VIRUS REPLICATION FACTOR MAY BE A CONTROLLING
AGENT FOR OBTAINING DISEASE-FREE SYSTEM
IN A MULTI-SPECIES ECO-EPIDEMIOLOGICAL SYSTEM

M. BAIRAGI

Depariment of Mathematics, Jadavpur [Mniversity
Kolkata 70 (22, India

F. K. ROY

Deparbment aof Mathematics, Darjeeling Governmeni Collage
Darjeeling, India

R. R. SARKAR

Insgtifute of Environmental Systems Research, Univeraty of Omabrueck
Artidleriesir. 34, D-49069 Qmabrueck, Germany

J. CHATTOPADHYAY*
Agriculiural Science Unif, Indian Stafisfical Insifufe

204, B. T. Road, Kolkata 700 108, India
JaydevBwww isical ac.in

The role of wviruses in marine phytoplankton-zooplankton community structure is
undoubtedly very important. In this paper, we propose a simple mathematical model
for phytoplanktor-sooplankton (prev-predator) system with an additional factor that
the viral disease is spreading only among the prey species. Clonsidering high abundsanee
amd importance of viruses in aquatic environmments we have explicitly considered here
the growth equation of free viruses and have studied this four-dimensional model ana-
Ivtically. It is observed that the disease-free system can be obtaimed when the virus
replication factor lies in-between certain critical values. Numerical sinulations have also
been performed to substantiate the analytical findings.
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1. Introduction

Planktons are the basis of all aquatic food chain. Phytoplanktons are very small,
usually single-celled or panisms, chiefly diatoms, that photosynthesize just like plants
do and occupy the first trophic kevel in food chain. Phytoplankton provides oxygen
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for human life, food for marine life and also absorb half of the carbon dicxide
from the earth’s atmosphere. The dynamics of rapid increase or decrease of plank-
ton populations & an important subject for marine plankton ecology. Virnses are
evidently the most abundant entities in the sea — nearshore and offshore, trop-
ical to polar, sea surface to sea floor, and in sea ice and sediment pore water.
Natural marine water contain roughly 10" to 10 virus particles per liter. Virns
infects the most important marine primary producer community, the phytoplank-
ton and infection by viruses could be a factor regulating phytoplankton community
structure and primary productivity in the oceans.! Viral infections also cause cell
lysis in phytoplankton. Using electron microscopy, Suttle et al”® showed that the
viral disease can infect bacteria and phytoplankton in coastal water. Virus-like
particles have been described in many enkaryotic algae, cyanobacteria and natu-
ral phytoplankton communities.® Many phytoplanktonic species show spectacular
bursts ( “blooms” ) in population density and viruses have been held responsible for
the collapse of Emiliania huzleyi blooms in mesocosms® and have been shown to
induce lysis of Chrysochromulinia.! Quite a good number of studies®® showed the
presence of pathogenic virnses in phytoplankton communities. Fuhrman® synthe-
sized the accumulated evidence regarding the nature of marine virnses and their
ecological as well as biological effects. Nevertheless, despite the increasing onm-
ber of reports, the role of virus infection in plankton population is still in a state
of infancy.

Few theoretical studies have been carried out in such eco-epidemiological sys-
tems. Mukherjee” studied the persistence in a prey-predator system with disease in
the prey. Chattopadhyay et al.® studied the effect of viral infection on the general-
ized Gause model of prey-predator system. Beltrami and Carroll” observed the role
of viral disease in recurrent phytoplankton blooms by proposing a three-species
model consisting of susceptible phytoplankton, infected phytoplankton and their
grazer. They showed that introduction of virus-contaminated cells has significant
effect om the stabilization of the system. Chattopadhyay and Pal' modified the
model of Beltrami and Carroll” and the model of Venturino.!' They concluded
that the role of viral infection in plankton community is very much unpredictable
and model dependent. It is to be mentioned here that though virus populations
play a crucial role in the marine ecosystem, the dynamics of the free viruses were
not considered explicitly in these models. Since virus is responsible for the infec-
tion and the number of new virus depends on the virus replication factor, so virus
replication factor may play a crucial role in the system dynamics. Beretta and
Kuang'? studied the role of virus replication factor in a different context. They con-
sidered a simple three-dimensional mathematical model to describe the epidemics
induced by bacteriophases in marine bacteria populations and showed that there
exists a threshold “virus replication factor” beyond which the endemic equilibrinm
bifurcates from the disease-free equilibrium. Keeping this in mind, here we pro-
pose a simple mathematical model for phytoplankton-zooplankton {prey-predator)
system with an additional factor that the viral disease is spreading only among
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the prey species. Considering high abundance and importance of viruses in aquatic
environments we have explicitly considered here the growth equation of free viruses.
The main objectives of this article are:

