ON SAMPLING WITH UNEQUAL PROBABILITIES

By P. K. PATHAK
Indian Statistical Institute

SUMMARY. This paper deals with tho problom of doriving improved estimators in sampling
schemee with unequal probabilities of solection. The improved estimator of the population total, Y, (Bami,
1958), is derived. In addition, two sota of estimators of ¥ and Y2 aro given. Tho first act of catimators
is unwicldy to compute, whils the second set is simplo. Tho second sot of cstimators, though lesa efficiont
than the firet, is moro efficicnt than the usually employed catimators.

It is proved in subfield terminology that if @, and §, aro two sufficient subfields and X is a sot
common to §; and @, thon § K +8,K" is also n sufficiont aubfield. Hence tho subfiold § K +83K’
con be used to derivo improved eetimators by Rao-Bluckwoll theorem. Genceralisation of thia is alse given
in casc of ble number of aubfiel Application of thia result to pling with uooqual probabiliti
is given.

1. INTRODUCTION

Consider a population containing N units. Let y; be some real-valued charac-
teristic of the j-th population unit in which we are interested.! Suppose that a semple
of size n is drawn from the above population with unequal probabilities of selection
(with replacement), P; being the probability of selection associated with the j-th
population unit (ZP; = 1). If for the i-th sample unit, we record its Y-charac-
teristic y;, probability of selection p, and unit-index wu, then the sample of
observation is

8 = (21, 23 .0 %)y
where z; = (y;, P, ©)*
It has been shown by Basu (1958) that the ‘order-statistio’
T = (Zup By - Fn)

(where ), Zy), ... Zis), &Te the distinot units in the sample arranged in ascending
order of their unit-indices) is sufficient.

Therefore, if g(S8) is some estimator depending on the sample S, for any con-
vex (downwards) loss function, an estimator uniformly better than g(S) is given

by E(g(8)|T). In the subsequent sections this result is used to derive improved
estimators of the population total and its square.

2. EBSTIMATION OF THE POPULATION TOTAL
The usual estimator of the population total

Y=17%,
is given by i= % % z, .20
where =Y,

A P

1 j varice from 1 to N,i from | to n ana (s) from (1) to (») unless otherwise stated.
1 Capital lottors refer to tho population and axmall lstters to the sample.
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Theorem 1: For any convez (d ds) loss function, an estimator uni-
Sformly belter than 2 is given by
5= EE|T) =20y 20 e (22)

_ Pallpwt 20 —Elpay+ . APl (=) l1’(()] (23
where Cuo = ([(Pm+ AP —E(PayF oA+ — Y1Ef] (23)

the summations T, and Z{%stand for all combinations of p's and all combinations of
p's contmining Py, (chosen out of puy, Pigy, -y Piry) TeSPECIVELY.

Proof :  Obviously by Rao-Blackwell theorem, an estimator uniformly
better than ; is given by

BE|T) = E(;’T‘ |T)= £ Yo Plg, = 2|71, e (24)
1 Dy
TR L
But Plz, = 2, |T] = - ) n-.l.am Aa(,, - ... (2.6)
agy Loy P 7 Fo

where T’ means summation over all integral «'s such that
ay>0fori=1,..,v and aytag+t..., +ae =2,
and £” means summation over all integral a’s such that
Ay 20, 2un>0 for ¢/ £i=1,2,...,v
and agytag ..., Fap = (n—1).
It can be seen by induction over v that

’ nl iy a

T e PP, =Bt tpol— Ei oyt +Bo-n)
gy I... d(y)l oy o
Fo (= I ]
and

3 (n—1) 1 &3y LY
gy . ag, ! P

=[pwt...+20)" = Doy +... +Ppy)*?

Fo=reE o (28)
Using (2.4), (2.5) and (2.8), we get

3,=B(z|T) = 3 Oy Y0
Pw

Hence the theorem is proved.
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ON SAMPLING WITH UNEQUAL PROBABILITIES
The above estimator, though bettar, is not very useful in large samples because
of cumbersome computation of 0y,)’s. In Seotion 4, we aball derive a simpler estimator
of ¥ better than 7. Table 1 gives exaot expreasions of 2, for n =8, 4 and 5, For
n=1and 3,7, and 7 are identioal.

