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SUMMARY

In real world bio-communities, predational choice plays a key mole to the persistence of the prey
population. Predator’s “sense’ of choice for predation towards the infected and noninfected prey is an
important factor for those bio-communities. There are examples where the predator can distinguish
the mfected prey and avoids those at the time of predation. Based on the examples, we propose two
mathematical models and observe the dynamics of the systems around biclogically feasible equilibria.
For disease-selective predation model there is a high risk of prey extinction. On the other hand, for
non-disease selective predation both populations co-exist. Local stability analysis and global stability
analysis of the positive interior equilibrium are performed. Moreover, conditions for the permanence
of the system are obtamed. Finally, we conclude that strictly discase-selective predation may not be
acceptable for the persistence of the prey population. Copyright © 2005 John Wiley & Sons, Ltd.
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. INTRODUCTION

In recent years, disease in the prey—predator system is one of the most important fields of
interest. Many researchers have attempted several approaches to study this interesting field.
Holmes and Bethel [1] and Dobson [2] discussed situations where the behaviour of infected
individuals of a prey population as a host is modified by the action of a parasite. Freedman
[3] has studied a predator—prey system in which some members of the prey population and all
the predators are subjected to infection by parasites, and obtained conditions for persistence of
all populations and global stability of the positive equilibrium. Anderson and May [4] showed
that invasion of a resident predator—prey or host—parasite system by a new stmin of parasites
could cause destabilization and exhibit limit cycles. Hadeler and Freedman [5] obtained a
similar phenomenon. Mukherjee [6] analysed a genemlized prey—predator system with parasite
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infection and obtained conditions for persistence and impermanence. Chattopadhyay and Arino
[7] have studied predator—prey system when predators mainly eat infected prey, and derived
the persistence and extinction conditions and also determined the condition when the system
enters a Hopf bifurcation. Xiao and Chen [8] modified the model of Chattopadhyay and Arino
[7] by introducing the delay term and studied the dynamics of the modified system. However,
the choice or rejection of infected species by the predator cannot be ignored. The above
studies have not taken into account this factor while formulating or introducing the models.

In the real world there are situations where the predator distinguishes between the infected
and noninfected (susceptible) prey and rejects the infected part. Bullfrog (Rana catesbenia)
tadpoles avoid conspecifics carrying infectious yeast, Candida Jnmicola, by detecting chemical
cues emanating from infected individuals at a distance [9]. This is an alternative way of using
phylogenetic similarity to assess disease risk, which may arise from infected prey. Although
this is not a direct example of the predator—prey system, it certainly sites an instance for
disease selective consumption. Now if the predator can recognize and avoid infected prey,
then this selection of the predator may accrue the enhanced nutritional benefits of eating
phylogenetically close prey while limiting sk of disease [10].

Also, if a predator’s immune system “learns” to recognize and destroy parasites in its food
or its nervous system has ‘sense’ to identify the infected prey, which may cause disease of
the predator, then it is quite natural that the predator will always try to avoid the infected
prey. So in this case, for the persistence of the predator, it should have more than one source
of food. A population like human beings ( Homeo sapiens) has such kind of *sense’ and thus
it always exhibits disease-selective predation to prey populations like fish.

Now naturally a question arises, what will be the fate of the prey population if it becomes
highly infected and its predator exhibits disease-selective predation? Will this prey population
survive in this case? If not, then what restriction should be taken in order to overcome this
situation?

In this paper we have considered such a predator—prey system where the predator has
specific choice regarding predation and it can recognize the infected prey and avoids those
during predation. As stated earlier this is realistic when the predator has more than one source
of food, and thus we consider that the predator itself grows logistically.

Firstly, we consider the situation mathematically when the predator is not selecting the
diseased prey and taking only the sound (susceptible) part. Our analysis predicts that there
is a high risk for the prey to become extinct. Next, in order to overcome this risk, we make
some modifications of the predator choice and consider another model with the necessary
modifications and find whether we can have any means to save the sound prey population.

2. MODEL FOR DISEASE-SELECTIVE PREDATION

In the formulation of the mathematical model for disease-selective predation, the following
assumptions are made:

{1} The prey population is divided into two classes, namely, susceptible class (5) and
infected class (1). The susceptible class follows logistic growth with intrinsic growth
rate ‘r’, carrying capacity “K,°, which is shared by the entire prey population (i.e. both
susceptible and infected class)
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{2} A part of the susceptible class becomes infected at a rate *=° and this transformation
follows the law of mass action.

(3) The infected prey population suffers a constant death rate *f".

