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Ahstract

The coexistence of competitive species with a shared predator is well established. The effect of “food-value” on predator—prey
dynamics has also received much attention. However, the study of a nutrient bound of prey, specifically on predator-mediated
competitive-coexistence has not received much attention. Here we study the effects of the caloric content or a nutrient bound
of prey on the dynamics of competitive-coexistence with the shared predator in a specific model. We propose and analyze a
mathematical model for exploitative competition of two prey species with a shared predator. The change of dynamic stability
due to the variation of a nutrient bound of each prey on predator-mediated dynamics is studied through extensive numerical
experiments. Our analytical and numerical results demonstrate that variation in a nutrient bound promotes the switching of
dynamics and may be treated as a driving force for the dynamics of competitive-coexistence with the shared predator.

Kevwords: Food-value; Nutrient bound: Competitive-coexistence; Limitcycle; Extinction

1. Introduction

Generally, in predator-prey interactions, preda-
tion promotes the coexistence and biodiversity of the
species (Darwin, 1839; Paine, 1966, 1980; Lubchenco,
1978). Theoretical works have proposed mainly two
mechanisms whereby predation promotes coexistence:
(i) a predator switches 1o prefer the most common
prey (Murdoch and Oaten, 1975; Roughgarden and
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Feldman, 1975) and (ii) a predator prefers the dom-
mant competitor (Ammstrong, 1979; Holt et al., 1994
Leibold, 1996). Althoughitis not discussed commonly,
there 15 another (e, a third) potential mechanism:
predation can cause changes in the esource used by
prey, which reduces the amount of competition between
them (Pianka, 1972). But this mechanism does not
always work (Abrams, 1977). In particular, the coexis-
tence of competitors for the same resource is impos-
sible with out a predator having a higher predation
rate on the dominant competitor (Armstrong, 1979,
Leibold, 1996). Analyses of competition (Armstrong
and MceGehee, 1976, 198(0) have shown that the
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presence of limit eyeles allows the coexistence of two
OF MOre CONSUMEer Species in systems with a single
resource. Analysis of lwo non-competitive prey species
and a shared predator also showed that, when there
are sustaned cycles, the prey species exhibil appar-
ent mutualism rather than competition (Abrams et al.,
1998, However, furtherstudies showed that sometimes
cycles make predator-mediated coexistence less ikely
(Abrams, 19949),

The nutdent bound or caloric content of prey is
an important factor on predator—prey dynamics. The
effect of ‘food-value’ on the persistence and stability
of predator-prey dynamics has been studied by many
authors (e.g., van Baalen et al., 2001 ). Lethold (1996)
showed that the predators can make a dimond food
web persistent inoa very restneted range of pamam-
eters. Krivan (2003) showed that adaptve switching
increases the probability of species coexistence. The
study of such predator switching is also extensive in the
literature (e.g., Gleeson and Wilson, 1986; Frysell and
Lundberg, 1993, 1994; Krivan, 1996, 1997). Changes
in the behaviour of prey due tothe presence of a preda-
tor were also studied in the hterature (eg., Bolker
et al., 2003; Krivan and Schmite, 2004). Recently,
Genkai-Kato (2004) has studied the notitional value
in a model of Daphnia—algal interaction. He found a
critical nutritional value of secondary algae necessary
forthe persistence of the species. However, competition
between the algae groups was nol incorporated in the
study.

The studies on predator-mediated dynamics of com-
petitors have established that the rate of predation plays
the most crucial roke in the coexistence as well as other
dynamics of the system. However, the caloric content
or energy content of prey is a very important factor for
the growth of the predator and has a significant contri-
bution in predator-mediated dynamics of competitors.
To the best of our knowledge, the variation in the
caloric content of prey, specifically on the competitive-
coexistence, has not been studied extensively.

In the present article, based on the analysis of a spe-
cific model, we study the effects of the vadation in
caloric content of prey on predator-mediated dynamics.
A three-species model consisting of two competing-
preys with a shared predator s proposed. We incor-
porale the interspecific competition in our model and
study the contribution of the caloric content of prey on
predator-mediated coexistence.

