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Evaluation of Nonnormal Process Capability Indices using

Generalized Lambda Distribution

Surajit Pal®

SOQC and OR Unit, Indian Statistical Institute, Aminjikarai, Chennai. India

Process capability indices (PCls) are used to describe a
manufacturing process expressing its ability to produce items
within the specified limits. These indices are developed under
the assumption that the underlying process distribution is
normal. In  industries, there are many manufacturing
processes where process distribution can not be described
by a normal distribution. In such cases, those PCls will give
misleading results about the process. The most commonly
used approach for analysing a nonnormal process data is to
fit a standard nonnomal distribution (e.g., weibull, pamma)
ar a family of distribution curves (e.g., Pearson, Johnson) to
the process data and then to estimate the percentile points
from the fitted distribution that can be used to compute
generalized PCls. In this article, we outline the procedure
using the generalized lambda distribution (GLDY) curve for
modeling a set of process data and for estimating percentile
points in order to compute generalized PCls. The four-
parameter GLD can assume a wide variety of curve shapes
and hence it is very useful for the representation of data when
the underlying model is unknown. Compared to the Pearson
and Johnson family of distributions, the GLD is computa-
tionally simpler and more flexible. The article provides all
necessary formulas for fitting a GLD curve, estimating
its parameters, performing goodness-of-fit tests, and comput-
ing generalized PCls. An example is wsed to illustrate the
calculations that can be easily performed using spreadsheets.

* Address comespondence to Surajit Pal, SQC and OR
Unit, Indian Statistical Institute, 110 Nelson Manickam
Road, Aminjikarai, Chennai 600 029 India. E-mail
surajitpal (@ hotmail .com
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INTRODUCTION

Process capabhility indices (PCls) are used widely
in industries for evaluating a manufacturing process
whether or not it can produce articles within the
specified hmits. The most commonly used measures for
process capability indices are C,, Cp. Cpp and Cop
Kane (1986) gave the first comprehensive explanations
and interpretations of these indices. Let the process
characteristic X is independently and identically
distributed as a normal distribution with mean p
and standard deviation o. Then, these indices are
defined by

- L
Cp=—
. b

, w—L
Cat = g

, U—p
‘:,ﬂur= I

Coi = Min{Cpp, Cpu}

where L and U are the lower and upper specification
limits respectively, of the process and the target T
is at the middle of the specification limits. When
the process is in statistical control, these indices are
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estimated by substituting g and o with their estimators
X and s, respectively. For detailed information on
process capability indices and recent developments, see
Refs. (Johnson and Kotz (1993), Kotz and Lovelace
(1998), Kotz and Johnson (2000)).

These capability indices were originally developed
under the assumption that the process measurements
can be described adequately by a normal distribution.
This may not always be an appropriate assumption. In
industries, there are many manufacturing processes,
where process spread cannot be described by normal
distribution curves. Skewed distributions that are
bounded on one side are quite common in industries.
For example, ovality, concentricity, taper, run-out etc.
generally follow a skewed distribution. Munechika
{1992) details several examples of machining processes
that are inherently nonnormal. For these types of
noennormal processes, one should not use the same
formulas for computing process capability indices
because those PCls will give misleading results about
the process performance. Gunter (1989) has shown
three different distributions with identical values of C,
and Cpg. but different proportions of nonconforming
parts. Somerville and Montgomery ( 1997) investigated
the effects of nonnormality on the yield of a process
that is assumed normal. Kocherlakota et al. (1992)
provides additional information on the effects of
nennormality on PCls.

In literature, there are various methods for
analyzing nonnormal data for the computation of
process capability indices. The simplest way for dealing
with nonnormal data is to transform the data via some
mathematical function in such a manner that the
transformed data are normal. For example, a skewed
distribution may become normal by using a square
root transformation. Chou et al. (1998) and Polansky
et al. (1998) have proposed using Johnson's system of
distribution curves to transform the nonnormal data
into normality. The distribution of the transformed
data should be tested for normality and if it passes the
test, then the transformed data can be used to estimate
process capability indices, process nonconformance,
etc. Most ofien, the main difficulty of this approach
is to find an appropriate transformation function.
Also, some practiioners may feel uncomfortable
working with transformed data.

Another approach is to compute the generalized
process capability indices that are a simple modifi-
cation of the normal PCls. For a nonnormal process,
Clements (1989) proposed the use of generalized
process capability indices [defined in Eqs. [B]-{11]]
that use the values of nonnormal percentile points.
Wu (2001) has evaluated the performance of these

cms_nn:mms
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generalized PCls for wvarious shapes of nonnormal
distribution curves.