TABLE ). 3, FOR n=8, 4 AND &

Y 3 4 8
’
1 Y Y Yo
Pay Py Py
s (9,,,,+pm)%:ﬁ ] [(Pm'ﬂ’u))' —P:”]ym z [(Pun'i'?m)‘ —P:“] Yo
pay+pu)
nTEm l_(}lul+mn)‘—?:"—?:”] [ (Puﬂ'?m)"-}"'h —P:"
g gpla = ’P(n‘lhpm+9w .Iy‘—" I [Wmn(ﬁn+?m+ﬂm)
21 Pty
QourFpmtrml
» 1 200
+‘(,P‘,l +Pw Y epape Py
¢ 2
s [“9?1) +Pu; +pm)
+8(pu, P+ PP P 0i) ]
. _ PRI z 9!7(!)+Pm'+mn+m0]m
0 Py
s [P(1)+7m+9(l)+9m ]
Yoy
- - g ¥
& Py

3. EsTiMATION oF Y*

The problem of finding an unbiased estimator of ¥* arises in most problems
of varianoe estimation of estimators of Y. The usual estimator of ¥ is
£ 4. . (31
o Z 2 (8.1)
Theorem 3: For any convex (downwards) loss funciion, an estimaior uns-
Jormly beiter than z, ts given by

- 1
»= D)

» »
E(|T) = ‘Eou.n’?o'i‘ M},:_l Oy Zir 2y (8.2)

Bemark : £, whon v (n—1) may be expressed in a simplo form a8 gy, ;) = %{ E%+%}
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. =E)[(P«1)+---+P(.))""— =i (Payt- - +Pp—n)* 34 (=)0
where G [yt +20V— Tt +Pe-n) +.. (=P E, 1))

and  Cyyy =

Papulwt . +20)" = E P+ +Pu0) P+ (=P Yoo+ ()5
[(Pu)+--- +P('))n-‘ zl (p(l)+"'+p('-1))"+'“ (—)'_l 21 p(n“]

. (33)
the summations Z, and Zf have been defined in (2.3) and the summation T stands for all

binations of p's containing py;, and Py
Proof : Obviously

BN =E[ ot & wniT] = BanlD)
= I 2y 24 P2y = 3y, 23 = 2| T]. e (34)
1t is easy to see that
e (n—2)! oo
Pl = 2y, 2 = 7 | T] = O el eyl i o (3.6)
p_ g g

Gy Loy 15w 7 En

(”—Z)I T |t
al . gl 0 Tw g

Y] ) @y pﬂm
Pl gyl T e

PPy
and Play = 2y, 3y = 2| T] =

where ¥’, £* have been defined in (2.6) and X" means summation over all integral
a's such that

Ay teetop =(—2), @@ > 0, agy >0 and gy >0 for kAT £ =1,..,v.
It can be proved on lines similar to (2.6) (by induction over v) that

Plagy = 24, T = 2y | T) = o0 } (36)
and Playy = zun 2y = Ty | T) = ey
Uksing (3.4) and (3.8), we get

Efz; | T =‘_21 Cuar z(’o+‘ "El Cua 20 2un e (37)

which proves the theorem.

"
Improved estimator of o2 : The usual estimator of of == P, ( %’—7) is
s

. _ 1 Y 1 2 _
given by &= =D I(g—i) = Zan=1) “?_l (&—2. )"

318



ON SAMPLING WITH UNEQUAL PROBABILITIES
Corollary 1 : Thus an estimator uniformly better than s ia given by

—z. )0 »
m | 71 =8[ B8l | 2]= £ Oea—ze . (38)
(12N
Corollery 2: An unbiased estvmalor of V(s,) 48 given by
o3,) = 8}— F;Own Rp— .ﬁ%_x Oy 20 20y e (39)

Since this estimator is quite complicated for use in large samples, Basu (1958) hes
suggested the use of
_r
nn—1)

as an estimator of V(,). As it over-estimates V(3,), we are always on the safe side
to use (3.10) as our estimate.