The organization of the paper is as follows: in Sec-
tion 2 we have proposed and analyeed a mathematical
model deseribing the competitive interactions between
two prey with a shared predator. Section 3 deals with
the analysisof local stability of the equilibria and bifur-
cation. Sufficient conditions for the local stability of the
equilibria have been found. Parametric conditions for
which the system amound the positive equilibrium enter
into Hopf-bifurcation have been derved. This result
demonstrates the coexistence of the species through
limit cycle oscillations. Then in Section 4, extensive
numerical simulations have been perdformed to study
the effect of the variation in the caloric content on the
dynamics of competitive-coexistence with the shared
predator. Finally in Section 5 we discuss the analytical
and numerical results,

2. Mathematical model

In the formulation of the mathematical model we
contemplate the following assumptions:

(1) Prey 1is much higher in abundance and more vul-

nerable compared with prey 2,

(i) Interspecific competiion among the prey species
15 exploitative,

(iii) Handling time for prey 1 is negligible, whereas the
predator needs sufficient handling time for prey 2.
We incorporate this assumption using two differ-
ent functional responses of Holling types | and
1L

A relevant biological situation for the last assump-
ton may be the algal intermctions in agquabc ccosysLem.
Marine algae are distinguishable on the basis of the
size of body cell. Grazer zooplankton needs positive
handling time for the large phytoplankton species. In
addition, Chattopadhyay et al. (2004) considered two
different functional forms o describe grazing by zoo-
plankton on non-toxic and toxic phytoplankion.

Let Piiry (i = 1.2) and Zi6) be the concentrations
of prey i and the predator at time 1, respectively. Let
rand s be the per-capita growth rates of the two prey,
respectively; K be the environmental carrying capacity
for prey i. Let wy be the maximum predator inges-
tion/predation rates for the prey i) &, the amount of
nutrient bound or caloric content of an individual prey
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species; 1, the conversion efficiency of the nutrent into
the predator’s reproducton rate. Let o be the death rate
of predator. Let gy and az be the competition coeffi-
cients between the prey Species.

Based on the above assumptions, the mathematical
model can be written as follows:

dp A
— =Pl - — | —a P IPr—uw R Z,
dr K

dFs P2 P Z
=sP|1- K_ —ar PPy — unp

d.r L4 m + j J“
=1 u j g Vit c
df I I t m +] Ly

System (1) has to be analyzed with the following
initial conditions:
POy = 0,

P = 0, Zi =0 (2

3. Some basic resulls
3. 1. Boundedness of the svstem

All the solutions of (1) are ultimately bounded in
R'};_ (The proafis ofvious).

3.2, Equilibria

The system (1) possesses the following equilibria:
the prey—predator-free equilibrium Eq(0, 0, 0); prey 2
and the predator-free equilibium Ej (K, 0, O); prey 1
and the predator-free equilibrium Ez(0, K2, 0).

A feasible predator-free equilibrium Ea( Py, Pa, 0).

‘here "‘P _ Koy Ka—n) "‘P _ KyrimKy—s) hich
where Py = patil—re 2= aimk K= WHIC
exists if r > a K2 and s = a2 K.

A feasible prey 2-free equilibnum E4(P", 0, Z7)

-1 ¢ rinEpwyg Ky —cl [ ol R
where P = e and £ = TR which exists
for £ = cnqun K.

Prey 1 free equilibrium Es(0, P2", Z") where

Ao 5 £l g smnErwd Kynbyws —Kac—cm)

Py = nE s —¢ and 27 = w3 KainEyuws —2nEywac+et)

The positive interior equilibrivm is E* = (P *, ¥,

: _ mle—nEuy 1) g
Z*)  where, PF = S P J-l-_]_l‘J-EzH’:—i g EF= &

1 -"Ff T s B

Tun Ky | T wnnErun Py +nErur—cl

and P* satisfies

the relation:
B PP + 6P+ i PF 4+ 6, =0

where &) = wang) u}%rKg,

By = —nE o Ka[ (w2 Kr + wraym K yu

+ (un Kymaz — 2waripbaws 4+ 2ware]

1 = (uar — wypmaz K| }Kgn&gu:%
+ 2w Kac + u:lKlmza.'i;Elml
+ Ky K2 —2n& 1w — g wpEauna)
+ wymaze + wymanE w ) g + m;Kgrc'z
+ 2un Kaam Ky nEywie + 2w w K2 Kyre

* + T
dy = —wn&wacsm™ — K Ka(wantawsr 4+ ware”
— wady Mg — 2warpEawae 4w §E wamse
> il
+ wayme — wpmsngaws)

Some algebraic manipulations show that the above
cubic equation in P possesses at least one positive
root, and in turn, the system (1) has at least one positive
interior equilibrium if the following conditions hold:

(i) ©=2nkun
(i ms ur 5
W< ta 3)
(i) ax K (1+“;“) > 1
=

Lemma 3.1. The steadyv state Ey of the system (1) i a
saddle point. (The proaf is obvious).

