ke{2,....n—1} we
apply the argument lr:r}‘{s_,',:.'__,'}l —a'}‘{:.‘j-,s_j}l = | inductvely to get the result

We now prove the sufficiency part of the proposition. Let 5_; be the true processing
time of all agents except j. We define the benefit of agent j € N, when she reports .1.'_;.,
given her true type s; as B{:.';.,:.'_l.-}l which is given by B{:.'_;..s_,'}l = Ujla*(s), t;(5"); 5) —
U; {a*{s), ti(sh:s). Heres = (s;,5_;) and = {.1.':'., 5_ ). To prove the proposition we will
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prove that for all 1.; £ (0, 5] and for all 5; € (0, 5], B{:.';-. s;) = 0. There are two possible
subcases:

(a) Pjle*(s") C Pjlg*(s)), and
() Piio*(s)) S Pja*(s).

For subecase (a), define FJ. =Pia*(s)) —Pila*(s")). Here we get a}‘{:.'} > a}‘{s’}l and the
benefit of agent j is

B(s',57) = ‘5_( Y ,;q) F( 3 5 +,U_)

§E F_l 'n":'p:' [a'[""l]]
- Za{s,,}F( ¥ .x-,,+.-,,)_
g FF_. rely (a*(5))

By repeatedly applying the relation A(h | + A2 Flx) = A{A)Fix)+ Alh) Fix 4 hy) we
et

" n i
a(Zh;) Fix)= Z.&{h;}F(.r + Zh_,-) ;
=l =l J=l
Applying this relation on the first term of B{.‘-‘j-. 5i)we get
a( T :.',J.)F( Y stsn)=Y% M.‘-,f;.p( T +.U)_
geF; PEP (51 ge P rePyiatisn
Thus, the benefit of agent s from misreporting is given by

B{s:,-,:.'_,}=z_ﬂ{.\'q}|i}:'( ¥ :.',.+:.'J.)—F( ¥ :.',.+:-',,)].

ge Py rePia*(s)) reERy (i (51)

It 15 obvious that B{:.':,-,:.'_,-}l = Osince s, = 5; forall g € F_.' and F is concave. The proof of
subcase (b) 1s analogous and thus omitted. O

Proof of Lemma 2. For notational simplicity let F¥ represent any polynomial function
of order ki=10. 1, ._ ). Therefore, F¥(x) = Ef:ﬂ bix' for all x in the domain of F*. It s
quite easy to see that for any polynomial function F* of order k we get the following:

(1) For all {a.x} € R:, Afa)F*(x) = Fix + a) — F(x) = F*~{x) where F*~! is a
polynomial function of order (k — 1).

We now apply an induction argument o derive the resalt. For m = 0, F”{.r}l = by and
Al }F':]{.r}l = by — by = 0. Thus, Lemma 2 holds for m = 0. We assume that Lemma 2

holds for m = my, that is, for all {a;, ..., g1, X}, [r[:":l_l Ada )] F™0(x) =0 where
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F™0 s any polynomial function of order myg. We will now have 1o show that Lemma 2 also
holds form =mp + 1. Observe that

g +2 7 =gt 1 7
[T at@) [F* =] [T Ala) |Atanga2) P (0.
L r=l i L r=1 i

From (1) we get ﬂ{ﬂmu_-g}F'"'-'_'{_r} = F™o(x). Thus,

g +2 7 g+ 1 7
[T A |Fo @ = [] At |F*).
L r=1 - L =1 _

Since the lemma is true for m = mg we get []_[:":l_l Afa, ) JF™(x) = 0. Thus,
TT Ala) 1 Fmet (0 =0. O

Proof of Theorem 1. We first prove the first part of the theorem. To do that we construct
a particular G-VOG mechanism for an SSP with polynomial cost function of order (n — 2)
and show that the transfers add up to zero for all possible processing tme vectors. For an
mmplementable S5P with a polynomial cost of order (n — 2) or less, consider the G-VCG
mechanism M* = {g*, t*} where for all j € N and for all s_j,

Ki(s-p=—"3_gijls-j). 6

i#]

Here gi;(-) is 4 function defined as

a5 )
iy vee s [ @FG_)) —rin—a? (s_) — 1)
HJ'_.'".J"—J.} . ZI {_1}'-”',- 1 _|] J‘l i {" — 11}! ZJ'J'U'—_,I'} {H}l
F
where
Zirl5-j) = Z ﬂ{ﬁ'}'F( Z 5+ 5"1')
LR U et S T A R ) L P C Al )|

and Pig(o®(s- ) is an ¢-clement subset of P {a™(s_;)).

