Mapping quantitative trait loci in humans:
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Recent advances in statistical methods and genomic technologies have ushered in a new era in mapping clinically
important quantitative traits. However, many refinements and novel statistical approaches are required to enable
greater successes in this mapping. The possible impact of recent findings pertaining to the structure of the human

genome on efforts to map quantitative traits is yet unclear.

Mapping quantitative trait loci

Clinical end points are usually binary — affecred or unaffecred.
Such binary end points almost invariably have quanritarive
precursor states. Myocardial infarction — a binary end point
— for example, has many known quanritarive precursors, such
as blood pressure and cholesterol levels, which determine the
end-point risk. Such quancitarive traies (QTs) almost always
have strong genenc determinanes (thar is, are highly hericable).
It is, therefore, of considerable interest to map the genes under-
lying a QT. The rraditional viewpoint has been that tens or even
hundreds of genes determine a QT, each gene contributing a
tiny fraction to the overall variation of the QT. 1 this were true,
then effores o map a QT locus (QTL) would be furle. Howev-
er, with the availability of precisely mapped high-densicy DNA
markers for many species, early QTL mapping effores revealed
a much simpler genetic architecrure for many QTs {1-4). The
emerging paradigm was thar even if there were many genes
derermining the value of a QT, some would have major effects,
and hence their chromosomal locations could potennally be
determined. Figure 1 illuseraves the effecrs of a single locus
with 2 alleles on a QT.

Unforrunately, consistent successes in QTL mapping have
been achieved only in species in which inbred scrains or lines
could be developed. In inbred or experimental popularions, the
parental origin of each allele is known unambiguously, and all
offspring have parents with the same genorypes. These 2 fea-
tures enable pooling of dara across families and resting for
equality of mean values of the QT in different genorype classes,
using standard ANOVA procedures. Even environmental het-
erogeneiry can be largely conrrolled experimentally. In humans,
unambiguous identificanon of parental ongin of alleles or con-
trol for environmental heterogeneiry are not possible. Even in
inbred strains, effores ar fine mapping of QTLs have revealed
unforeseen complexities and have resulred in many failures
(5-6),and there are many unresolved issues pertaining to study
design and stansocal analyses (7-8). In humans, and in other
outbred species, QTL mapping has only had limired success (see
Taste sendiivity to phemylthiocarbamide for a success story). In this
review, we shall focus only on QTL mapping in humans.
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Approaches to human QTL mapping

The 2 broad approaches — not mutually exclusive, bur comple-
mentary — are the candidare gene approach and the marker locus
approach. In the candidare gene approach, genes thar are physi-
ologically or biochemically relevant to the QT (candidare genes)
aresereened, and the effects of vanane alleles on the QT are inves-
tigared. This approach cannor lead ro che detecrion ofnew QTLs.
Further, it is often difficult ro choose candidare genes. Alchough
this approach seems arrractive, there is not ver sufficient evidence
o support its general urilicy.

The availability of polymorphic markers and refinements of
staristical methods (9) have made the marker locus approach very
popular. The density of markers and the throughpur of marker
genoryping have increased over the vears, and the cost of marker
genoryping has decreased, further facilitaring QTL mapping by
marker locus approach. Thus, availabilicy of dense markers, high-
throughpur genotyping, and cost are no longer limitng facrors for
performing genome-wide scans for positional mapping of QTLs
(10-13). The major problems ar this time seem to be the difficulry
of gathenng high-quality phenorype dara in a sample of adequare
size using an approprate study design and the analysis of these
dara using a method with high stadsrical power.

Study designs

The study designs for QTs are, in the main, similar o those for
binary complex rrairs, thar is, binary craits with mulolocus decer-
mination and possibly with environmental influences. Many con-
ceprual and staristical issues are also similar,

Broadly, there are 2 classes of study designs: study designs in which
large sers of relarives from extended or nuclear families are sampled
and study designs in which pairs of relatives are sampled (e, sibling
pairs). Often, sampling is nor done randomly. For example, when a
sibpair design is adopred, often both siblings are chosen from one cail
{upper or lower) of the distribution of the QT {concordant siblings)
oronesibling is chosen from the upper tail and che other sibling is
chosen from the lower tail {discordant siblings). Another sampling
design could include a pair of siblings, one chosen from the upper or
lower tail of the diseribunon and the other chosen modomly from
among the remaimng siblings (single selecnion; ref. 14). Evenwhen
nuclear or extended families are sampled, the ascertainment of a
Family may be through an individual who belongs o the upper tail or
exceeds a predere mmined curoff poine of the diseribution of the QT.
Alrernarively, if the study pertains to a QT char is known to be a pre-
cursorofaclinical end point (eg., blood pressure level and myocardi-
alinfarcrion), a family may be ascertained through an individual who
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Figure 1