Lemma 3.2, The existence of E* implies that the prev
2 and the predator-free steady state E| of the svstem
(1) is an wnstable saddle if 5 = a2 K. (The proof is
obvious.)

Lemma 33. The existence of E* implies that the prev
| and the predator-free steady state Ea of the svstem
(1) is an unstable saddle if r = a) K2, (The proof is
obvious.)

Lemma 34. K the inegualitv nEyw PP+
munEyun F’l + (n&zun — c'}E = mc herlels then
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Fig. 1. {n) Competitive exclusion in the absence of the predator: extinction of the weak competitor £ for 00039 < gy = (L055 ie,
for 3.9 < ap/a; = 5.5 where other purameters are fixed {r = 0.%43day ™", 5 = 06 day ', wy = 0091 biomass™ ' day ™", wy = 0.04day ",
i1 = 0.5 calorie biomass ™', & = 0.9 caloriebiomass ', £z = 0 4caloebiomass ', ¢ = 0.5 day ™', &) = 500 hiomuss, Kz = 200 hiomass
m = 4{thiomass). (h) Effect of different competition coefficients in the presence of predator; I(h)i) for 39 = a3 /ey = 3497 extinction of
Py and £ whereas persistence of P2 at the same carrying capacity: hii) for (a2 /a1) = 4: predator-mediated competitive-coexistence with
large-amplitude Auctuation ; 1hfiii) for (az/@i) = 4.57: predator-mediated stable coexistence; WhNiv) for (azfa1) = 5.4 extinction of P but
stable coexistence of Py and £,
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the predator-free egulibria Ey is an unstable saddle.

( For the proof, see Appendix AL)
Lemma 3.5. [f the inequality s —a: Py' — % =0
holds true then prey 2-free eguilibria Ey is an unstable

saddle. ( For the proaf, see Appendix AL)

Lemma 3.6. Prev | free equilibrium Es(0, P27, Z7) is
wnstabe if r —a| P2" — un Z" = 0. (For the proof, see
Appendix AL)

Lemma 3.7, (Local stability of interior equilibrium):

bl
¥ Y ry i P& —hlt 3 bk
If Z* = Wk 002 < ER and Py = —Lrg-—-ﬂn&_y{y_’_ﬂ
then the interior equifibrivm iv locally asvmprotically

stable.

This gives a sufficient condition for the sta-
ble coexistence of the competiive prey species

B0 o —

Population abundances
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and the herbivore predator. (For the pmoof, see
Appendix A).

Theorem 3.1 (Hopi-bifurcation). The svstem (1)
enters into Hopf-bifurcation if the following conditions
hold true:

&
K K2

(i) aaz =
and
nE2ua K

iy P} =

{ For the proaf, see Appendix B.)
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Fig. 2. Effect of variation in the mutrent bound of prey | on predatormediated stable coexistence {fxed parameters r= 0094 3day ™',

s =0aday™ ", wi = 0091 biomass™ day™ !, w2 =0.04day ",

1 = 0.75% culorie biomass™!, ¢ = 0.5day™ ",

Ky = S00biomass, K=

200 biomass, m = 40biomass ). {a) Simulation results on the assumption that the mitrient bound of prey 1 is less than or equal to that of
prey 2 (ie, By = Ep): for fined £ = 0,40, variation of £y in the range ((L014, 0.40) shows the extinction of prey 2 and stable coexistence of
prey | along with the predator (£). (h) Simulation results on the assumption that the mutrient bound of prey | is greater than that of prey 2 {i.e,
£y = B for fined 5y = 040, variation of & in the mnge (0401, 1.33) shows different dynamics {extinction, oscillation and stability). Close
inside of (h): shifting of predator-mediated dynamics due to variation of the nutrient bound of prey 1 (b ¥i) extinction of prey 2 but coex stence
of prey | and Z for 0401 = &y = (L57: (h)(ii) stable or very small-amplitude oscillating-coexistence of all the species for .57 14 = &) = (.6154;
(hiiii) coexistence of all the species with large-amplitnde oscillation for (062 = & = 0.6664: (hiiv] extinction of P and Z but persistence of

P for 067 < & = 133,
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Fig. 2. (Continued ).