Step 1. We first prove Z_,u‘;h‘ gijls_j)=(n—a (sNAGE)F(S(o*(s); s) foralla(s) #n.
Since the sum

ZEJ’_,I'{J"—_,I'} = E gijls—j)+ Z gijls—j),
JFH JF JePiia* (s
JEP s '
we simplify cach of these two sums in separate steps. We first consider the sum

Z Zijls_j).

Ji#
JER e (50
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Observe that from the efficient rule we get o(s_;) = o(s), for all agents j ¢
{Pi(a™(s)) U{i}}. Also observe that each set P; 1 (a™(s)) occurs (n — o;"(s)) times in

the sum
> sl
o
JERE 5

Using these two observations, we get

alis)
- v oA lEF 5y —rln —a*{s))!
B N TR e G:,[.'u] i i i :
2. &yls-)=) (=D ( — )Lu.s} 9
JF r=I
JEP
where
Lir.s) = Y Ms.-}F( 2 -n,+.-.-)
Pt e Pia* i) gePi, 1la*is))

and Pia{a®(5)) 15 an e-clement subset of Pi{o®(s)). We now consider the other sum
Z_,I'F'P, (o5, &l {s_;). Observe first that from efficiency condition we get a(s_;) =
af(s) — 1 for all j € Pi(g*(s)). Secondly, observe that each set P; . (a*(s)) appears
{(o"(5) — r) times in ZJ-F-pII (e £ij (35— j). Using these two observations we get

ats)— 1

Y oe)= Y {—1}"“”""‘(‘”" L= s “”!)L{r.s}.
r=|

n—r—1}!
JePiiatis_n ( )

(1

By adding the sums given by (9) and (10) and then simplifying, using (—1)""“"~" +
(===l =0, we get

Zgu-{s_j} =(n—a’(s)) As;) F( Z 5 +.-,-)_ (11
i JERE*(E)
Therefore, from condition (11) we get EJ-?E‘- gijls_ ) =(n— g sHA{s)F (S {o*(5); 5))
for all { € N such that 5,"(s) # n.

Step 2. Now we consider Z_,u‘;ﬂ' gij(s—j) for agent i with ¢*(s) =n and show that it is
equal to zero. For any § # i we get of(s_ ;) = n — 1 since o] (s} = n. Moreover, for
any such f #£i. gijls_j)= E.:,L{—l}l”_l ~'zir(3_;). Since the term z;,(5_;) is given by
zir(s—j) = z'pl,_( ya*is_ NEA i) ﬂ{“}F{EqE’PH (a+is_ ) 5g + 5i), we get gij(s—j) =
[1‘[!# A(s) |Fs;). This step means that the term gi; (s— 7)1 equal to the (n — Lyth order
cross-partial difference of amount {s;}=; at s;. Since F is a polynomial of order (n —2),
from Lemma 2 we get Eijls_ji=0. Therefore, for an agent i such that o".*{:.'} =N,
22 8ij(s—j) = 0. Thus, we get 3 ., gij(s— j) = (n — o (s)) A5 ) F (Si (0 ™*(s); 9)) for
all i € N. Finally, we consider the sum Z_,I'FN h;‘.{:.'_j}l and show that it s equal to —Vis).
Since Z_,I'FN h;‘.{:.'__l.-} = —E-# Eij(s_j), we get
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Yomo) ==Y &)=~ gils—j) or

JeEN JeEN i) TeN J&1

Zh;‘-{.v_j} — —Z{n —o () Al F(Si(e¥(s);8)), or
JeEN ieN

Zh;‘.u_ﬂ = —V(s).

JeN

The last step guarantees condition (3) for the G-VOG mechanism M* = (a® (%),

We now prove the second part of the theorem. The first step will be to construct a pair
of states and then apply condition (4) in Lemma 1 to get a general necessary condition.
The final step will be to apply the fact that the cost function is sufficiently well behaved
and derive the result using this general necessary condition.