T (g—Et o (3.10)

The estimators derived in this and preceding sections, though superior to the
usually employed estimators, are not of muoch use for large soale sample surveys
owing to their cumbersome nature. In the next section, we give simpler estimators
of ¥ ahd Y?. These estimators, though less efficient than the above derived esti-
mators, are superior to the usually employed estimators.

4. SIMPLE IMPROVED ESTIMATORS OF Y AND Y*

Let us suppose that the observed samples are segregated into groups of equal
p;'s. For instance, consider the problem of estimating the total yield of-a crop from
a ssmple of farms. Every sample-farm is to be selected with probability proportional
to its area. Here, if some orude approximation (say correot to an acre) is used to
measure their areas, we expeot to get number of farms with same p; in the sample.
In the sequel, by the p-value of a unit, we mean the probability of selection associated
with that unit. Let pgy), Digy.-., Pey be the distinot p-values of the sample units
arranged in an increasing order of their magnitude. Let 7, be the number of sample
units having py;, a8 their p-value. However, not all these n(;, units will be distinot,
let v, be the number of distinot units among them. Now, if we arrange these v,
distinot units in an increasing order of their unit-indices and call them Zita)s Lygays oo
vy, then it ja not diffioult to see that the statistic

T = [ o Tav g5 Pwhreeor (Bean o Tas 5 2w} ae (41)
is sufficient.

1t should be noted that if we take away the ancillary statistics ny,, ..., nuy
from the sufficient statistic 7*, then it reduces to the ‘order-statistic’ 7' defined
in the earlier seoti The ‘un ily wide’ sufficient statistio I'* is used here for
the purpose of deriving estimators of ¥ and Y*® that are much simpler (though some-
what less efficient) than those considered in the previous seotion. Theorems 3 and
4 below give simple improved estimators of ¥ and Y2 respootively.
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Theorem 3 : For any convez (d ds) loas function, an estimator uniformly
belter than £ 18 given by

e 1% ma

= Yry s 4.2
P RGpe e “.2)

1w

=—23 .
where 91“) T Yun

Proof : Evidently an estimator uniformly better than  is given by

E:|T% =E (;’71

7+) . (43)

Further, the probability of getting a sample with a given 7'* is

nl 1)

AT = gy Loy | (0

THE)
... C N o (44
Py Cvm("m) ,,(.)(”m) (4.4)

HOEACY K0! Yo !
where  Cuglna) = v O— (%) na=1) (=)

‘o ) o,
0]

vi)—1
G=1,..,k
and

(n—1)! T Ot B
L o — v M) Py Py Py

nl 1) ) ™E)
T P P P,
gl ol g, D (%) (k)

Plz, =2y, | T*] =

Coy (n,
Copmy).-.. % o Cormy)

Comlmn)--Crig(ny).. Orplnm)

= 1 . (45)
n Vitiy

From (4.3) and (4.5), it follows that
B@|To =L 3% 0 4
=l Pry T
which completes the proof of the theorem.

A simple comparison of £ and 7 will show that 5% will be superior to z if and
only if the sample size is greater than two and at lesst three population units have
the same p-value, otherwise % and Z will be identical. It is not diffoult to give
& direct proof of the fact that V(:1)  V(4). The strict sign of inequelity holds only
when the above condition is satisfied.
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ON SAMPLING WITH UNEQUAL PROBABILITIES

Theorem 4 : For any convez (d ds). loss funcis an- estimalor uni-
Jormly better than

1 2w
=1 3 nw
T =) et i B
12 given by
]
. 1 3 o G L] &
= 3 ay Py _ 3 L)
= a1 {<4-1 " pm) - ;1?;}
(2] (niy—1)
vy~1170) &
—Zagmp—1) — g %]. (4.8)
_— 1 "‘) — { )
where !:“’_(v“)—-l) '_zl (yvm gv( )‘ and avm(ﬂ(l))

and Cv,—1(nyy,—1) have meaning similar to those defined in (4.4).
Proof : Obviously, an estimator uniformly better than z, is given by