Genetic effects of a single QTL with 2 alleles. The variances of OT val-
wes within genotypes can be unequal. The differences in mean values
between A4 and Aa genotypes need not be the same as the difference
in the mean values between Aa and aa genotypes. If the mean value of
the QT for genotype Aa is exactly in the middle of the mean values for
genotypes AA and aa, then the 2 alleles A and a have additive effects.
If the heterozygote mean is shifted toward the mean value of either of
the homozygotes, then there is a dominance efect.

has encountered the clinical end point. Any nonrandom sampling
scheme obviously entails the screening of a large number of potential
sampling units to obrain the requisite number of unies thar sarisfy
the inclusion eriteria. This is expensive in terms of me, efforr, and
money. However, the adoption of a nonrandom sampling seraregyis
staistically more powerful for QTL mapping. Such sampling strare-
gies often require modificarions of the standard staristical methods
for QTL mapping because the resulting distrburion of trair values is
no longer the same as in the onginal source popularion.

Central issues in QTL mapping
The ability to map a QTL depends on the magnitude of its effect,
as measured by the proportion of genetic variance of the QT

explained by the putarive QTL. Whether or nor a QTL can be suc-
cessfully mapped also depends on the scudy design, sample size,
and stanstical method used ro analyze the dara. In general, even
in experimental populatons, it has been estimared char under
the second filial generarion (F;) design, a QTL wich an effect of
5-15% can be detecred with a reasonable (B0-90%) stanstical
power if the sample size is berween 200 and 300 individuals (8,
15). In narural populations, such as in humans, sample-size eso-
mation 15 difficule and involves a lor of assumptions, some of
which are discussed below,

The second major issue is the narure and distribution of mark-
ers on chromosomes. The usefulness of a marker inereases with
its level of polymorphism (as estimared by the proportion of
hererozygous individuals ar the locus; see Locws beterozygosity and
marker chofce). As the density of markers 15 increased, the preci-
sion of estimation of the locanon and effect of the QTL increases.
The recent finding thar che human genome has a block-like scrue-
cure with respect o levels of associarion among loci (16, 17) may
potentially reduce che number of markers required in genome-
wide scans for QTL mapping ro arrain the same level of starisrical
power, although there are many unresolved issues (17, 18).

There an: other issues char ane also central, such as the exeente of
gene-gene interacion (epistasis) and genotype-environment incer-
action in the derermination of traie values. However, these 15s0es
have received lictle arrention with respect to human QTL mapping
because the statstical intricacies of even the 2 central 1ssues Listed
above are still being worked our.

Statistical methods
Since the positions of the QTLsin the genome are unknown, one can
gather genorype daca ar a large number of marker loci and analyze
these data stanstically to test whether there is increased allele shar-
ing ar the marker lociamong individualswho show similar craicval -
ues (see Human QTL mapping: key principles). If there is increased allele
sharing, then the QTL probably lies in the vicinity of this marker
locus; that is, the QT and macdker loct are linked (2-point mapping).
Ifthere is increased allele shanng ar several conseentive marker loci, as
revealed by the joint analysis of the QT data with muliple markers
{mulripoint mapping), then chere is a higher probabilicy thar the
QTL lies in the interval spanned by these marker loci.

There are then 2 major goals: (a) measuring the expecred level of
allele shaning ar marker loci (based on genorype dara) among the
sampled sets of relatives and (b) testing whecher there is an increased

as



Locus heterozygosity and marker choice
Consider anautosomal locus with 3alleles A, B,and C. Suppose
in a population the frequencies of the alleles A, B, and Care,
respecrively, 0.31,0.33, and 0.36. Then the expected propor-
tion of heterozygores () is: 1 - (0.312 +0.33% + 0.36%) - 0.6654.
For marker loci that are commonly used for QTL mapping,
‘estimates of allele frequen cies pertaining to the populanon
from which samples have been collected are usually available
from paststudies. To choose among competing marker loci,
onecomputes the values ofh for the various loa and chooses
the locus that has the highest value for b

level of sharing among individuals with similar craicvalues (and,
therefore, inferting thar the marker and the crair loci are linked).

A pairof relatives can share 0, 1, or 2 alleles thar are idenrical by
descent (IBD). (Foran allele to be IBD in a pair of relatives, the allele
in both the relatives muse have been the same allele rransmiceed
by the same ancestor.) A general method for caleularing che prob-
abilivies of sharing 0, 1, or 2 alleles ar a locus was given by Li and
Sacks (19); this was then extended by Campbell and Elston (20,
and a more general method was developed by Donnelly (21). For
pedigrees also, methods for esnmaring IBD probabilities from
genotype dara have been developed (22).

Regression
Haseman-Elston regression was the first statistical method thae
was developed for human QTL mapping (23). This method is
applicable to human sibpair data. This linear regression model
(¥=a +bX) includes the squared difference in trait values berween
members of a sibling pair (¥) as the dependent variable and the
number of alleles shared IBD berween them (X) at the marker locus
(marker IBD score) as the independent vanable. If any parent is
homozygous ar the marker locus or if parental genorypes are miss-
ing, then the marker IBD score cannot be dete rmined with certain-
ty. In such a case, the IBD score is estimated by conditioning on
either the marker genorypes of parents (if available) and the sibs
at the given marker locus {single-point estimare) or an integraced
genorype profile based on all available madker loei (muldpoine
estimare) on a chromosome (24, 25). Under the null hypothesis
of no linkage, the regression coefficient is 0, while under linkage
it is less than 0. The null hypothesis is easily rested by a standard
Student's ¢ rest. This method was extended to other relarive pairs
and pairs drawn from larger pedigrees (26). However, there are
staristical limitations in using the Haseman-Elston regression on
pedigree data, and it is not considered to be a method of choice.
The choice of the squared crait value difference berween mem-
bers of a sibling pair wastes valuable informarion by not using the
erait values of the individual siblings. Twenty-five vears larer, it was
shown (27) chat the inelusion of the sum of e values of the sib-
lings, along with the squared rraic value difference, in the analysis
resules in gain of stanstical power. Ivwas suggested (28) thar chese 2
variables (squared rrair difference and craic sum) be used as depen-
dents in 2 separate linear regression equarions with the estimared
IBD score as che independent variable and thar the estimared slopes
be averaged to draw inferences on linkage, This method relies on
several assumprions thar have been relaxed ro develop staristically
more sound methods of combining the 2 slope estimares; use of a

mean corrected erait product has been used as a dependent variable
in the regression, score tests have been proposed, and various staris-
tical properties of these estimarors and methods have been explored
(29-36). A summary of these new staristics is provided in ref. 37 In
alarge sibship, there will be many sibpairs. The squared differences
in traitvalues of these sibpairs will be correlared. To allow the inclu-
sion of multiple sibpairs from alarge sibship in the staristical analy-
sis, a generalized linear model thar assumes a specific correlation
structure of functons of trair values of sibpairs has been proposed
(29). To circumvent the problem of assigning weights ro different
sibpairs, Ghosh and Reich (38) have proposed a linear regression
based ona “contrast funcron” of trair values within a sibship. The
maximum-likelihood binomial approach (39), alchough scaetly noc
a regression method, can also accommodare sibship dara withour
assumprion of any specific probabilicy distnbution of traie values.
The method introduces a latent variable thar caprures the link
berween OTs and marker information and rests for linkage via a Ber-
noulli parameter modeling the rransmission of marker alleles from
parents to the different sibs within a sibship. These advances in sta-
tstcal methodologies have resulred in improvements in stansocal
power to map QTLs, bur the regression-based method is applicable
only to sibpairs and, under some assumprions, to sibships.

Recently, a novel approach hasbeen proposed (400, in which the IBD
seores have baen modeled 2sa funenon of observed erac values mseead
of the usual modeling of traivalues as afunenon of IBD scores. This
method is applicable ro large sibships and also o general pedigrees,
bur does not necessarily have more statistical power (41) thana com-
peting method called variance components (VC) (discussed below).

In these regression models, the relationship berween the depen-
dent and independent variables being Ifinear is an assumption. This
assumprion is valid when thereis no dominance ar the rrair locus;
bur in the presence of dominance, the regression can deviare from
linearicy. This assumption has been relaxed and nonparamerne
alrernatives have been proposed, as discussed later.

Regression methods continue to be widely used becanse they are
computationally easy and efficient, and the standard devianons of
paramerers can easily be estimared using resampling rechniques
{42). However, there is no strong staristcal reason for using regres-
sion methods for QTL mapping, except when the collecred dara
are from pairs of relarives, such as sibling pairs (discussed below).