Step 1. Consider any implementable S5P I, Consider two states s and 57, both be-
longing to ((L5]", such that s = (s) = x,52 =2x,....5 =nx) and 5" = (5] =nx,5; =
T, ....& = {n — 1)x). For this pair {5, 5"}, we consider the sum ZFEN{—I}IlFlV{MP}}.
The construction of the pair {5, s} is such that EFLN{—1}|F|\-‘{:.'1P}I} 15 independent
of all the virwal marginal surplus terms with weights {_:i —rJ'}‘{:.‘{P}I}}I e{2.3,....,n—1}
Hence, EF,_N{—I}'F'V{:;{P}} includes all virtual marginal surplus terms with weights
(n —a_}‘{:.‘{P_}l}l}l = | for all P € N. By collecting all these terms and simplifying it we get
Y pen(—DFIWE(P) = YT (—DH ("0 Alnx —x) Flatk)x —x) — A(nx) Fla (k)x)}
where ai(k) = (n— L){in+2)/2 — k. Simplifying this condition using the relation
Aox)F{fx) = Alle — Dx)FI(A 4+ Dx) + Alx)F(fx) reeursively and then by subst-
wting ¥ pepn(—DFIV(s(P)) =0 from condition (4) in Lemma 1, we get

A {x}Fl[un (n }.r}l . {x}F{ur:{n}.r}l B Al {x}F{w;{n}l.r}l (12)
where w(n)=(n— 1)n/2, wa(n) =(n — 1)(n 4+ 2)/2, and wiin) = nin + 1)/2. Condi-

ton (12) 15 a general necessary condition for first best implementability of any imple-
mentable S5P

Step 2. Using the restriction that the cost function F s sufficiently well behaved, we first
iry to simplify a term of the form A"~'{x) F{wx). The reason for doing this is that all
terms in the general necessary condition (12) are of this form. Observe that

n—1 g - gkl n—1 ey s
A {.r}F{m.r}l_E{ 1) (k_l)F{{m+.{ 1)x)
wherne
o0
F(w+k —Dx) =Y a(tw+k - x — )
I=f

= Zc‘;{{m +k—1x — _'m}lI + Z cllw+k—Dx— _m}lI.

= I=n-2
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Therefore, we have re-written A (3 F(wx) as the sum of two polynomials. The first
one 15 a polynomial of order (n — 2), that is

" 1 n—21
Zl—l}l_l(k 1) Zc‘;{{m+ﬁ:— l}r—}‘:]}I]
k=1

- =0

and the second sum is a polynomial with all ligher-order terms, that is

] o] ad
Y (1 (: B 1) ! Y alw+k - l}r—m}I]-

k=1 I=n—1

We first consider the former and show that it is equal 1o zero. By substimting d(wx) =
wx — yp and by wnting ((w 4+ & — 1)x — _'m}lI as {d(wx) +(k — l}l.r}l‘r and then taking it's
bimomial expansion, we gel

n

1 n—2
Y- (: o) ! 2 er(w+ k= 1x—yo)'

k=1 =0
n-2 I ! 4
- Ec‘: E ( ){ﬂ‘{w.r}} ™y (m)
I=0 =l o
where y(m)=3_[_, (=1y%] ‘;: Il}{.k — 1", From Euler’s identity we know that y(m) =0
for all integers me {1, ..., n — 2}.% Therefore, the first polynomial of order (n — 2), that

is ZLl{_”i_l JJCIL:HE}:S_ olffw + & — 1jx — _1.‘:]}1} =10 for any set of real numbers
‘I'ﬂ:] ----- Cp—3 I’ .
Thus, A" {x)F{wx) is equal to the other polynomial with all higher-order terms, i.e.

i 1 i
AN Fwxy =) (=1 (: R 1) Y alow +k- I}r—.mf]-
k=1 I=n—1

By writing a(w.m) = ¥ {_ (=D (37} (w + k — 1)™ after taking the binomial

expansion of the term ((w 4+ k — 1)x — yg)' in the sum and then simplifying it we get

the following expression:
o0
!
3 alw +k —1)x — o) ]

i —1fn—1
Sev( D))
k=l I=n—1
oo ) |
Lo i I—m e i
= Z CJZ (m){ o) "Me(w, m)x™.

I=n—1 =i

We now try o evaluate the value of w{w, m). By taking the binomial expansion of

(w + (k — D)™ we get a(w,m) =3 4 {J‘r:‘l_l}w"‘_‘"'-'}r{mn}. From Euler's identity we

know that y (mg) = 0 for all mp < n — 2. Henee, a(w, m) = ::U:n—l {:Jr:.}"fu_muy“n“}'

¥ Buler's identity: 3 _(—109(3)g" =0forall 0<r < 1.
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Now we calculate the value of the term yimg) = Ll{—l}k_ l{:: |I}“f — 1)"™ for my =
n — 1. Expanding (& — 1)"0, using Stirling number of the second kind, we get pimg) =
(— 1" Yn — 1)85(mp.n — 1).% Hence, we have obtained o{w,m) = (=17 Yn —