Bz, |T] =B Y. %)pe],

o741 = B[ 2. 274]

Further, it oan be shown that

(7

— 0, (ny—1)
Plzy = 2y, Ty = Bye | T* _ Po(nay 1)' Vi ,
(21 = Ty 22 = 2un | T*] 1) __Vmavm(”m)
o (g — Coy(1)—C y, (Miy—1)
Plty = 2y, 2y = ey | T*] = PP =1) ([ Sl —Criyy o —1) .
1 = Ty, g = Tpeny | T*] pres) X e oD O, ], (v#V)

)
wd  Ply =y, =P =000 L1 g (4.8)
Ma—1) vip vy
Therefore,
: —1) Y0 B Owelny—1)
Ba, | T%] = % Pl s Yin Owomw
5l =1 nn—1) =1, Py Vi Ovalmg)
+}'_~, Aplnp—1) %" YunYir) [‘_739("«;)—0!9("(0—1)]
G an=1) = 2Y i (Ym—l)c,m(ﬂu))
§ momn E" v(}:‘,’ Yup Yy 11 e (4.9)
oirml AR—1) rarriat Py Pa’y Ve th

Using the equality

g, o—10—1) - _Uvm(”m—l) v
Coi(ny) b Ty O () =1

_ [C'V(‘, ("(())—0 (my—1)] ¢

¥

Yan Yurn
viiy (Vi — 1)0v(|.)("(¢>) el
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and simplifying (4.9) we get
']

. 1 2 ﬂﬂl_ n_ » n gm]

=Bl = 1 [{(5 e ) —Em gt}
) 0 (mp=1) 4
-3 S T et IR
2 ny(nn—1) c, _pﬁ;]

This completes the proof.*
Corollary 3 : It is easy o see that
= 1 | T =E.'I} pe]| —p (% Yaype
E[IT]= B ey Zama* | 1=2[% |-E (2. 7]

b 1Pl g wlte=1) Oppmt =) 8,
TaTe T vyl an—1) ~ C, (nw) P
=1 B Vel Py =l v ®

2
—n(_”'__l) (( é'.l - %)'-é o % I o
i2 a simple improved eslimator of &.

Corollary 4 : An unbiased estimator of V(3}) is given by
} aplng—1) , 0‘,,‘)_1(11“,—1) ":m

= 't N
uE) =5+ 42.:: n{n—1) Cv“)(ﬂ(l)) B )

D)

1 ¥ g% [ 3
— —F w20, 4.11
n(n—1) [( & Pw ) ™ P(’o] i
However, in practice it seems reasonable to use
1 5 s
— I (=2 L. (412)
nin—1) ¢ ( n )

as an eatimator of V(z)). First, because it is simple to compute, secondly, because
it is always non-negative. Besides this, we are always on the safe side as it over-

estimates the variance of ).

* The estimator Zy requires the computation of the ratio 0'5"‘(:;‘” . Valuea of 0'3"8;” osn
- Opsfn=1) 1 _ Oy(n—1)
be obtained from therelation A —%W .

0, (n—1) .
Valnes of A .have beon tabulated for all » and n=1 to 50 in & paper published elsewhero

in the samo issus (Pathak, 1963), pp, 2872308,
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ON SAMPLING WITH UNEQUAL PROBABILITIES
5. A BREMARE ON RA0-BLACKWELL THEOREM

Let X be the sample apace of all possible outcomes 2. Let & be the field
of subsets of X on which a set P = {p} of probability measures is defined. Any sta-
tistio 7(z) [an 3-measurable function defined from X onto another space Y) generates
asubfield 87 C . The statistio T or the subfield 8y is called sufficient for P
(Bahadur, 1954) if corresponding to each 8- rable set 4, there exists an 8,-P-
integrable function ¢, such that

PlzedgNAl= [ dp= [ ¢uz)dp for 487, peP. ... (B.1)
Aond 4

It is known that any estimator g(z) based on the sample 2 can be uniformly
improved by taking the conditional expectation of g(z) given a sufficient subfield.
If several sufficient subfields are available, the minimum condensation of g(z) is mostly
obtained by employing the minimal sufficient subfield (g, say). There are situations,
e, in sample surveys where this minimal condensation is unwieldy and it is not
possible for practical reasons to use this condensation. But it is sometimes possible
to divide X into subsets K(68,) and K’ such that the condensation is simple on K and
unwieldy on K’. In such cases simpler condensation can be achieved with the help
of some other subfield, 8,, which contains the minimal one. It follows as a consequence
of Theorem 5 (stated below) that condensation smaller than that of §; (but larger
than that of 8,) can be obtained by employing &,K+8,K’ as the sufficient subfield,
and this condensation will still have the merit of simplicity.

Theorem 6: Let 8, and 8 be two sufficient subfields of (X, 8, P), and K a
sel common fo 8, and 8, Then the subfield*

8 = $,K+8:K’ . (6.2)
18 aleo sufficient.
Proof : Since 8, and §; sre two sufficient subfields, there exist for each

8-mensurable set 4, an §,-P-integrable function ¢,, and an §y-P-integrable funo-
tion ¢y, such that

[ dp=[¢u)p for Ae8 (i=1,2,),peP. ... (6.3)
A0 A 4y
Now for any A; = 4,K+A4;K'e8,, and for each 468
| dp =J Paa dp. .. (5.4)
4dsn 4 ]

where @5, = ¢y xs+PsaXk’, and xp=1—xk’ is the characteristic function of the set K.

It is eesily seen that ¢ ,(2)xs 8nd @ %, 8re both @,-P-integrable and thus
$aa i8 8y P-integrable. This with (5.4) implies that 8, is & sufficient subfield.

Corollary 5: If 8,C 8, then 8,C 8,C 35

* 3y is tho field of sots of the form &y = (41K+4:K’), 440 S ($=1, 2).
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Corollary 8: Let @y, &y, ..., S) be k sufficient subfields. If A,, A,, ...,
4, [‘L.JIA.-=X.A‘nA,=¢(i;&j= 1,.... k)] are kaets such that 4, e QG =1,

. k), then
8% = A,8,+4:8+...+4,3; e (6.5)
is also o sufficient subfield.

Corollary 7: Let g(z) be an estimator based on x. Let 8, and 8, be (wo
sufficient subfields and K a set common to 8, and 8;. Then for any convex (downwards)
loss function, an estimator uniformly belter than g(x) is given by

{E[v(z)lsd if zeK
Elg(2)| 81 = . (5.8)
E(g(z)| 84) otherwise,
where 83 = 8, K+ K.

This result is useful in estimation problems when the improved estimator
E[g(z)] 8,] is difficult to compute for all z ¢ X. In such cases, this result may be utilized
by employing subfield &, and another subfield &, such that E[g(x)|8,] is simple to
compute when z € K and E[g(2)| 8,] is simple to compute when z ¢ K’ (K ¢ g,
i=1, 2) and using (5.6) as the improved estimator. The resulting estimator
will still be better than g(z) and in addition will be simple to compute. Further
if 8, € &,, this estimator will also be better than E[g(x)|$;]. For completeness a
straightforward generalisation of Theorem 5 to the case of countable number of suffi-
cient subfelds is given below.

Theorem 6 : Let {8 be a countable number of sufficient subfields. Let {K}

be a seq of lly exclustve and exh ive sels such that Kie8,; (£ =1,2,...).
Then

8 =% K8
=1

18 a sufficient subfield.
Proof: Since ; i3 a sufficient subfield, there oxists for each 468 an
8,-P-integrable function @, such that

Plze AiN4Al= [ dp= [Plx)dp for 4,68 (E=1,..,0),peP. ... (6.7)
Ain 4 A

Now for any A* = X A4,K;68* and for each 4 ¢ 8, we have from (5.7)

Plzs A¥\4] = lim Plee (‘_il AK)NA)

8> n
((zl “x‘

= lm ] )[(_ﬁ‘ fuuloins, (@) |dp

=t A [‘étﬁu(z)x,‘ (”')]d?' .. (6.8)

[ X1
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Since 0 < f, = ( ,:Efu(’)h. (z))( Lao (P), lim fi=/] existe ac. (P) We,

thus, have by Lebesgue’s tone oonvergence th
Plze4*N\d) = | fi=)p. )

Since for each n, f, is 9*—P-integrable, fj(z) is §*—P-integrable. Hence
the theorem.

In the following section Theorem 5 is used in sampling with unequal pro-
babilities to derive some simple improved estimators of ¥.

6. APPLIOATION TO SAMPLING WITH UNEQUAL PROBABILITIES
We have seen that 3, is uniformly better than z. For n = 3, 2, can be expressed

a8
L3 if v=1,
1 Ywt¥m ] ;
= |2tz 20 i v=2 o (81
i = 3 [ -z P(1)+Pm] @1
1 .
§[=(1)+Zm+’m] if v=3

It is not simple to compute z, when #» > 3 owing to ocumbersome computation of
Cuy's. However, if ina sample of size n, v=(n—1), Z, is expressible in the simple form

(nil)
s _1 (ED Yo o (=1 Yo 62)
ey = = |- . (6.
n| =l Py Ty P

(=1
As a direot consequence of Corollary 7, it follows that a simple estimator
uniformly better than 2 (and hence better than z) is given by

2, if v=(n—1)
5= { ... (6.3)

P otherwise.
Two points in favour of utilising z, are: (i) it is as simple as Z or £ and (ii) it
is more efficient than z}.
Another simple improved estimator of Y. Another simple improved estimator
of Y can be derived by using the following suffioient statistio

Ty = [Ty &) s @oons &eny)] . (8.4)
A if Ap>2
where gy =
1 otherwise (=1,...,v)

and Ay, is the number of times 2z is included in the sample.
Assuming without any loss of generality that @y, =1if$=1,..,k% and
k
ayy > 1if § = k+41,...,v, and I A, = m, it can be shown that an estimator better
il
than : is given by

1 L}
3, =E2|Ty= [E;"m’m + Exdm’m]» o (8.5)
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(
where dy,, = ZiPw o Prany the summations X, and I{ have been defined in (2.3)
Zy Py o Pty

and are taken over py, ..., -
In practioal situations, it is muoh aimpler to compute this estimator than
to compute i,. For m—k =1 and m—k = 2, z,.,, 18 given by
»

" Z yy
— L oayznt F— |[if m—k=1
n (=1
I Py
i = (=1
@ .. (6.6)
173 2k, P) Vig ok —
L » [E]“m’m"‘k(p——,p) ]lf m—k=2

E
where Ky, p) ='2| Y Pr—(ZY)(E piy) and Kp, p) is defined similarly.

In general when (m—¥) is large, this estimator may also involve some extra
computation. If the statistician is not even in favour of this extra computetion,
the author, as o consequence of Corollary 7, recommends the following improved
procedure of estimation

(i) use 2 if (m—k) > 2 . (8.7)
(i) use E[:|Ty] f (m—k)<2
For estimating the variance of thesa. estimators, author suggests (4.12) as an
estimator.
7. CONCLUDING REMARK

In case of large samples if one is interested in altogether dispensing with the
extra computation, the observed sample of size n may be divided into sub-samples
of sizes n,, g, ..., n; ote., (En; =n and #, = 3, 4 or 5 eto.). This division should,
however, .be independent of sample observations. Each sub-sample may then be
treated as & sample in itself and simple improved estimators may be obtained for
each sub-sample by using the estimators given in the preceding seotion. The over-all
improved estimator can now be obtained by averaging the estimators obtained from
each sub-sample with weights proportional to the sub-sample sizes.
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