4. Numerical experiments

In this section, through extensive numerical simula-
tions, we study the effect of variation in the caloric
content or a nutrient bound of prey on predator-
mediated competitive-coexistence. In the first step,
we find a hypothetical parameter set for competitive
exclusion in the absence of the predator. Next we
find a suitable parameter set that overcomes com-
petitive exclusion and promotes stable coexistence of
the species in the presence of the predator. Finally,
we allow variation of the nutrient bound of the prey
and swdy the effect on predator-mediated stable-
dynamics.

We assume that prey 1 18 a stronger compe-
titior than prey 2. Hence for numercal experd-
ments, we lake the competiion coefficient az 1o
be greater than ). For a hypothetical set of
parameters (r = 0.943day~!, s = 0.6day”!, a) =
0.01 biomass ™" day_l, az = 0.039 biomass ! day™ !
K| =500 biomass, Kz = 200 biomass), we find the
competitive exclusion of the weak competitor (ie.,
P} in the absence of the predator. Now, keeping all

other parameters fixed, we determine a mange of com-
petition coefficients (rather the range of their ratio
(39 = a2/a; = 3.5)) showing competitive exclusion
of prey 1 (Fig. 1{a))

Nexl, in the presence of the predator, for a; in the
range 0,039 < go = 00397 with fixed a) =0.01 we
see the extinction of prey | and the predator but prey
2 persists (Fig. Libii). On the other hand, extmetion
of prey 2 oceurs ford 8 < az/a) = 535 (Fig. Lib)iv)).
However, predator-mediated coexistence occurs for
4.0 = azfa) = 4.8 (Fig. 1{b)ii) and (iii)).

Now, we fix the competition coefficient at (@) =
0.01, gz = 0.0457) so that predator-mediated stable
coexistence oceurs (Fizo Lib)im)). Next we study the
effect of variation in the calorc content or nuthent
bound of each prey on this stable-dynamics in the fol-
lowing cases.

4.1 Results of variation of the nutrient bound of
prevd

Case-A: When the nuirient bound of prey 1 is less
than or equal to the nutrient bound of prey 2, the
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variation of £ in the range 0,014 < £ < 0.40 leads
to the extinction of prey 2, but stable coexistence of
prey 1 and predator. This result implies that the vana-
tion (rather increment) in the nutrient bound of prey 1
when that of prey 2 is fixed, leads to the disappearance
of the positive interior equilibrinm (Fig. 2(a)).
Case-8: When the nutrient bound of prey 1 is greater
than that of prey 2, varation of £ leads o differ-
ent dynamics (Fig. 2(b)). Shifting of dynamics occurs
for the variation of the nutrient bound of prey 1. For
0401 = £ = 0L57, prey 2 goes o the extinction, how-
ever, prey 1 oand the predator coexist (Fig. 2(b)(1)).
For some other ranges of £, we observe the coexis-
tence of all the species (stable coexistence or large-
amplitnde oscillations). For 05714 < £ = 0.6154, the
stable coexistence occurs (see Fig. 2(b)(u)), whereas
for 062 = £ = 0.6664, the coexistence occurs with
large-amplitude oscillation (see Fig. 2(bi(ni)). This
result indicates that there is a tolerance level of enrich-
ment in the nutdent bound or calone content of prey.

0

&0

S0

Fopulation abundances

o 200 400 600

(a) Time [days)

Further increment in the caloric content of prey 1
(0.67 = £ = 133) leads to extinction of prey 1 and
the predator (see Fig. 2(b)(iv)).

4.2, Results of variation in the nutrient bownd of
prev 2

Variation of the nutrent bound of prey 2 alone does
not show any change in the predator-mediated stable-
dynamics (Fig. 3(a) and (b)). If other parameters are
fixed, the stability of the model remains in spite of vari-
ation in the nutrdent bound of prey 2. However, when
we consider joint varation in the caloric content of both
preys, this variation is significant.

