Sagdeev’s approach to study the effect of the kinematic viscosity
on the dust ion-acoustic solitary waves in dusty plasma
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Sagdeev’s technigue is used o study the dust ion-acoustic solitary waves (DIASWSs) in a dusty
plasma comprising ions, electrons, and charged dust grains taking into account the ion kinematic
viscosity. Exact analytical results for the solitary wave solutions were obtained for small amplitude
DIASW. The effects of the ion kinematic viscosity and the ion temperature on the feature of DIASW

have been investgated.

During the last two decades a lot of interest has been
shown'™" in the study of dusty plasmas. The motivation for
studying dusty plasma is the following. Dusty plasmas occur
in nature in various forms such as planetary rings,'®™* com-
etary Lails, intrastellar clouds, ete. On the other hand, expen-
laboratory  have been made on dusty
[:lnl.'u-.unrms.w'u Swdies on solitary waves and double layers in
dusty plasma have also been made by a number of
workers."™"" Nonlinear structures such as solitary waves and
shock waves in dusty plasma have been observed m the labo-
ratory  especially o condensed pluhmusy and colloidal
hu.spcnsiun.z'l Now the two normal modes of unmagnetized
and weakly coupled dusty plasmas are the following: One is
the dust acoustic mode (DAW) and the other is the dust
ion-acoustic wave (DIAW). These waves were first theoreti-
cally Fruditlud by Rao, Shukla, and Yu,' and Shukla and
Silin,” respectively. Usually the nonlinear waves in dusty
plasma are stwdied vsing the reductive penurbation technigue
i RPT) which generally i__'ivus rise 1o the famous Korteweg—de
Vries (KdV) u.]uulinn.l' Several authors have used this tech-
nigue Lo uhl.uipi weakly nonlinear KdV solitons. Recently El-
Labany ef al.™ studied the dust won-acoustic solilary waves
(DIASWS) in & medium of fully ionized, collisonless, un-
magnetized dosty plasma with posilive ons, wanm nega-
tvely charged dost gruns, and nomsothermal electrons. They
studied the effect of trapped electron temperature, dust
charge v;u.riu[inn, and grain radius on the nonlinear DIAWS,
Li et al.*® studied dust-ion acoustic soliton in collisonal in-
homogeneous plasma. Using RPT they have shown that the
characteristic properies of the soliton change as it propa-
gates in the imhomogeneous dusty plasma. Hnwuvurj?f ong
takes into account the the dust kKinematic viscosily,”  one
obtains the Koteweg—de Voes—Burgers equation which, un-
der certain condition, produces the shock wave solution. Na-
kamura and Sarma’ have investigated the dissipation of ion-
acoustic solitary waves in a dusty plasma considering the ion
dust collision and kinematic viscosity of ions. Also, Wa-
tanabe has studied the dissipation effect on ion-acoustic soli-
Lons 1::&p'l:rirr:u:nl.'ill}-'.EH To explain dissipation effect due o the
presence of dust particles on the lon-acoustic solitary waves,
many improvements of KdV equation have been pmp-t}huj.m
However the RPT 15 applicable only 1o small amphitude soh-
tary waves. For arbitrary  amplitude  solitary waves a

ments  in the

rumpl:r'lurl:h'ili'r'u?r1r approach is necessary. Unfortunately, ex-
cept in simple cases, an exact analytical expansion for the
Sagdeev’s pseudopotential cannot be obtained. For example,
if one takes into account the full nonlinearity, the exact ana-
Iytical form of the Sagdeev’s potential cannot be derived.
However, it 15 shown that a single odinary second-order
differential equation for [nd¢d can be derved which when
solved would give the pseudopotential. Though for nonzero
kinemalc viscosily, this equation cannot be solved analyti-
cally, one can sull obtain the pseudopotential upto any order
in ¢b. This is the advantage over the RPT in this case. In the
present paper we will adopt this approach w study solitary
waves in g plasma comprsing immobile charged dust grains,
warm electrons, and warm ons. We shall also see that for
small #, the 1on kinematie viscosity, KdV-Burger type equa-
tion can be derived using our formalism, thus reproducing
the result of RPT in the small amplitude case.

Here we consider a dusty plasma whose constiluents arge
electrons, 1wons, and dost grains. On the on-acoustic time
scale the electrons are taken Boltzmanian so that the density
15 given by

n,=exp o, (1)

where n, 15 normahized by the unperturbed electron density
.. BEquations goveming the ion dynamics are
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T,.T, are, respectively, the electron and ion temperatures and
o 15 the plasma potential. g, and h,, are, respectively, the
kinematc viscosity for 1ons and elkectron Debye kength. The
ion density n, velocity u, and plasma potential ¢ are normal-
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ized 10 ny, the ion acoustic speed C, T, /e, respectively. The
displacement x and time ¢ are normalized to h,, and aJ;JI - Mg
R and ny, are, respectively, the 1on, electron, and dust den-

sities in the equilibrium state. A, @, C, are given as

f _fAmed Lo
’\l 417::_,{,3 =y m, | m;

Here z; 15 the dust charge number. I is o be noted that the
dust grains were assumed 1o be massive, immobile, and
negatively 1:l'Jm',@l_ul_‘xj.rII To obtain solitary wave solution £=x
=V 15 introduced, where Vois the solitary wave velocity.

From Eg. (2}

LA 4 (7

" V-u :z’
where

z=V—-u. (&)
From Eg. (3)

& W 3o, dr 3o

?=?—qﬁ—?n‘+ﬂ&+T. (9)
Assuming

&
Fl:qfr]l:j neld (10}
0

and using Eq. (4), we have

1 de '\

E(Zf_f) ="~ §F(¢) + 50— 1. (1)

From Egs. (7) and (10), we have

Fia)=", (12)

dz Vv i

— = —,Fu = 13
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Taking

w=Fid)=n, (14}

and from Egs. (9) and (13), we have

12 TN gy
w'=— . . (15)
gV 26— 28 Flgh)+ 22,64 -2
Equations (14) and (15) wgether will yield Fi¢) which in
tum would give the Sagdeev's pseudopotential. This is our
main analytical result. Before we take up the conventional
expansion of the pseudopotential, let us show how the
KdV-Burger (KdVB) type equation can be obtained from
Egs. (14) and (15) assuming 7 to be small. For the sake of
simplicity we will assume, for the present purpose, o to be
zero. Extension of the result 1o nonzero o is trivial. It is seen
from Eq. (15) that the equation holds only when 5+ 0. For
7=0, w’ is given b
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WiV —28) =V, (16)

So, n=w=V/ V' —2¢ (we take the + sign here). For 5#0),
but small, we write

3

o3 V
wis o ), (17)

where the function f{¢h) is w be determined from Eq. (15).
Neglecting terms of O( ). fléh) turns out to be

EVE%
e
flo)= V24 (18)
From Eq. (17), using Eq. (4) we have
deh
1 Vé
dd .5 &V . dE ..
i T o2 (Fo2gp T o

Differentiating Eq. (19) with respect to £ and assuming ¢/V?
to be small, we have

B i B 8 i
dgd ~ dt V2 d’ T 20

which is the KdVB equation written in terms of the single
vardable £=x—Vr. As far as our knowledge goes KAVB equa-
tion has not been deduced before from pseudopotential ap-
proach.  Following the procedure of Sahu  and
Roychoudhury™ a particular solution of the KAVB equation
(20} is obtained as follows. Inegrating Eg. (20) and using
the initial condition =0, when dd/dé=0), we get

24 o 8] At

e 2.7V dE

To solve Eg. (21) we use the direct method given in Ref. 30,
We just gquote the result here. Details are given in Ref. 30:

(21)

ke 4 s
-, e e 26,7 B=+ I.'l (22)
(6452 _ Bg)’ 513° N3

where g is the integration constant which depends on the
initial condition and V is detemmined from the equation
25(V—8 V) +6 8 77=0. 1t can be shown™ that when Bg
=—1, the above solution will be identical with the solution
obtained by the tanh method.* However for 7 not oo small
one cannot derive Eg. (20). For small amplitude but arbitrary
7. we expand Fid) up to &' terms,

Fid)=d+bd” +cd +dd’. (23)

Here b is determined from the equation

=

2b(V? +30) — 1 = 12ba - 2byVN1 - 28,b=0, (24)
and ¢ and & are given by

bV +3V1 = 26,b(4b — 26*V* + 300h?)
T A2 _ 01 2R e mAARE 1Y

(25)
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FIG. 1. Sagdeev's potential 2 gb) va ¢b is ploted, where the dust-plasma
parameters are =006, r=0, &=0.0001, V=15, § =224, Dotted and solid
curves cormspond to the higher and lower omder approximations to 8 g,
respectively.
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where
l—ﬁéﬁ.‘ 4 ]
d|=—c—=——=nV+6bcV" — (4b" + 6¢)
v1 =286
—30(16b" + 30bc). (27)
Wriling
1 '::.;&)3
=—=| —= 28
W 2( ) (28)
we oblain from Eg. (11)
==+ 8 Fl)+ 1 —zubach. (29)
Keeping terms up to ¢,
* ,
L SO W (30)
d&
where
A =1-2b8, Ay=-3cé+3. (31)
Iniegrating Eg. (30), we oblain
3(1—24,b) ,( V1- zé,bf)
= i) = | 32)
¢ 1 608, 2 (
Keeping terms up to ¢, we have
d" .;.5
|q5+.4-_.1:ﬁ +A:|l:l5‘ E-i-i}
d&
where,
Ay=—4dé +5. (34)
Iniegrating Eq. (33), we obtain
pe|-t B A niin . o9
= —_ osnly 3.
T34, *Vox 942 2 :

If .4§== 5.4|A_; then solution (35) would not be valid and a
shock wave solution is obtained which is given by
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FIG. 2. ¢ va £ is plotted using the expression (32) for of ¢ with pammeters
same a5 those used in Fig. 1.

¢ =A[1 +tanh alé+ &)], (36)
where £, is inlegration constant and
34 A :
A=-T=, a=T=, (4>0). (37)
2-43 3"-.2.4_;

This clearly shows that o get the shock wave solution one
has to take higher order terms in the expansion of .
Before we discuss the numerical results it may be noted
that Egs. (32) and (35) would not be valid for 5,!7-—-*1,, dic
=i. For these values of parameters one must take a l:Jighur
order tenm and when A <20, but &c# i, both these solutions
will show periodic behavior. Hence for solitary wave we will
assume A, =0 and A;#0. In Fig. 1, oris plotted with respect
to ¢ in case of small amplitude solitary wave Laking enns up
o ¢ and & when m=0.06, other parameters being o=(),
&H=00001, V=1.5, §=224. As can be seen, inclusion of ¢!
term does not change qualitatively the nature of solitary
waves though the analytical solutions, Egs. (32) and (335), are
different. This is because the amplitude turns out o be rather
small. It appears that the solutions (32) and (35) are different
and under some conditions, the latter one leads to the shock
wave. This means that the Sagdeev potential may lead o
different coherent structure with the same amplitude and
width. However o obtain a shock wave solution one has (o
include higher order terms. It is seen that DIASW exists for
positive ¢b. In Fig. 2 the potential profile against £ is shown
using the relation (32). From Fig. 3 we find that amplimde of
the soliton decreases as o inereases. Figure 4 shows that as »
increases the amplitude of the soliton decreases. For large
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FIG. 3. Sagdeev's potential 2g ) va ¢ is plotted, where the dust-plasma
parameters are =004, §=00001, V=15, §=2.2. Tao different valoes of
ir huve been used. Here o=0L01 corresponds to the dotted curve and o
=(1.012 corresponds 1o the solid curve.
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FIG. 4. Sagdeev's potential 2 ¢b) va ¢b is plotted, where the dust-plasma
parameters are S=00001, V=15 &=22488 =0 Two different values of
7 are wsed. Here =004 comesponds to the solid curve. The dashed curve
is for p=014,

amplitude DIASWSs one has either 1o solve the coupled equa-
tions (14) and (15) or has w include higher order terms in the
expansion. However the solution given in Eq. (35) is already
a higher order solution which cannot be obtained using RPT
method. To conclude, the set of equations governing the ion
dynamics, when kinematic viscosily p, is taken into ac-
count, have been reduced to a set of coupled nonlinear ordi-
nary differential equations easily amendable to numerical in-
tegration. However one can analytically expand f ¢y up o
any order in ¢ In the present case it has been explicitly
demonstrated that though for small amplitude one can ne-
glect term of order ¢ in the pseudopotential, for a shock
wave solution one has o inclode higher order tenms. For
small 5 and ¢/ V?, KdV-Burger type equation is obtained;
thus reproducing the RPT result.
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