s to study the dynamics of the system in the presence of virus population and
o to find out conditions under which the system becomes disease free.

It is observed that the co-existence of all the species is never possible but the
disease-free situation can be attained only when the virns replication factor attains
some critical value.

The organization of the paper is as follows: Sec. 2 deals with the basic assump-
tion and the mat hematical model. Equilibria and their existence are given in Sec. 3.
Local asymptotic analysis around each equilibrinm is discussed in Sec. 4. In Sec_ 5, a
numerical study is given and finally a summary of the results is presented in Sec. 6.

2. The Basic Assumptions and the Mathematical Model

We consider a three-species ecological system, namely phytoplankton (prey ), whose
concentration is denoted by N ([N] = number of prey cells/liter), zooplankton, the
grazer of phytoplankton, whose concentration & denoted by y ([y] = number of
predator animals/liter), and the virus population whose concentration & denoted
by v {[v] = number of viruses/liter ). The phytoplankton is assumed to be susceptible
to a viral disease, and in the presence of viruses the total phytoplankton popula-
tion is divided into two classes, namely snsceptible phytoplankton and infected
phytoplankton.

The following assumptions are made for formulating the basic differential
equations.

{Al1): In the absence of virus disease, the phytoplankton cells prow according
to a logistic fashion™ with carrying capacity k(€ R,), and with an intrinsic birth
rate constant r{€ B, ) such that

aN _ (1 B 1) . (2.1)

dt K

{A2): In the presence of viruses, we assume that the total concentration of phy-
toplankton cell, N & divided into two classes, namely susceptible phytoplankton,
denoted by z, and infected phytoplankton, denoted by z. Therefore, at any time ¢
the total {concentration) of phytoplankton population is

N(t) = =() + =(t). (2.2)

{A3): We assume that the susceptible phytoplankton, 2, are capable of repro-
ducing with logistic law [Eq. (2.1)] and the infective phytoplankton, z, are removed
by cell lysis before having the capability of reproducing. Though the infected
cells of phytoplankton do not contribute to the growth of the overall phyto-
plankton cells, N, it is reasonable to assume that the infected cells, z, during
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their latency period, T, still compete for resources with the susceptible cells to
enahle the replication of the viruses inside themselves.' Thus we assume that the
infected prey do not grow, recover and reproduce, but contribute to the carrying
capacity.

(A4): We assume that the disease spreads among the prey species only and
the predator species i not affected due to predation of the infected prey. Also the
infected prey is more vulonerable to predation than the susceptible prey which has
been observed in the several natural systems.

(A5): A susceptible phytoplankton, z, becomes infected under the attack of
many virnses, v. The contact process is admittedly debatable. Some researchers
argue that a proportional mixing rate i more appropriate than that of simple mass
action law. But the data of Greenwood experiment suggests that there is no change
of qualitative properties upon the contact process whether it follows the law of mass
action or proportional mixing rate ®

Following assumptions (A3), (A4) and (A5), Eq. (2.1) can be written as

dr T4z ;
Pl (l -~ ) — Arv (2.3)

where A is the foree of infection.
(A6): If grazer population y predates the susceptible phytoplankton, =, at a
rate ble R, then Eq. (2.3) takes the form:

%=rm(l—$::)—lmf—bmy. (2.4)

The dynamics of the prazer population, 3, may be written as

% = cxy + hyz —dy. (2.5)
Here d{e R, ) is the death rate of prazer population. o{e FB.) and i{e H,) are the
conversion rates for susceptible and infected phytoplankton, respectively.