Variance components

Another popularstatistical approach is called the VC method, which
is applicable to large sibships or pedigrees. In the framework under-
lying this method, the crair value ofan individual 15 assumed to be
derermined by a major gene, random polygenic, and environmental
effects and covariares. The covanance berween trair values of a pair
of relarives is an increasing funcoon of the extent of allele sharing,
IBD, at the marker locus. The general framework and methodol-
ogy tharis currently popularwas developed by Amos (43), alchough
Goldgar (44) fist proposed this method in the contexr of human
QTL mapping. Amos (43) denved expressions for the covariances
in crait values for a number of common pairs of relatives. The traic
valuesofindividuals in a pedigree are assumed to follow a multivari-
ate normal distnbucon, with the vanance-covariance marrix deter-
mined by the expressions given in Amos (43) or theirseraigheforward
generalizanons. The likelihood of the observarions on a pedigree or
any other set of relanves can then be written down by standard sea-
ustical methods. The hikelithood s maximized to obrain parameter
estimates, and a likelihood rario cest s used o cest for linkage.
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Human QTL mapping: key principles
The key principles thar undedie all statistical methods for
QTL mapping are as follows:

(1) Persons sharing similar crair values should share
alleles ar the crait locus ar levels higher than those expect-
ed by charice or by virtue of the persons’ biological rela-
tionship. (Conversely, persons who have dissimilar trait
values should show a decreased level of sharing of alleles
at the trair locus.) '

(2) Because chromosomes are passed on more-or-less
intact — except for recombinations — from parents to their
offspring, persons sharing sinilar crair values should, in
addition to showing increased sharing of alleles at the trair
locus, also show increased sharing of alleles ar loci around
the rrait locus.

(3) Because recombinations occur in every generation, the
level of increased sharing of alleles at loci around the trait
ln_ci_is decreases in every generation.

Vanous extensions of the basic model and methodology of Amos
(43) have been made. Theseinelude exvensions to permut likelihood
calculations to pedigrees of arbirrary sizes and complexiry (25),
inclusion of gene-gene (45, 46) and gene-environment (47) interac-
vons in the model, and analysis of mulople correlared rraics (48).
When the model assumprions hold, especially multvanare normal-
iry, the VC method is very powerful, considerably more powerful
than the Haseman-Elscon regression. Further, icis readily applicable
to large and complex pedigrees. Thus, for QTL mapping, the method
ofchoice is VC. For sibling pairs, however, it has been shown — both
by theory and by simulation — thar the compurationally simpler
regression methods are as powerful as the VC method (32, 33).

We emphasize here that the staristcal power and efficiency of
the VC method enncally depend on whether the assumprion thar
the traie values are normally distribured in the popularion is sans-
Fied. However, it 1s often not feasible to vernify distnbunonal and
other model assumprions. Further, even when the distribution in
the populaton from which sampling unies are drawn is normal,
if the sampling design is nonandom, chen the discnburion of
the QT in the dara so obrained may be nonnormal, thus violat-
ing the assumprions underlying the VO method. When undedying
assumptions are violared, parametric methods (thar is, methods
— such as VO — thar rely on models thar assume specific forms
of the probability diseriburion of crait values) can resulr in a high
proporion of either false-positive or false-negarive inferences. For
example, if the trair distcoburion has a sharp peak (leprokurnc)
and if gene-environment interactions are present, then one can
gecinflared false-positive error rates (49). Some methods based on
permutation tests — which do not rely on normalicy of the cest
distaburion in drawing inferences — have been proposed to obrain
Pyalues (50), but these methods entail enormous increase in che
computational load. The problems associated with the possible
violation of normality continue to be alimitng factor in pracrical
applications of the VC method. Some novel methods have recently
been proposed to deal with these problems (51), bur the difficul-
ties are far From resolved. VO merhods for mapping QTLs have
been implemented in several software packages, including Gene-
hunter (52, 53), Medlin (54), Mx (55), and SOLAR (25).
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Nonparametric altematives

When che assumprions undedying cthe regression (linearicy of rela-
tionship berween the dependent and the independent vanables)
and the VO {multivanare normality of QT values of family mem-
bers) methods hold, these methods are stanstically quite power-
ful for QTL mapping. However, it is difficult to ensure char chese
assumprions are met, especially for pedigree dara. Deviation s from
these assumprions can adversely affect linkage inferences. There-
fore, aleemative methods char do not relyenoeally on these model
assumprions (model-free approaches) have begun to be developed.
In these model-free methods, there is inevicably a loss of statisneal
power, but these methods provide safeguards against high rares of
barh false positives and false negarives,