These peneralized capability indices require esti-
mation of (.135 and 9.8635 percentile peints that can
be obtained from a distribution curve fitted to the
sample data. The easiest way to model a nonnormal
process data is to fit a standard probability distribu-
tion such as the lognormal or gamma or weibull.
Advantages of fitting such a standard nonnormal
distribution are parameter estimation for the distribu-
tion is fairly straight forward and distribution proper-
ties are well documented. Percentile points can easily
be obtained for estimating the capability indices.
References  include Somerville and Montgomery
{1997y ¢, gamma, and lognormal; Mukherjee and
Singh (1998) Weibull; Sarkar and Pal (1997) extreme
value; and Sundaraiyer (1996) inverse gaussian. This
approach of fitting standard nonnormal distribution
may not work for all nonnormal processes. In such
cases, modeling the process data via a family of
distributions may be more appropriate. For exam-
ple. the Johnson or Pearson family of distributions
will be able to fit distributions with a wide variety
of shapes. Applications of this kind of method,
with various assumed distributional forms, are
quite numerous. References include Clements (1989),
Rodriguez (1992) Pearson system; Farnum (1997),
Polansky et al. (1998), Pyzdek (1993) all Johnson
system; Castagliola (1996) Burr distribution; and
Kocherlakota et al. (1992) Edgeworth series distribu-
tions. There are some potential difficulties associated
with these families of distributions Rodriguez (1992).
However, this approach of fitting a standard non-
normal distribution or a family of distributions is most
commonly uwsed for modeling a nonnormal process
data and thereby computing the generalized process
capability indices.

In this article, we describe a distribution, namely
the generalized lambda distribution (GLD), that can
be used for fitting to a set of process data. The
egeneralized lambda distribution can assume a wide
variety of curve shapes and hence it is very useful for
the representation of data when the underlying model
is unknown. The main advantages of fitting GLD
to describe a process data are the GLD uses only
a single functional form with four parameters and
the estimation of these parameters is much simpler.
Using the fitted distribution, nonnormal percentile
estimates can be obtained for computation of general-
ized PCls.

Although the Pearson and Johnson family of
distributions cover a large variety of curve shapes,
both of these systems incorporate a number of
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functional forms whereas the GLD uses only one
function and is computationally simpler. The Burr
distribution also covers a wide range of parameter
values, but does not include symmetric distributions.
Thus, the GLD has an edge over the other family of
distributions while modeling a process data.

The main disadvantages in fitting GLD distri-
bution are the practitioner must have a computer
facility and a reference table for estimating the lambda
parameters. However, the same disadvantages lie in
fitting other family of distributions too.

In the following section, the generalized lambda
distribution and some of its properties are described.
Then, we describe the method for fitting GLD to
process data. The generalized PCls are defined and
their estimation methods using the GLD are discussed.
For illustration, an example has been worked out.

THE GENERALIZED LAMBDA
DISTRIBUTION

Ramberg and Schmeiser (1974) developed the
generalized lambda distribution for the purpose of
generating random variables for Monte Carlo simu-
lation studies. The use of GLD as models for data came
later. The GLD has been used for a range of different
applications, for example, air pollution, Okur; finance,
MeNichols: climate studies, Abouammoh and Ozturk:
and inventory modeling, Nahmris. Excellent literature
of the generalized lambda distribution, its applications,
and parameter estimation methods appear in Karian
and Dudewicz (2000).

A continuous probability distribution is usuoally
defined by its distribution function or by its probability
density function. Alternatively, it can be defined by its
percentile function that is simply the inverse of the
distribution function. The generalized lambda distri-
bution is defined by the percentile function

1_1_ oy
R{m=h+-[f’ul M 0<pny [

2

where A s a location parameter, A» is a scale
parameter and Ay and A, are shape parameters. The
distribution function does not exist in “simple closed
form™.

The density function is given by

I_ = : R e ——— c——-
fix) = f[R(p)] TP ST

=p=1) 2]

Ramberg et al. (1979) studied the properties of
this distribution in detail. The richness of this four-
parameter GLD to fit a wide variety of frequency
distributions is also elaborated. Some examples of
the density shapes produced by the GLD are shown in
the following Figure 1.

Ramberg et al. (1979) also derived the expressions
for the mean p, the variance o, and the third
(13 = E(X — )"y and fourth (u, = E(X — u)") moments
about the mean for this distribution:

=k + Ak,

o =(B— A%/,

3y =(C— 34B +24% /2,

ja =(D—4AC + 647 B - 34%)/23

where
g
L 43a T3
B= —28(1 + 3.1 :
TP A b R T
1
i — 3Bl + 22,1 44
5 30, A1 42431 4 24)
1
g e ———
+ 3801+ had + 2) — g
u=1+%—4m1+n3,1+m

+ 68(1 + 2h3,1 + 24g) — 48(1 + 43,1 + 304)
; 1
1443y’

and § (o, b) denotes the beta function with parameters
a and b. A brief description of the beta function can
be obtained from Spiegel (1990).
The skewness and kurtosis, as given by
a3 = Ji3 I."-::r'q, [3]
and
ay = pgfo’ [4]

are functions of As and L4, but do not depend upon
Ay and A

PARAMETER ESTIMATION AND
DISTRIBUTION FITTING

Although there are several methods for estimating
the parameters of the GLD in the literature, we will
follow the moment-matching method that
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Figure 1. Density curves produced by GLD.

proposed in Ramberg and Schmeiser (1974). This
approach for estimating GLD parameters is based on
matching the first four moments of the sample data.
The method can be described as follows: given the
GLD distribution with percentile function f(p), find
parameters & A, Ay and A, so that the mean p,
varance o, skewness oy, and kurtosis oy of the GLD
match the corresponding mean X, variance s, skew-
ness o, and kurtosis o of the sample (i.e., the first
four moments of the theoretical GLD match those of
the process data). The sample mean, varance, skew-
ness, and kurtosis are computed from the sample data
b T v, of size n as

B it X
Mean X = =
g -
Variance 57 = - x—X
= > (x—Xy

i=l

il 33

Skewness off = EEM
Bl e
Kurtosis a; :HZ—'

These are not the maximum likelihood estimators,
but correspond to method-of-moments estimators.

Therefore, if f{x)=f{x; &) denotes the probability
density function of the random wvariable Y with

percentile function R (p), then we estimate the param-
eters A such that

n=2Xx

3 3

a =4
(5]

oy = of

wy = o

Closed-form solutions of the abowe equations
do not exist and hence the parameters &, A, A3, and
Aq cannot be directly computed. Using numerical
methods, approximate solutions can be obtained,
but that requires an efficient search algorithm and
a good choice of the initial starting point for the
search.

Ramberg et al. (1979) provided a table to find the
values of A, Aa, A, and Ay For selected values of @y and
oy Karian and Dudewicz (2000) provided a more
comprehensive and accurate table that gives lambda
parameter values. The lambda values are determined
from the table using |o%| and a4 values as entry points.
The lambda valuesin the table are for a variable with a
mean of zero and a variance of one. This means that
we use the values (0, 1, o} |.e}) and obtain a solution
(A0, 1), As(0, 1), Ay, Ay) for the Fn T3 27 e
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those equations associated with (X, &%, |o}|, af) is
obtained by setting

=0, s+ X [6]

ha = A0, 1) /x (7]

when of < 0, we interchange the values of Ay and Ay
and change the sign of A (0,1). The procedure for
fitting a GLD can be summarized as

1. Compute X, s, of, and o} from sample data.

2. Find the entry point closest to (|of], «)) in the
reference table [see Tables B-1 in Appendix B of
Karian and Dudewicz (2000))].

3. Using (3], e3), extract (L(0,1), ds(0,1), As, A4)
from the ahle.

4. If o <0, interchange the values of Ay and Ay and
change the sign of A,(0, 1).

5. Compute A, s using Eqs. [6] and [7).

More description on  this moment-maiching
method for estimating the lambda parameters of
GLD can be obtained from Karian and Dudewicz
(2000) and Ramberg et al. {1979).

To verify the poodness-of-fit, one may plot the
percentile function and compare it with the sample
distribution function being approximated. An approx-
imate y° goodness-of-fit test can also be carried out.
The sample data are first arranged in a frequency
histogram having & class intervals. Let O; be the
observed frequency and E; be the expected frequency in
the ith class interval. For finding E;, the p; values are
obtained by solving the percentile function R(p) at
each class interval endpoint. Muliplying those
pivalues with the number of observations will give
the expecied cumulative frequencies from which
Evalues can easily be obtained.

The test statistic

k - o2
3 {_ﬂj e -E' |']
ey OB

i=l

has approximately a chi-square distribution with
k—1{—1 degrees of freedom, where ! (=4, in this
case) represents the number of parameters of the
hypothesized GLD distribution. The null hypothesis,
which states that the sample s drawn from GLD,
is rejected if the calculated value of the test statistic
Xb > Xa4_s. Where a is the significance level. Since the
parameters of the model are estimated by the method
of moments rather than by the maximum likelihood

method, the use of the y° distribution is only
approximate.