{(4) The predator (¥) is not solely dependent on this prey population for its food, ie. the
predator has some other sources of food. Hence, the predator is supposed to follow
logistic growth with intrinsic growth rate ‘R’ and carrying capacity “K>".

{(3) Finally, it is assumed that the predator has some choice regarding the predation of this
particular prey. According to assumption (4) made earlier, the predator has some other
alternative source for food, so it is reasonable to think that the predator may have
choice among the different groups of this particular prey. Without considering the case
of size-selective predation, let us consider that the predator is not at all consuming the
infected part of the prey population, i.e. it is exhibiting disease-selective predation. So
the predator is only consuming the susceptible group of prey population. Under this
assumption it is reasonable to think that due to this choice the predator will consume
the disease free population in some greater mate. Also, due to the presence of other
sources, it can be assumed that the predator will not face much difficulty to obtain the
appropriate quantity of food needed for its growth. So this particular selective predation
will not lead the predator population to extinction.

Following the above mentioned assumptions, the system with disease-selective predation
may be written as

ds S+1 s
E — S!’ (1 — K_|) == 11:3 = f}YS

df

O 1t 1
5 =[S - pI (1)
dy ¥ .

—=YR[1—-—)+5¥5

di ( &)+' J

The basic model (1) takes the following form after non-dimensionalization

ds ]

s =81 —s5—i)—thsi —ihys

E = is — i

. (2)
d '

d_-‘; =01 — ¥)+bsus

with the following rescaling variables:

hY { ¥

S A

where, t=r1, ) =ak\/r, th=dK:/r. By =f/r, h=R/r, =K, /r.

5= i=
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Now a few simple results will be established for which both the susceptible prey population
and infected prey population will eventually go extinct due to disease-selective predation.

21 Criterion for the exiinction of susceptible prey population

Theorem 2.1
Let the inequality ¥y = 1/d{r —{(#/K) + 20y} hold, where ¥, is the initial predator population
and {, is the initial infected prey. Then lim, ,__ 5§, =0.

Proof
From system (1), one has

ds S+1
: (1 = L) _ S — SYS<S (r = (i i x) T 5};,)&0

K
3 l
if }EF}E (r— (KL,I +I) .lr“)

Hence the theorem follows. O

It is clear that if there is no infected prey present initially (i.e. fy=10) then the susceptible
prey population will be eliminated from the dynamical system if the initial predator population
is just larger than the rmtio of intrnsic growth rate of the prey to the predation mte of
susceptibility.

2.2, Criterion for the extinction of infected prev population

Theorem 2.2
Let the inequality Sy< /% hold, where 5 is the initial susceptible prey population. Then
limy o I =100

Proof
From system (1), one has df/di = (Jx§ — il )= {285 — F) <0, if 8= fi/z. Hence the theorem
follows. O

The above theorem demonstrates that in case of disease-selective predation the infected
prey population will go extinct if the initial susceptible prey population is less than the ratio
of death rate of infected prey to the rate of infection.

3. STABILITY ANALYSIS OF THE EQUILIBRIA

System (4) possesses five equilibria, namely,

b (=03 N o (0a—0:0s o Oat 0
801 +61) /7 2\ B+ 0B 04 + 0206

Eg(0,0,0), E((1,0,0), E; (
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and the interior equilibrium of the above system is E*(s%, ", p*), where

i
-5 gy
P I”| g | %

B i 1 R Gt

The behaviour of the interior equilibrium of the above system is of interest to us, as in this
case both prey and predator population will be present and the predator will exhibit selective
predation. The above equilibrium point exists if #5/0) + fap* < 1.

The community matrix of system (3) at the interior equilibrium point is

-5 {14+ s
Jr=| 8¢ 0 0
flg v* 0 —tay"

Hence the characteristic equation is given by

244,22+ 424 + A3 =0, where
Ay=5"4+y"=0

Aa=s®y* — (1 + th 35" — allgs™y* =0 if —'}J-x > HI{ lﬂ+ B) and
i 4

Ay = -1 + 8% v" <0

since A3 =<0, so by Routh-Hurwitz criterion the interior equilibrium is always unstable. So in
the long run the prey population (5) will decrease and may lead to extinction.

Thus, it is seen that due to disease-selective predation, there is a high risk of prey extinction.
Clearly this risk will be increased if we consider any ‘close” system.