(AT): An infected phytoplankton z has a latent period, which is the period
between the instant of infection and that of lysis, during which the virus repro-
duces inside the infected phytoplankton. The lysis death rate constant ofe Ry
gives a measure of such latency period T being a = 1. 3 is the virus replication
factor, i.e. lysis of infected phytoplankton, on the average, produces 3 virus particles
(7 £ By, % 1) and in future study we assume (3 — 1) > 0. The dynam-
ics of infected phytoplankton, =, and virus population v may be repre-
sented as

dz
dt
d
dt

= Arv—lyz — az

= —Arv —pv +afz
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Fig. 1. Schematic diagram of the model.

where p(e R, ) i the death rate of virus population and [{€ F.) & the capture rate
of the infected prey by the predator. As mentioned in (A3), it is assumed that [ > b
We do not consider a separate mortality term for infected phytoplankton because
we assume that the mortality of infected phytoplankton & almost completely due
to lysis. Model conceptual schematic diagram is presented in Fig. 1.

Now following the above assumptions, we can now write the following differential
equations describing the time evolution of the above eco-epidemiclogical system

d_:r: =r:r:(1— TI:) — Azv — bry

df
dﬂ = cry —dy + hyz
dt (2.7)

— = Arv —az — lyz

dt

dv
Eq = —Arv — puv +afz

as our model.
System (2.7) has to be analyzed with the following initial conditions:

() >0, =0, z0), v =0 (2.8)

We obhserve that the right-hand-side of Eq. (2.7) is a smooth function of the variables
{x, ¥, z, v) and the parameters, as long as these quantities are non-negative, so local
existence and uniqueness properties hold in R,

Note that %‘,_—’ = zfr(l — ZE) - M — byl. So %‘,: >0ifzr =0and = = (,
y =0,z 0,v =0 Henee r = 0, ¥t It & also true for the other variables y, z, and v.
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Hence we can state the following theorem:

Theorem 2.1. V3, *—fﬁl >0z =0andz; =0,i# j, thenz; = 0,¥5.
Now we shall show that the system (2.7) is uniformly bounded.

Lemma 2.1. Allthe solutions of (2.7) which initiate in Ry are uniformly bounded
e b
'E-f % - =

Proof. See Appendic A. O

Biological Interpretation. The expression % > ? states that the ratio of cap-
ture rate to conversion factor of infected phytoplankton is preater than that of
susceptible phytoplankton.

3. Equilibria

System  (2.7) possesses the following equilibria Eg(0,0,0,0), E (K, 0,0,0),

Eg{;r'-hy-z,{} 0, Ex(zs, 0, z5,v3) and E*{x* ¢*, 2% v*), where 72 = :—ﬁ ye = {1
por K[ 1— )

- Y .g I3 ) o [N A—1)—wrew .o Aoadx® o
= Il’ji—l s 1R =1 Fper] 2 o =1 )+pr] ¥ = w Nl

it A — Tk
= u o SBder) rdrtis th{t positive root of

=z -—

- [T T Ty
Az’ — Bz — C =10, (3.1)

where A = Arl{h — ), B = rlh(AK — p) + Ao — blit) + A{bakh — vld) and
= rldp + add — priKh — oK k. Note that Eq. (3.1) has a unique positive root,
given by

. B+VBIT1AC

2= 24

if A >0 B > 0and C > 0 for which & > ¢ % < bh < of and p <
min[AK, m%ul It is to be noted that Fs exists iff d < Ke, Ey exdists

iff 3> (14 #%)-

Remark 3.1. It is interesting to observe that Es arises from E; for the value
of the parameter K = f‘r and persists for all K > ";{ and FEi arises from E; for

K= l—“f_—” and persists for all K > Fh

4. Stability Analysis

Theorem 4.1. The system (2.7) is unstable around £y for all porametric valees.

Proof. The proof is obvious and hence omitted.

Theorem 4.2, The systemn (2.7) is .i.'m‘u.i.'.i.'y asymptotically stable around £y if
d>ck and 3 < 3 where 3* = (14
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Proof. See Appendix B. O

Biological Interpretation. Note that, the condition d > e/ implies that the
death rate of zooplankton is greater than its maximal growth rate. And AK deter-
mines the mumber of new infections per virus per unit time, while —+1m gives the

average time that a virus lives if the density of the susceptible phytoplankton = K.
Therefore, —2£_
AR

while 3 =
pt AR
AR

determines the mumber of new infected phytoplankton per virus,

AR - i E N AAK
R Sives the mmber of new virus per virus. Thus, TR

B < = 1+ 4 = /3 implies that a virus, on the average, cannot produce
at least one new virus during its life when the susceptible phytoplankton are as

< 1 or

abundant as possible.