4.3, Results of joint variation in the nutrient bound
aof prey I and 2

When we consider the variaton in the nutnent
bound of prey 1 and 2 (ie., £ and &) simulianeously,

Ta '

a0

Population abundances

a 2{‘:0 400 G030
(b} Time (days)

Fig. 3. Effect of variation in the nutient bound of prey 2 on predatormediated stable coexistence (fixed parameter set of values r =
043 day™ ! 5 = 06 day ™", wy = 0,091 biomass™" day ™, we = 0.0 day ™, n = 0.75 hiomass calorie ™!, ¢ = 0.5day ™!, K1 = 500 biomass,
K2 = 200biomass, s = 4l biomass). (a) Simulation results on the assumption that the nutrient bound of prey 1 is less than or equal to that of
prey 2 (ie, & = B for fived &y = 0.59 variation of & in the moge (0.595, 1.33) shows the stahle coexistence of all the three species. (h)
Simulation results on the assumption that nutrient bound of prey 1 is greater than that of prey 2 (ie, & = E2 ) for fined & = (.59, variation of
£y in the range {LO33, (.59 also shows the stable coexistence of all the three species.
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Fig. 4. Effect of the nutrient bound of £ on the extinction due to mutrient bound of Py: for a particular value of £ = (L6667 {other parameters
fixed), where # and ¥ go to extinction, o mnge of & (range 00013 = & = (L0116), is obtained for which all the three species coexist (with

large-amplitude oscllation ).

we see that the behaviour of the dynamics determinded
by £ 1s changed by £;. Variation of the nutnent bound
of prey 2 overcomes the extinction caused by the
enrichment in the nutrient bound of prey 1; thus, all
the species coexist through large-amplitude oscilla-
tions (Fig. 4).

5. Discuossion

Studies on the competitive interaction of species
with a shared predator have shown that “prey species
apparently coexist by virtue of negatively correlated
competiive and antipredator abilities’ (see reviews
in Mills et al., 1993; Menge et al., 1994; Leibold,
199¢; Bohannan and Lenski, 1997; Abrams et al.,
1998). Coexistence in exploitative competition seeks
a large difference in vulnerabilities of the prey species
{Abrams, 1999%, In our study, we have assumed each
of these criteria. Competiion has been taken 1o be
exploitative with prey 1 as the swonger competitor
than prey 2. Also, prey 1 s assmued o be more vul-
nerable w the predator than that of prey 20 A set

of sufficient conditions has been worked out for the
stability of the intedor equilibrium point. Moreover,
the conditions for which the system enters Hopf-
bifurcation have been obtained. From the numerical
experiments, we have found a hypothetical param-
eter set for predator-mediated coexistence. Staring
from a parameter set for competitive exclusion, we
have arrived at the predator-mediated competitive-
coexistence (Fig. 1(b)(ii)) through predator-prey cycle
(limit cycle oscillation) and stability (Fig. 1(b)(ui)).
Then by subsequent numencal analyses, step-by-step
we have established that beyond each of those eriterion
for predator-mediated coexistence, the nutrient bound
or caloric content of each prey plays a vital role in
determining the stability and oscillatory dynamics.

In the first step, keeping all the parameters fixed
at the mitial level, we have allowed the variation of
nutrient bound of the abundant prey (ie., prey 1)
Results demonstrate that vadation of the nutrent
bound of prey 1 keads to the extinetion of less abundant
prey 2 but stable coexistence of prey 1 with the
predator (Fig. 2(b)i)) (which resembles the result
drawn by Holt (1977)). However, further increment
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of the nutrient bound of prey 1 causes change in the
dynamics (Fig. 2ib)). Gradual increment even leads to
the extinction of prey 1 iself along with the predator
(Fiz. 2ib)iv)) Thus, varauon in the nutrent bound
of the stronger compelitor acts as a driving force
for predator-mediated stable coexistence by causing
the dynamic shift from the extinction of the weak
competitor o the extinction of the predator and the
vulnerable prey through large-amplitude oscillabon
and stability (see Fig. 2(bjii)—(iv)).

Next, keeping all other parameters fixed, we have
studied the vanation of the nutrient bound of prey
2. This variation does not affect the stable coex-
istence with the shared predator (Fg. 3). How-
ever, when we consider the joint variation of the
nutrient bound of both prey, it shows a significant
effect on the dynamics. Simulation results demon-
sirate that variation in the caloric content of a weak
competitor drves the system from the extinclion

r— q"—'-gj —a P — w2 —d Py —un P
— 25P et 1B —w1 Py
V= —aaz Pa 5 — it 8 ar P — —uwn_ = s —
= 7 (m 4+ Pa)- m4+ P
- nEwam L — nEun P
wy & — ngyaun A+ ——— —«¢
S (m 4+ P2y PrIES) m+ Py

(caused by the ennchment doe o the nutnent
bound of strong competitor) o the coexistence with
large-amplitude  oscillatons  (Fig. 4). Thus, while
addressing  the issue of predator-mediated coex-
istence, consideration of the level of the nutri-
ent bound or caloric content of prey might be
highlighted.