DG (w, m) where Glw.m) =370 .,y (o Jw™ ™ 8(mg, n — 1). Therefore,

5] I
!
AT @OF @) =(=D)"" =D Y @ Y (m){—mf“"ﬁ{w,m}x‘". (13)

I=n—1 m=n-1

By substituting (13) into (12) and simplifying, using {—l}l”_I (n— 1) 0, we get

50 i
I
2 X (m)i_'m”}'l_m’IEr (m)x" =0 (14)

I=n—1 m=n-1

where the term fim) is
fAlm) = Glwr, m)+ Glwy,m) — Glw, m)

i
= Z (m ){u:i_,"“"” +uf ™" — w7 S (mg,n — 1).

mg=n—1 o
Note that g{im) =0 smee O < w) <=wr < w3y, m—mp=z0ltorall mp=n—1...., m
and since S{mg. n — 1) = 1 for all integers my = n — 1. Therefore, using these results we
o0 I B il . o
get Z!=”_lc'; P {m}{—}‘;]}! MAmx" =3 Apx" = 0 where each coefficient

r=n—1
A, = E?‘; c';{l{}{—_m}{_rﬁ{r}. The equaton E '=: e Apx’ = 0 implies that 4, =0
forall r=n—1,n,..., oo, Therefore, using fAir) = 0, we get B, (= A, /7)) =

b B mit r‘:{i}{—_ﬁ]}l_" =0forallr =n— 1 n. ..., o0 Using the identity {f} -+ {r—{l} = {J{:ll}
and simplifying Dy = B, 4+ (—w) B (=100 we get Dy, = Z?:r q{j::h_m}!—r =10

for all r=n— L.n,..., 0. Since {;rj} = H{J{}, r4+1#£0and B, =0, we get
E?'i,,fc‘;{j]{—_ﬂ]}!_" =0forallr=n—1n,. ., oo, Similady, by considering D) =
Dy + (—y0)Dy+1 =0 and using Y72 Ie;(!)(—y)' " =0 and B, =0 forall r =n —
Lym,wivns o0, we get ¥ fzc;{i}l—}‘n}l_" =0forallr =n—1.n...., s¢. By continuing

% A Stiding number of the second kind 8img, g1, is defined as the coefficient of [x]y =xlx—1). .. (x—g+1)
in the expansion of x™0 that is, x™0 = Z:':“ St g)[x ]y For every real number x and, mone importantly, for
every natuml mimber sy, Stirling number of the second kind are such that Sieg, 1= Simg, mg) = 1. Momover,
these numbers are unimodal, ie. they satisfy one of the following formu lae:

(1 1 =580mg, 1) = Simg, 20 = oo = Simg, Mg = S0y, Mimg) — 1) = - = Simg.mgl =1 or
(2 L=50mg, 1) < S(mg, 2) =« . < S(mg, Mimg) 4+ 1) =S(mg, Mimg)) = = Simg,mg) =1,

and Mimg + 1= Mimg) or Mimg 4+ 1= Mimg) + 1 where Mimg) = maxlg | S(mg.g) s maximum;
1 = g = my ). For a better understanding see Tomescu ( 1985).
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this way recursively, we get, forany p=0,1,..., o0, Z?__:r f”c;{j}{—_m}l“' =) for all
r=n—1,n,....0¢ Thus, givenany p =0, 1,..., 20, we also gel

- i

Y —h}l'”-:‘:( _){—_m}’-’ =0 (15)

I=r i
forallr=n—-1.,n,..., oo and for any A, Using Stirling number of the first kind, consider

o0 ! I—r
£ =Y a,){ Zst—rpu-nr i,
I=r ! p=0

for all r =n — 1.n,..., 20" From condition (15) it follows that E, =0 for all r,
since £, can be wntten as E, = Ei,:us{! - r,p}{z?i,c';ﬁ}{f — )P (—y) "} and
the second sum is zero. Simplifying the sum in the original expression of E, we get
E, = r—l,Ef’:J DMe(—yp)=" =0forallr =n—1.,n, ..., o0 sinee by applying the properties
of Stirling number of the first kind we know that ZJP:;]J{U —rpil =P = —r)l.
Thus, we get T, = Zjﬁrffqi—}‘:]}ll_r =0 forall r=n—1.n,..., oo, Observe that
T =rlo, + (—w)Tr s =rlop since Ty = 0. Moreover, sinee T, =0 and r! = 0, we get
cp=0forallr=n—1.n...., oc. Hence, the general necessary condition (12) holds, for
acost function F of the form Fiy) = Z?::] iy — .1.‘:]}1, for any selection of {cp. ... o2}
andonly if ¢y =0 foralll =n— 1.0, ..., co. O
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