Remark 4.1. 1t is to be noted here that when E; is locally stable then neither E;
nor &g exists.,

Note. The proof of Theorems 4.3—46 (except 4.4) are similar to the proof of
Theorem 4.2 and hence omitted.

Theorem 4.3. The system (2.7) iz locally asymptotically stable around Es if
(i) d < Kec (&) 3 € (3%, 5%,
where 3 = (1 + &) and 3% = (1+ &)1+ £(1 - &)

Biological Interpretation. The condition d < K¢ implies that the death rate of
zooplankton is less than its maximal growth rate. And the condition 3 € (3%, 5*%)
implies that a virus, on the average, can produce at least one new virus during its
life period but cannot produce more than 3** virus.

In the next theorem, we state sufficient conditions for which the system becomes
globally asymptotically stable around £s.

Theorem 4.4. The system is globally asymptotically stable around Es if

. Keh . S
{i) d = e (i) (3,8,
where 3* = (1 + ) and (1 + $5) + E5(1 — &) — L5 = 3. < 5,
Proof. See Appendix C. m]

Remark 4.2. Note that the values of d and 3 in this case are less than the corre-
sponding values of d and 3 in Theorem 4.4.

Theorem 4.5. The system (2.7) is unstable around Ey if

n hr n
<NB-TD [‘"‘*F(l T K- u)]‘
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Biologieal interpretation. The above condition states that the system is unstable
around Ey if the death rate of the zooplankton does not exceed some critical value.

Theorem 4.6. The positive interior equilibrinm E* s always unstable,

5. Numerical Study

To visualize the above analytical findings we have wsed the following parame-
ter values (see Table 1), which have been collected from the available literatures
viz 9:12,10,16

For the following parameter valies, the equilbrium value of Es is given by
(13.33,83.33,0,0). If the solutions of the system (2.7) start with initial walues
(12, 80, 2, 1) (close to Es) we observe that the infected phytoplankton and
the virus population go to extinction, whereas the susceptible phytoplankton and
the zooplankton co-exist in the form of a stable steady state. This ensures that the
dizease-free equilibrinm, Es, is locally asymptotically stable (see Fig. 2). It is to be
noted that all the conditions of Theorem 4.4 are satisfied in this case.

For the parameter values as in Table 1, the threshold values of 3* and 3. are
respectively 7.66 and 94.5. We observe that the time series solutions of the system
(2.7) converge to the disease-free equlibria Es when 3 lies between 766 to 94.5.
In particular, we select 7 = 15.92 and observe that the solutions of the system
(2.7) converge to the disease-free equilibrinm Es with different initial conditions
[(20, 120, 18, 11), (40, 12, 5, 2), (5, 30, 2, 27)| (other parameters are as in Table 1)
(see Fig. 3). This indicates that the model system is globally asymptotically stable
around the disease-free equilibrinvm, Ea.

The threshold walue of 3** for the same set of parameter values is 149.32. If the
virus replication factor crosses the upper threshold value 3%, it is observed that
the disease-free equilibrinm, Es, loses its stability with growing oscillations in virns

Table 1. The parametric values used in numerical simulations.

Parameters Syvmbols Values
Intrinsic birth rate constant T O day —!
Carrving capacity K A0 (liter day ~ 1y
Force of infection A (101 (liter day —1})
Capture rate of susceptible b (L0 [ liter day —1)
plvtoplankton
Capute rate of infected i (11 (liter day -1y
phyvtoplankton
Clonversion rate of o 0.03 (liter day 1}
susceptible phytoplankton
Clonversion rate of infected h (.05 (liter day 1)
phvtoplankton
Lysis death rate o 1.5 day —1!
Virus death rate i # day !
Virus replication factor g 15.92

Death rate of zooplankton d (A day !
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Fig. 2. Time series solutions of (2.7) with parameter values as in the Table 1 and where the

conditions of Theorem 4.3 hold. The solutions starting at (12,80.2,1} (close to £5) tend to Ei
(13,34, 83,33, 0,0, depicting local stability of the disease-free equilibrium, Eq.
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Fig. 3. Time series solutions of (2.7} with different initial conditions (20, 120, 18, 11},
(M), 12, 5, 2}, (5, 30, 2, 27} converge to the disesse-free equilibrinm 2 (13,33, #3.33, 0, 0), depict-
ing global mymptotic stability of the disease-free equilibrium, £ Parameter values are given in
Table 1.
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Fig 4. Time series solutions of (2.7) with initial walues (12, 80, 2, 1} for the parameter values as
in Table 1 except 3 = 160 Clearly the solution bifurcates from a stable to an unstable one when
virus replication factor crosses the value 9% = 144,

population. We choose 3** = 160, keeping all other parameters unchanged, and
observe that the solution bifurcates from a stable to an unstable one (see Fig. 4).
Note that the virus population increases significantly when 3, the virus replication
factor, increases.

fi. Summary

The effect of diseases on the ecological system is an important issue from the math-
ematical and ecological point of view. Reports of high abundance of viruses in
aquatic environments are known for quite some time and their role in regulating
the phytoplankton community structure and primary productivity in the ocean
have been implicated.?® In this paper we propose and analyze, both analytically
and numerically, a simple phytoplankton-zooplankton (prey-predator) system in
which phytoplankton are infected by a transmissible disease and thus form a new
group, namely the infected phytoplankton which becomes more vulnerable to pre-
dation due to the disease. Furthermore, we have introduced the growth equation
of free viruses in the system equations and studied the dynamics. Our model con-
sists of four nonlinear differential equations, namely a susceptible phytoplankton,
infected phytoplankton, their predator zooplankton and the virus population. In
the absence of the free viruses, the system is more or less similar to the model
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of Chattopadhyay and Pal.'® We first showed that all the solutions which nitiate
in B are wniformly bounded. The system admits four boundary equilibria and
one interior equilibrinm under suitable parametric conditions. We observed that
the trivial equilibrinm, £, and the interior equilibrivm, E*, are always unstable
with respect to all perturbations, whereas the equilibrinm Ej & unstable when
d < rh%[r + ":T’{l — J._f'.l:f;]—_l]:l] The axial equilibrivm, E;, is stable if oK < d
and the virus replication factor, 3, is less than 3%, where 3* = 1 + ;5. In other
words, the axial equilibrinm, E, & stable if the death rate of zooplankton is preater
than its maximal growth rate and if a virus, on the average, be wmable to produce
at least one new virus during its life when the susceptible phytoplankton are as
abundant as possible. On the other hand, the necessary condition for Ea to be
locally stable is that a virus, on the average, have to produce at least one new
virus during its life cycle and the death rate of zooplankton is less than its maximal
growth rate. One of the basic motivations of an eco-epidemiological problem is to
find out the conditions for which the system eventually becomes disease free. From
the previous study it is clear that the considered system will be disease free (i.e. Es
will be stable) if d < cK and the virus replication factor, 3 € (3%, 3**). Another
interesting question is under what condition the system will be disease free regard-
les= of initial conditions. Our global stahility of the disease free equilibrium, s,
ensures this.

In conclusion, we like to mention that our model can be made more meaningful
and realistic if one consider the latency period of infected phytoplankton explicitly
in the model equations and for new variable resources to this system (stoichiometry).
And we leave these for future study.
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Appendix A

We define a function

1r:=;r:+j—)y+:+—lﬂ:. (A1)
o 3

The time derivative of (A1) along the solutions of (2.7) is

dw 1 T4z _fle—bh bd A op
—=7rz|l———— | —y= - —Fy—;—_]mi,—ﬁq,.
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If we take Ic = bh ie. .’IT > ? then for each §(= 0] the following inequality holds:

dwr g rr? b g T
+ & < [ rz + dr — — +—{d—d:|y+d:+7_}{ﬂ—ﬁ:|ﬂ..
c

P k -‘

i
R | bw< Tt 82+ foo(s — Ay + 82+ (6 — po (A3
at s A= a0z T g0 ‘

Note that the right-hand-side of (A 2) is bounded for 4 > max(d, p). Then we can
find a constant L say, such that

i
% + dwr < L.

Applying the theory of differential inequality,'”

we ohtain
. L — &t : . —t
0< wiz,y, z,v) < ;{l — & ) 4wz (0, (07, (07, v(0))e
and for t — oo, we have
L
0<w< —. (A3
o
Hence, all the solutions of (2.7) that initiate in B} are confined in the region
L
B={{z,y,z,v) e R}, :w= 3 + ¢ for any, , €= 0}.
Hence, we state the following lemma:
Lemma 2.1. All the solutions of (2.7) which initiate in B are uniformly bounded

-l I
ifg >3-

Appendix B
We shall first state a theorem relating to the characteristic polynomial of a matrix'®

and then study the stability properties of our system.

Theorem B.1. Let A be n x n matriz which is symmetrically partitioned into
upper-or lower-triangular-block matrices labeled

[4A A
A_[ﬂ fivs]

A, 0 ]
A= .
|:A‘3 As
Then the characteristic polymomial of the matriz A is egual to the product of the
characteristic polynomias of Ay and As. Now we prove the Theorem 4.2,

or
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We obtain the following Jacobian matrix, say J!, for the system (2.7) at Ey:

i [B &
A I

where

e 8 —bi
1T L6 e=g]?

L= [(} —J.K] 1

o o
n_[= —AK
17 laf —MKp|®

The eigenvalues of the matrix J} will all be negative if cK < d, whereas all the
eigenvalues of the matrix J{, obtained from the characteristic equation

E2 4L EAK 4 p+ a) + a(AK + p) — a\gk = 0,

will have negative real parts if and only if 3 < 3* where 3* = (1 ++4). By applying
Theorem B.1 we can show that all the eigenvalues of J! are negative if K < d and
3 = 3% Thus we can state the Theorem 4.2 as follows:

Theorem 4.2. The systern (2.7) is locally asymptotically stable around E; if
d>cK and 3 < 3* where 3* = (1 + ).

Appendix C
We restrict ourselves to the admissible subset with a biologically meaning, B, of

the plane

B={lz.y,z,v),z>0y>02>0v>0}

We will now show the global stability of the equilibrinm point Ea.
We define the following Lyapunov function

7= (E_sz_mzhi) + &y (y—yg—mlni) + kaz + kv,
T2 Y2

where k; = 0, (i =1,2,3) is to be determined. Now taking the time derivative of &
along the solution of (2.7), we have

G =(z— ;r:-gjl[r (1 - %) - Jl.ﬂ.-'—by] + kly — ya ez — d + hz)

+ kadxv — kaoez — kalyz — ke Arv — kapv + kao 3z,
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which can be written as

T _E{ — za)® — Azv(l + ks — ka) —vlkap — Aza) — (2 — z2)(y — e )(b — kac)
—yz{lhs — bk ) — (h&1y2+ﬂk2 —ﬂkg@—%) _'il";';’;]':-

If we select Ky = ? and Ky = f‘__—;'f, then the above equation becomes
i —%{m — ) = Azv(l+ kg — ko) — 2 (ak-z — akaf + hkyys — TT?)

—yz(kal — i) — 2.

Now choose Ks in such a way that

kb [ 3Ad rd B d . Ad
max —+ Ry ) < Ko 14—,
o Ken oo dor o

where 3 < (1+ %)+ "“%{1 — i) - - = 5. (say). Note that 3. < 3** and

Be = 8 when d < 5 ‘;"“I* . Then G < O, for all (z,y, z,v) € B. Consider the following
subset X of B

X={{z.y,z,v)e B: G =10},
then the largest invariant set ¥ in X is
{(z,y.2z,v) € B,z =29,y = y2,2 = 0,v = 0},

and we obtain ¥ = {z2,y2,0,0}. Thus the proof follows directly from Lasalle’s
invariance principle'® and we have the following theorem:

Theorem 4.4. The systeme is globally asymptotically stable around Es if
Keh
(i) d <

where 3* = (1+ %) and (1 + ;|+ ey — Ay

(i) 3 € (8%8.),

ek
nJ\.ﬁ. rﬂ < rg
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