GENERALIZATION OF
CAPABILITY INDICES

We assume that the process is brought under
statistical control prior to evaluating its capability. For
the nonnormal distributions, the definitions of process
capability indices are generalized. The pgeneralized
capability indices can always be reduced to, the
“standard™ capability indices when the process data
are likely to follow a normal distribution.

The generalized €, is defined as

C = Allowable Spread U-L
"7 Process Spread ~ U, — L,

(8]

where L, and U, are respectively the (.135th and
99 865th percentiles of the distribution used to describe
the process. For a normal distribution, L,=p—3a
and L,=pu 430, and so the above equation reduces
to the usual definition of C,,.

For the definition of C,; and C,,. the median is
used as the measure of the process center. The median
is chosen because the median is a better estimator of
the population mean than sample average (X) for
nonnormal distributions, especially when the distribu-
tions are skewed. The allowable process spreads, and
the lower and upper process spreads, are defined with
respect to the median. The generalized C,pand C,, are
defined as

Allowable Lower Spread M — L

e e e P e ("
o Lower Process Spread M—-L, Bl

_ Allowable Upper Spread U - M

£ — 1{}
i Upper Process Spread ~ U, — M (10}

where M is the median of the process distribution. The
generalized C,; index is defined as the minimum of the
C, and C,,, that is,

M-L U-M

(,r'-‘. = Mll"l{clﬁ'.c,mr} = Min M — 'LP i L’P — M

[11]

For estimating these generalized PCls, first the
percentile points L,. U/, and M are computed from
the fitted GLD which are then used in the above
equations. The L, L}, and M values are caleulated
from the percentile function R(p) with p-values
0.00135, 0.99865, and (.5, respectively.
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The estimated process capability indices are com-
pared with a recommended minimum value to decide
whether or not the process can be considered ascapable.
Montgomery (1996) suggested this minimum recom-
mended value as 1.33 for an existing process and 1.50
for a new process where the underlying distribution is
normal. We will consider the same values even for a
nonnormal process.

The lower and upper proportion nonconformance
can be estimated by solving for p-values from the
percentile function R(p) with R{p) values equal to L
and U, respectively in the following manner.

Lower proportion nonconformance,
NCy =p|,'h’-'hﬁl‘&ff{p|]=£ [12]

Upper proportion nonconformance,
NC‘{; =1 — P where R{p}] = [13]

NUMERICAL EXAMPLE

In this section, we illustrate the method for fitting
a GLD curve to sample data. The estimated curve is
then wsed to compute the generalized process cap-
ability indices. Let us consider a sample data on the
overall length of bolts. Overall length is an important
characteristic in the forging process of bolts manufac-
turing. A sample data of size 200 are collected with an
objective of evaluating the performance of the forging
process over a short period of time. The randomness of
the data are verified to ensure the stability of the
process. The sample data are sorted in an ascending
order and are given in Appendix 1. The frequency
distribution and the summary statistics of the sample
data are given in Table 1. The lower and upper
specification limits for the overall length of bolt are
6.2 and 7.0, respectively.

Using these o) and o) values, we obtain the
lambda values from the reference table provided
by Karian and Dudewicz (2000) as A1(0, 1)=—0.753,
A2(0,1)=0.187, X;=0046, and 1s;=0.2281. The
values for &, (X, s) and Ja( X, are

A = 6.507 — 0.753 x 0.1398 = 6.4021
and

L = 0.187/0.1398 = 1.3396

cms_nn:mms
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Tahle 1
Frequency distribution and summary statistics

Class intervals Frequency Summary statistics
6.20-6.25 2 Sample size: 200
625630 7

6.30-6.35 13 Average, X: 6.507
6.35-6.40 2 Median: 6.485

6.40-6 .45 i3

6.45-6.50 13 Minimum: 622
6.50-6.535 22 Maximum: 6.92
6.35-6.60 23

6.60-6.65 14 Variance, s: 0.01945
6.65-6.70 7 Std.Devn., & 0.1395
6.70-6.75 #

6.75-6.80 7 Skewness, a%: 0.621
6.80-6.85 4 Kurtosis. ¢%: 3.103
6.85-6.90 2

6.90-6.95 1

Figure 2 shows the relative frequency histogram
for the sample data and the fitted probahility density
curve corresponding to the above lambda values.
For wverifying the goodness-of-fit of the GLD
distribution, x-test is carried out. The expected
frequencies are computed and are given in Table 2.
The computed value of 3 =35834 is much less
compared to the tabulated value of x4, = 14.067
which indicates that the above GLD curve fits the
sample data quite well

From the fitted GLD curve, we estimate the L,, M
and U, values by using the p-values as 0.00135, (.5,
and 0998635, respectively, as

L=k +{(0.00135Y —(1—0.00135)]/%, =6.207
M=k +[(0.5)" —(1-0.5)]/%, =6.488

Uy=71 +[(0.99865 " —(1 —0.99865)]/%, =6.983

Consequently, the generalized capability indice
are estimated as

- L— L
C_p = = = 1.031

Uy — Ly

- M- L
CPJ' = = 1.025

M-—L,

- - M
Cpur = m = 1.034

Cpi = Min{Cpy.Cp} = 1.025
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Figure 2. Histogram and fitted GLD density curve.
Table 2 CONCLUSION
Test for goodness-of-fit
EI _ _ Traditional process capability indices can give
Clags intgrval Dsorved Expected cnmp;umd misleading indications of a process’ ability to meet
of life frequency frequency ¥ : ; =7
: : specification limits when the process measurements
Belaw 6.30 g 6.7 0.774 cannot be adequately described by a normal distri-
6.30-6.35 13 15.48 0.397 bution. One approach for solving this problem is to
6.35-6.40 22 258 056 model the process data with a standard nonnormal
6.40-6.45 35 30 0.833 density curve or a family of distribution curves (eg.,
6.45-6.50 33 28.7 0644 Pearson, Johnson) and then to compute generalized
{‘-5"3' 6.55 22 24.96 0.351 process capability indices using the properties of the
6.556.60 23 2034 0.348 R
i fitted distribution.
6.60-6.65 14 15.7 0.184 i : C
T'he generalized lambda distribution is very useful
6.65-6.70 7 11.62 1.128 f adeli | data. This distrib
6.70-6.75 g g7 0181 or modeling nonnormal process ta. This distribu-
6. T5-6. 80 1 546 0434 tion provides a wide variety of curve shapes and uses
Abhave 680 7 7 0 only one functional form. Compared to the Pearson
Total 200 200 5834 and Johnson family of distribution curves, this

At 3% level of significance, tabulated value of 5 =14.067.

The estimate of process performance index (:‘,.\.;
is less than the minimum recommended value of 1.33
and, hence, the process may not be considered as
capable.

The estimated proportions of nonconformance are
found by solving Eqgs. [12] and [13], as

NG = PiX = k) =0.104%

NCr = P(X = U)=0.084%

distribution is computationally simpler and more
flexible. In this article, we have described the
procedure for using this distribution in computing
eeneralized process capability indices for a nonnormal
process.

Some practitioners may face a few difficulties in
estimating the lambda parameters and in verifying the
goodness-of-fit of the lambda distribution with the
process data. An Excel or Lotus spreadsheet can be
easily designed for this purpose and also for computing
the generalized process capability indices. We hope
that this problem will be solved with the advancement
of statistical process control software programs. We
believe that this generalized lambda distribution will be
of immense use in the field of nonnormal process
capabhility and process control.
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APPENDIX

Data on Overall Length
of Bolts.

cms_nn:mms
5P

622 637 6425 647 6,520 658 6.73
6.24 637 6.43 6.47 6.520 6359 6.73

6.26 6375 643 647 6525 659 6.74
6.26 .38 643 .48 6.523 600 074
6.27 6038 643 .48 6.53 600 6.75
627 638 643 648 653 6,00 6.75
028 038 643 .48 6,53 6.0 677
6,30 6.38 6435 .48 6.53 60l 6.77
6,30 6.39 6435 .48 654 6ol 677
.31 039 6.44 648 654 6ol 6.77
.31 6.39 644 649 654 6ol 6.78
632 6.40 6.44 649 035 662 079
6.32 6.40 6445 049 655 062 .80
632 640 6445 649 655 662 682
033 641 643 649 6,50 663 .83
633 6.41 645 6.50 6,56 603 084
6.33 6.41 645 650 6,56 6033 6.85
633 6.41 645 650 6.57 604 6.80
634 6.4l 6.45 6.50 6.57 604 6089
634 641 6435 6.50 6.57 665 692
635 6415 6435 6.50 6.57 [k
6,35 6415 6.46 6.50 6.57 0060
6,30 642 6.46 6.51 6.57 600
636 042 .46 6.51 657 067
636 642 6.46 .51 6.37 667
6,36 642 6.46 651 6537 66T
6.36 642 6.46 6.51 058 608
6,36 642 6.46 6513 6,58 608
637 6425 6.47 6.52 6,58 6.70
6.37 6425 647 6.52 6,58 6.71

Specification limits: 6.0 £0.440.
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