Since the nature of dependence of estimared marker IBD scores
on the squared difference in sibpair crair values is a funcnon of
the recombination fracton berween the marker and the traie loa
and other biological parameters, such as inrerference and domi-
nanceat the traitlocus, the assumprion ofa specific form of func-
vional relationship beoween them may not be a wobust scracegy.
Rank-based staristics (23, 56) have been proposed ro deal with
this problem. A proposed nonparamerrie regression procedure
based on kernel smoothing (in which the relationship beoween
thedependent and theindependent variables is esnmared empiri-
cally) has been shown to pecform well (37, 58) boch in simula-
tions and in pracrical applications. The available nonparamerric
methods are useful only for sibpair dara. Such methods need to
be developed for pedigree dara also.

A summary of choices

VT method is stansrically the method of choice for QTL map-
ping, provided thar the assumption of multivariare normalicy of
erait values within family members is sarisfied. This assumption is
hard to rest, and more imporcantly, if ic is violared, thenic is hard
ro rectify even by using marhemarical rransformanons of QT val-
ues, e g, loganthmic or power transformarions. Further, in fami-
lies char are selected through a member possessing an extreme
QT value, there is an even bigger problem of non compliance with
the normality assumprion. Fortunacely, there are indicarions (49)
thar when this assumption is not met, it is the rype Lerror, rather
thar the cype Il error, thar is inflared ro a greacer degree. Thus,
with the VC method, if linkage is detecred, then chances are good
that it 15 not a false inference.

When the normalicy assumprion is not met, then it may be berrer
o use a nonparametric regression method based on sibpair dara,
even though there will be loss of scaristical power. In this case, the
false-positive error rare will be lower. However, no results are yer
available on the stanstical properties of this method when siblings
areselected based on some inclusion enrena, eg, siblings belong-
ing to opposite extremes of the trair discriburion — diseordant sib-
pairs (see, however, Peng and Siegmund; ref. 59).

Unselecred samples have low staristical power. Selection of
discordant sibpairs yields a high staristical power. This prop-
erty 15 also rue of Families ascertained through a member with
an extreme QT value. These selecrion strategies can be very
expensive and difficulr to implement in pracrice. A compromise
solution s to seleet 1 sibling with an extreme value and choose
another sibling randomly from among the remaining siblings in
the sibship. This selection straregy — less expensive and easier to
implement than selecting discordant sibpairs — has comparable,
albeir slightly lower, staristical power (14). However, in studies



based on sibling pairs in which the focus of interest is on trait-
allele relarionships ar an individual level rather than on allele-
sharing in families (associarion analysis), a crucial eritenon for
success of QTL mapping is thar the frequencies of marker and
crait alleles should be in che same ballpark. This means char
generanng polymorphic markers wich high frequencies may not
result in greaver success of QTL mapping unless che crair alleles
have marching frequencies [ 14). Similar resules have also been
obrained with respect to association study designs thar pertain
to unrelated individuals (not siblings) selecred from opposite
tails of the discribution of QT values (60). This lack of grearer
success in QTL mapping unless the crair alleles have marching
frequencies is not encouraging. While considerable effores are
being made to generare markers thar will ease genome-wide
association mapping of QTLs, if the allele frequencies ar the
QTL are very skewed, effores in mapping the QTL may be unsuc-
cessful. This is in additon ro che fact thar a QTL thar explains
less than 10% of the variance of crait values is very hard to map.
The recent effores of the HapMap project (16) to provide mark-
ers thar may be the most informarive for assoclanon mapping
will not be a panacea for overcoming chese imitatnons of human

QTL mapping. As we have discussed, there is also a grear need
o devise stanstical methods for human QTL mapping thar do
not critically depend on model assumprions. In association
mapping, population stranficarion (61) is a major 1ssue, and
therefore, although designs involving unrelared individuals
are easier to implement, these are best avoided for human QTL
mapping. Further, the statistical power of QTL mapping using
associarion analysis declines very rapidly with the decrease of
nonrandom association berween the QTL and che marker locus
(62). Norwithstanding the cavears listed above, effores to map
human QTLs using a combination of family-based associarion
and linkage analysis mechods are contnuing and should con-
tinue. Successes in practice will erucially depend on refinements
of stanstcal merhods and developments of novel approaches to
handle interactions among QTLs as well as the effects of envi-
ronmental factors.
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