4. MODEL OF NON-DISEASE-SELECTIVE PREDATION
Now in order to overcome the situation, the following new assumptions are made:

{6) The predator consumes not only the susceptible part but also the infected part at
a rate 7 and a part of the consumed infected-prey exhibits a positive effect to the
orowth of the predator, this rate is assumed to be 7. Clearly y=+v,. Further, it is as-
sumed that the rate of predation for susceptibles (4) and infected class (y) are not
equal although in both the cases the functional responses are taken to be density
dependent.

{7) Due to the consumption of infected prey, the predator is supposed to acquire some
infection or disease, which causes the death of the predator at a rate #,.
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So, under the above mentioned assumptions ( 1)—(4), (6) and (7} the model (1) takes the
form

1]
-
=
-

§4+1 .
(I - TI) —ol§ — oY

=18 — BI — y¥I (3)

2|8 BlR 2|g

;YR(I - Kl) — Y 4+ 8 YS 4+ T

2

For the sake of simplicity of analysis, system (3 ) is now non-dimensionalized to the following
sy stem:

% =5l —5 —i)y— th5i—thys

di

gp = 0is —0a —myi (4)
dy ;

v =l — v)—Os v+ ogyvs+ navi ,

where s =S/K,, i=1I/K,, y=Y/Ky, 1=rt, 0, = 2K [r, 0 = 8Ky Jr, 03 = Bir, 8, = Rjr, s = Iy r,
thy = 5|K|,-"r~ i = }'Kgl."'r., Ha = }'|K2l.l"r.

5. BOUNDEDNESS

Lemma 5.1
All the solutions of system (4) [and hence of (3)], which initiate in R, are uniformly bounded
if vo =5, where 7 is a positive constant, which should be approprately chosen.

Proof
Let the following function be considered, w=xs4 i + ». The time derivative of the above
function along the solution of (4) is

dw
d—‘; =[s(1 — 5 — i) — Ois — thys] + [his — Bsi — iy 9]+ [Bay(1 — ) — Bs v + O v5 — 112 vi]
Assuming (=t and since, # >, it is clear that
dw
sl —s)+ (1 — v) —Osi
5 <UL =)+ 0ay(1 = y) — O
Hence,
dw (1+ 81 + 70 1470\ B + 70\
5 Hws : ; B 4 (yo—03)i— (.-r— f*“) — 8, (y— *m;“)
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If we take 7y =fh, then the above expression reduces to, dw/ds + ygw={1 4+ )01 + 3 F/4.
Clearly the right hand side of the above expression is bounded. So we can find a py =0 such
that, dw/df + yow < .

Now applying the theory of differential inequality see Reference [l1], we obtain,
0= wis, i, v)< g/ ol —expl—yot }) + wis( 00,000, w(0))expl —yof) and for § — oo, we have
0= w=pg/v. Hence, all the solutions of (4) that initiate in R are confined in the region
B={(s,i,¥) R} 1 w=py/y9 +¢ for any, £=0} O

6. EQUILIBRIA

System (4) possesses five equilibria, namely, Eu(0,0,0), £,(1,0,0), Ea(sa, i, 00, Es(s:,0, 13)
and Ey(s*, %, v+), where,

b
250
o (0 =0y
2T B(1+6y)
o 0= 06, + 0,0 By — 05 + 0
= 1y =

Gl ° 23 fpifab:

i Bathys + 0401+ 00 )+ (2 — (140 )05 —64))

=
. —tty (0 — O — g g 4+ 01 0y + ﬂg{m s — thily — thtlg)
w A
o D —(L 4+ B0 — 030 + y2) + B5((1 + 005 — 2)

A

with A = 0,02 + Oa(1 + 00)) + (2 — Be( 1 + 61)).

Lenria 6.1
The equilibrium (i): Ex exists for ) =, (ii): £y exists for 04 + g =t and ty + (b =L,
(iii): £, exists for (1 + 0, )0 — 0 )=n.=<10, and

g + 0 a0y + Oty — 008 — 80,
=
s — g — g

7. CONDITIONS FOR PERSISTENCE OF THE SPECIES

Theorem (local stability) 7.1
The equilibdum point (i) Ey is locally unstable, (ii) E, is locally unstable if #, =5 or t; +
flg =ts, (iii) E, is locally unstable if ts =0, + 0003/ 4+ maiy or Oy +0505 /8 + iy =05/0, + ts,
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(iv) E5 is locally unstable if gy < (855 — 050/ v5 or 55+ 035 <1, and (v) a sufficient condition
for the interior equilibrium to be locally asymptotically stable is,

= mﬂx{ ﬂ| H}Jm ﬂq ]I
(1 460 )(0 + 04)

Ha > ——— ST and =it e
B> §|53K|Kg
¥
Proof
The community matrix of system (4) is
1—2s—(14-8)i—tay —(1+ 6k —ths "
= thi ths —ty —g v —ii
I_ s v Ha v g — s — 20, v + thes + ?‘J‘}_f_|

Proof of (i) is obvious.