Another mteresting result s noteworthy. We see that
increased caloric content of a vulnerable prey leads 1o
dynamical nstability (Fig. 2(biiv). This result may
be supported as a consequence of the principle of the
‘paradox of ennchment” provided we broaden the con-
cept of enrichment by incorporating the nutrient bound
or calorc content of prey (see, Roy et al., submitted).
Does this result enlighten us with some ‘generalized
principle of the paradox of enrichment’ that should be
of interest for furtherinvestigations before defining pre-
cisely?

Further study of the nutrent bound on the predator-
mediated coexistence can be done with two prey
species nol behaving similarly in valnerability to the

predatorandin that case the optimal foraging behaviour
can be studied based on the nutrient bound.
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Appendix A

Prools of the lemmas of local stability.
Let E = (P, F5. Z) be any arbitrary equilibrium,
Then the variational matrix about E is given by:

B ycomputing the variational matrix for the equilibrium
Ep of the system (2.1) we find that the eigenvalues of
the vanational matix Voare by =r= 0, da =5 = (),
hi=—c =1L

Clearly the plankion-free steady state is unstable
(saddle).

Further the eigenvalues of the vanational matrx
Vi of the equilibrivm E; of the system (2.1) are
AM=—r=0h=s—aK adl; =nu K| —c.
This steady state is unstable if either s = a2 K or
nE w Ky = o ifor existence of £%).

The eigenvalues of the varational matrix Vs are
hM=—s=la=r—aKxand 7 = %ﬁ‘l -

Thus the steady state Ez is unstable if either r =
a| Kz or peaun = ° '["-]Efz] (for existence of £%),

Further the uigcm’al_ucs of the variational matrix V5
around the equilibrium E3 of the system (2.1) are &',
42" which are the roots of the equation:

2 rh B s oo iy —ara K K2)
Ll g +PPp——————— =10
K K3 K K2
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and A3’ = géywy Py + 2225 _ o Cleady 3, and 22

m+ Py

have negative real parts. Now if 1" = Oie.gg w, Py +

”E:’i.fz = ¢ orEywy Py Py + mn&yw Py 4 (néw; —

)Py = me then E; is an unstable saddle.

In similar manner, the equilibium E4(P", 0, Z7)
of the system (2.1) is unstable saddle if s —a: P —
L AR

7] ] .

The equilibrum Es(0, A", Z") of the system (2.1)
is unstable if r — ay Py" — w 27 = (1

The vanational mawix of system (2.1} around the
positive equilibrium E* = (P1*, P2*, Z%) is:

- _rP* =
T : —ay P * —w P
1
s —s w2 PE we Pr®
£ _ 1 —d = —
yi= TR T+ P m+ P
nErwam £F
w £ e 0
| =1 (m+ Ps)? |

The chametenstc cquation 1s:
MO0+ 0+ 03=0

where the coefficients Oy, F = 1,2, 3 are:

re*  sPt waZ* P
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Since P1*, B* = 0 (from (3.5)) then @) =10
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=T Now let us define:
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After manipulation of the expression and simpli-
fication one can find out that Q3 = 0 and & = 0
if the inequalities, ajaz = ﬁ and P = J;{_T"»_,jr:p_iL:‘?
are satisfied.

Therefore, according to Routh-Hurwitz crterion,
E*is locally asympiotically stable under the above con-
ditions.

Appendix B

The expression §2' = @ Q2 — @3 may be writlen
as a quadratic of the parameter ws as:

312](1”:} = d[u}% + danEyun + da
where
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and

o F'._‘,‘2 rs*
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We observe that, d > 0if P} > 1222510 and d; <
Oif ayaz = ﬁ‘h Hence from the elementary theory

of equations it follows that the equation:
5w = dyui + daws +da =0

has only one positive real root, say, w3.
Now, 8 necessary and sufficient condition for Hopf-
bifurcation {Hassard and Kazannofl, 1981) is:

di')
fPu$) =0 and [ ------- ! 1—"—2}-'] #0
wa=nj

The second condition can easily be verified. Hence
the theorem.
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