Again at £,(1,0,0), the eigenvalues of the variational matrix are —1, @) —t, f; — 05 + tlg,
so at least one eigenvalue is positive if either 8, =0, or t; + t, = t);; hence (ii) follows. The
proof of (iii), (iv) and (v) are similar and so proof of (iv) is shown here in detail.

The wvariational matrix at E4(s*.i%, p*) is

|'—.~r" (1 4+t fhs” '|
e " 0 —im i

J* =
I_ B y* Ha )™ —bay* J
Hence, the characteristic equation at Eg(s*, ", p*) is
A+ A +Bi4+ C=0

where 4 =s* + 033%,

B=0is*y* — B (1 + 0, 6% + qu1ay*i* — BaBs® y*
C=s"y"i"[ma(m — thtla) + (1 + 8)(m — 0h84)]

MNow A =0. Again C =0 if i, = max( . 0,0,).

It can be shown that a sufficient condition for AB — C =0 is g2 =(1 + 8 ) + 64)/2fh and
ty =il 1.e. R}5|53K|Kgf!’.

Hence by Routh-Hurwitz criterion, the interior equilibrinm Ei(s*,i%, p*) is locally asymp-
totically stable under the above pammetric conditions. Hence (iv) follows.

This completes the proof. O

Theorem (global stability) 7.2
The interior equilibrium £; of system (4) is globally asymptotically stable if 4g.0,0,
(L 4+ 0)=(0g — a2/ (1 + 602))%
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Proof
Let the following Lyapunov function be considered:

f:rh—ﬂl —_o* _oF i E ;o ak ok i- _ £ & i
I m{l+ﬂ,)(” £ '“(a*))ﬂ;, St B R Ve i i e

Taking the time dervative along the solution of (4) and after some simplification one gets,

nath

dV ?‘J‘th
1+ )

wram GRS e gl R, B v A 2o
di - ?Fl'l:t + HI}{"' ¥ ::I ﬂﬂ:_}‘ ¥ ,:I (Hﬁ

) =500 =)

The right hand side of the above expression can be written as —Z'QZF, where Z =
(s —s%, v — v*) and the symmetric matrix (' is given by

b 1 p nath )
0 [ il +th) E(“"m{um;-‘

1 12616 ) J
— [ g — ——— i
I.E(ﬁ m(l+ o) »

If the symmetric matrix () is positive definite, we can conclude that dV/dr<0. @ is positive
definite if
2
4!‘]‘3ﬂ|ﬂq - ﬂﬁ -~ F’Il‘gfhﬂg )
mi{1+0) m(l +t:)

We can therefore apply Lasalle’s theorem [8] and decide that any trajectory goes towards the
maximal invariant set X (say) included in the set:

A={(s.i, p)eB;s=5" y=y*}

On this straight line A4, in the positive space, the only invariant set is the equilibrium E*.
Thus the trajectory converges towards £° and hence the system considered above around the
interor equilibrium point is globally asymptotically stable. O

8. PERMANENCE OF THE 5YSTEM

To examine the permanence of system (4), we shall use the method of “average Lyapunov
function® [12,13].

Theorem 8.1
System (4) is permanent if

(i) 6, > b5

afly  ma(th — f5)

6, T &1+ 6)

(i) B3(04 + 0205) + 1,(8y + O — 05) < 0,(8, — 020, + t6,)

(ii) #5 < min {m + B, By +
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Proof

We consider the average Lyapunov function of the form
V(8,0 v)=8"i"y5

where each #; (i=1,2,3) is assumed positive. In the interior of R;’H we have

; = (8,4, ¥)

=0 [(1 — s — i} — 610 — Bay] + o [Brs — By — my] + ca[Ba{] — ¥) — Bs + Bes + mai] (5)

We can show that y(s,i,v)=0 for all equilibria s.i, yve R}, for a suitable choice of % =0

(i=1.2,3) to prove permanent coexistence. The following conditions should be satisfied for
equilibrium (s), planar equilibria, () and (syv):

s0ooa(th — )+ oty + 0 — 0:)=0 (6)
g s nalth —ts)

fly — 0 7
% el Ot Tt e E TS @
ity — thily + thils) ity + 0, — )

—th+ —————==|=0 8

5 B + 020 30,1 0.0, ®)
After some algebraic calculations, it can be easily shown that conditions (6)—(8) are satisfied
if the hypothesis of the above theorem holds. O

Remark

It is to be noted that the first condition will be satisfied only when conditions for the existence
of “si" are satisfied. Further, it is clear from the above observation that the persistence of
the three populations depends on the predation mte of both infected and susceptible prey
population.

Remark
Clearly the condition for both local and global stability is dependent on the rate of predation
{i.e. on 7, ) and the rate of assimilation (i.e. on 7, ) of the infected population.

9. CONCLUSION

In this paper, we have discussed selective predation of a biological community consisting of a
predator population and a prey population, which is partly infected. Firstly, we have formulated
and analysed the mathematical model considering the predator's “sense” of disease-selective
predation, which we have assumed to be valid on the hypothesis of the existence of some
alternative source of food. We have found that in this case all the species cannot coexist.
However, since the infected population is not assumed to recover there remains high nsk
of the prey not able to persist in the long run. Next, we have proposed some hypothesis
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regarding the predation of the predator apart from its ‘sense’ of selection. We have found
out the restriction on the rate of predation of the infected prey and its rate of assimilation
under which all the population will persist. Also, the system has been proved to be locally as
well as globally stable (Theorems 7.1 and 7.2) under certain parametric conditions depending
on the predation and assimilation rate of the infected prey. Finally we have also shown the
permanence of this modified model. From our analysis we like to conclude that it is not
possible for any biological system with predators and infected prey to persist if the predator
always selects ‘only” the sound prey for predation. So for the real biological communities with
this type of selective predation, such as human population and fish population in a certain
pond or lake, disease-selective predation may lead to a situation of extinction of the prey
population which may lead to ecological imbalance. However, the idea of disease-selective
predation may be effectively applied to multi-prey systems where infection in some prey is
harmful for their biodiversity. In those situations, strong disease-selective predation may help
the predator to persist safely as well as remove the infection from the system rapidly.

REFERENCES

. Holmes JC, Bethel WM. Modification of intermediate host behavior by parasite. In Behavioral Aspect of
FParasite Transmission. Supplement Noo [ o the Zoologival Jownal of the Limmean Sociery, Cunning EV,
Wright CA (eds.), vol. 51, 1972; 123149,

2. Dobson AP. The population biology of parasite induced changes in host behaviour, Quarter{y Review of Biofogy
1988 63:139-165.

3. Freedman HIL A model of predatorprey dynamics as modified by the action of a parasite. Marhematical
Blosciences 1990 943155,

4. Anderson BEM, May RM. The invasion and spread of infectious diseases within animal and plant communities.
Philpsoplitcal Transaciions of the Roval Soctery of London 1986, B314:533-570,

5. Hadeler KP, Freedman HI. Predator-prev population with pamsite infection. Jowmal of Mathemarival Biology
1989 27:609-631.

6. Mukherjee D, Uniform persistence in a peneralized prev-predator svstem with parasite infection. Siospsiems
1998:; 4T 149135,

7. Chatopadhyay J, Arino O, A predator—prey model with disease in the prev. Noalinear Analysis 1999 36:747-
b,

B. Xiao ¥, Chen L. Modelling and analvsis of a predator—prey model with disease in the prev. Mathemarical
Biosciences 2000, 171:59 82,

9, Kiesecker JM, Skelly DE, Beard LH, Preisser E. Behavioral reduction of infection risk. Proceedings of the
National Academy of Sciences of the USA 1999; 96:9165- 9168,

10, Plennig DW. Effect of predator—prey phylogenetic similarity on the fitness consequences of predation: a trade-off
between mutrtion and disease? The American Naturalsy 2000 155:335-345,

1. Birkhoft G, Rota GC. Ordinary Differential Equations. Ginn: Boston, 1982,

12. Hofbaver 1. A general cooperation theorem for hyvper cveles. Monarshe fie fur Mathemaih 1981 91:233-240,

13, Gard TC, Hallam TG, Persistence in food web-1, Lotka—Volerra food chains. Swilfe tin of Mathematical Biology
1979; 41:877-R91.

14, Khalil H. Nonfinear Systents. Macmillan Publishing Company: New York, 1992,

15, Plennipg DW, Loeh MLG, Colling JP. Pathogens as a factor limiting the spread of cannibalism in tiger
salamandars. Oecologia (Berlin 1991 BR:161-166.



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg

