The nucleolus of balanced simple flow networks

Jos Potters **, Hans Reijnierse " Amit Biswas©

# Mathemarical Department RUN, Toemaoaiveld |, 6525 ED Nijmegen, The Netherlands
" CentER and Department of Econometrics, Tilburg Universitg, PO Box 90053, 5000 LE Tilhurg,
The Netheriands
S Indian Sasistical Inssine, 110 Nelson Manickam Road, Aminjikarai, Chennai 820 India

Abstract

This paper gives an algorithm for the nucleolus of simple fow games with directed and undirected,
private as well as public arcs, under the condition that the flow game has a nonempry core,
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Introduvction

Flow games are introduced in Kalai and Zemel (1982), They proved that flow games
(without public arcs) are totally balanced and, conversely, that every nonnegative totally
balanced game can be derived from a flow network in which every arc is private. Curiel et
al. (1989) studied Now networks with coalitionally controlled undirected ares and proved
that these TU-games are balanced and that each nonnegative balanced game can be ob-
tained as a flow game with vew control. More recent sources, mmportant for the present
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paper, are Reinierse et al. (1996) and Granot and Granot (1992). We repeat their results in
as far as they are relevant for this paper

(i) (Reijnicrse etal., 1996) The core of a simple flow game (N, v ) is nonempty if and
only if there 5 a minimum cut without public arcs. In that case, the extreme points
of the core are in one-to-one cormespondence with the minimum cuts without public
ares: if C s a mimmum cul without public ares, the allocation assigning W each player
controlling an are in the minimum cut a payolT one and zero to the other playvers, 15 an
extreme point of the core and in this way all extreme points of the core are obtained.
For simple flow games without public ares this result can already be found in Kalai
and Zemel (1982).

(ii) (Reijnierse et al., 1996) A simple flow game is totally balanced if it is superadditive.
This is the case if and only if the capacity of all public arcs can be increased without
increasing the maximum flow for any coalition. Public arcs are never ‘bottlenccks™.
For a superadditive simple flow game the bargaining set is equal to the core.

(i) (Granot and Granot, 1992) For simple flow games withont divected arcs and without
public arcs—these games are automatically totally balanced—the nucleolus is the
lexicographically maximal element of the core. For simple flow games of this type
the kemel is a subset of the cowe (by (1)) and, in fact, a convex polfvtope. The resulls
under (ui) are not true if the arcs are directed.

This paper shows how the nucleolus of the most general kind of a simple low game can
be computed, as long as the game has a nonemply core. For this purpose, a collection of
coalitions PV is given that determines the nucleolus if the set of candidates is restricted to
the core. Thereafier, potential functions are defined on a subset of the vertices of the net-
work. These potentials wrn out to be in one-lo-one correspondence with the core elements.
A modified digraph is defined as a ool to find the levicographically maximal potential
function. This potential comesponds to the nucleolus of the original flow network.

The paper is organized as follows. In the next section the necessary preliminaries are
given. Section 2 gives a result concerming the core, the nucleolus and the kemel of a sim-
ple flow game. Furthermore, it gives a generalization of a known result about collections
determining the nucleolus. The result is used in Section 3 to show that the collection P!
determines the nucleolus. Section 4 introduces potentials and the modified digraph g of a
simple flow network f. Section 5 defines a nocleolus on g oand proves that it comesponds
Lo the nueleolus of v, the cooperative game comresponding to f. The last sections have a
constructive nature; Section 6 gives the construction of the digraph g and Section 7 gives
an algorithm to compute Nuig). the nucleolus of g. Finally, Section 8 discusses the com-
plexity of the calculations.

1. Intreduction of the basic tools

A directed graph or digraph (V| E, @} consists of a set V of vertices, a set E of arcs
andamape: E — V x V. HWale) = (a, b), the are ¢ has begin-point {tail) @ and endpoint
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{head) b. It is assumed that there are no boops: forevery e E and a € V., wie) #£ (a.a).
To define a flow network with private control three more mgredients are added:

o cap: E — [F. . is a map assigning to each arc e a (strictly positive) capacity of capie).

o Two different vertices & and 1 are mdicated, called the sowrce and the sink.

o N oisaset of players and o N — E 15 a multifunction that assigns to each player the
arcs under his control.

We assume that o{i) N (j) = Wil i #£ §; an are s not controlled by two different players.
Arcsnot under control of any player are called public; they can be used freely by any (group
of) player(s). The “inverse’ of o is called §, so for every 0 C E. 5{Q) is the (possibly
empty ) set of players i with o (i) N @ # B, To avoid tivial examples, the existence of a
{directed) path from source to sink 15 assumed. So, a low network 15 given by:

F=1V.s,t, E,a,cap, N, a}.

If all capacities are one and each player controls one are or two oppositely directed ares
between the same nodes, the flow network s called simple. In this context, a pair of oppo-
sitely onented arcs between the same vertices have the same opportunities as an undireced
edge between the same nodes, as we shall see.

A flow in a flow network (V. s, 1, E o, cap) is amap X : E — [ with the property that
Xie) z0forall ares e € E. A flow X 15 called feasible if X{e) < capie) forall arcse € E.
An are e 1% called X-wsed if X(e) = 0. The set of X-used arcs s called Eyx. The endpoints
of the X-used arcs form the set Vy (so0 Vy s the set of vertices that X visits).

The in-flow of & Qow X into a vertex £ £ Vis the sum of the low Xie) over all arcs ¢
with head &. The ont-flow of X from a vertex a 15 defined analogously. 1t is the sum of flow
Xieyover all arcs e with tail a.

A verlex a € V is a transition point of a low X if the in-flow of a equals its out-flow.
If all vertices but s and ¢ are transition points and if the out-flow of the source exceeds its
in-flow, X s called a flow from s to t or -t -flow. The difference between the out-flow of 5
and its in-flow s called the valve of X. An s-r-low X s called a maximomn flow if the fow
15 feasible and there s no feasible s-f -flow with a larger value.

If § C N is a coalition of players, we define vr(&) as the valoe of a maximum {low
in the network consisting of the ares controlled by the players in 5, and the public arcs.
We assume that there 15 no flow that vses only public ares i.e., l'f{{"]}l = (), in order to
have that the set of players N and the map v ¢ form the TU-game (N, vr). Because of this
assumplion, every source o sink path uses at least one private are. In the case of o simple
flow network, this limits the value of a maximal flow o [N]. Therefore, it is harmless to
assume additionally that in a simple flow network, for every pair of nodes (a. b)), there are
at most |N| arcs with head a and tail b, This avoids an excessive amount of superfluous
public arcs. Because we assume that there s at least one path from source to sink, we have
() =0

The TU-game (N . v ) is a ool to find an appropriate allocation of the value of a maxi-
mum flow of 4 network f among the playvers m . Solution concepts developed for general
TU-games will be used. The nucleolus Nu{v g} will have the most attention but also the
kemel and the core will show up in Section 2. We will not repeat the definitions of these
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concepts as they are well known nowadays. For the general nocleolus (Maschler et al.,
1992} an excepton 15 made.

Let £T be a compact convex subset of the pre-tmputation set of a TU-game (N, v) and
let 15 be a collection of coalitions in N. The excess map Exc: T — RF is defined by its
coordinates: Excg(x) ;=exe{S§, x) = v(§)—x(§)forxr € T and § € B. The map & o -
!B orders the coordinates of a vector in BY ina wiikly decreasing order. The general
nucleolus of (N, v) with respect to IT and B is defined by:

Nu(fT, B) :={x e IT: 8 o Exe{x) =iy # o Exc(y) forall y € T}.

For example, the nucleolus is (the element of) Nu(/{v), N YL in which T {v) denotes
the imputation set.

From here we assume that £ s a simple flow network. Furthermore, we only consider
integer-valued (maximum) s-1-flows without cirewits e, if the arcs ey, e2.. .., ey form a
cireuil (a directed eyele) in the graph, the flow along at least one of the arcs e equals zero.
If & fow has circuits, we can diminish the flow along the cireuit without diminishing the
vilue of the flow. Flows with circuits use the capacity of the flow network in an inefficient
way. In particular, if’ a playver has a pair of oppositely directed arcs, at most one of the arcs
is used by a flow without circuits. This means that the possibilities of an undirected edge
are the same as a pair of oppositely directed ares between the same vertices.

Asetof ares C © Eiscalled a curof network [, if the (value of a) maximum flow in the
network obtained by deleting the arcs in O, 1% zero. A minimum cut 15 2 cul C with minimal
total capacity. By the well known theorem of Ford and Fulkerson (1956), the capacity of a
minimum cut equals the value of & maximuom flow in the network fL

In a simple fow network the value of the grand coalition ve( N) equals the number of
ares in a minimum cut (and is therefore an integer). The same is true for the coalitional
values vp(5).

Every (integer-valued) maximum flow uses an are at full capacity one or not at all.
Furthermore, 4 maximum flow {without circuits) can be decomposed nto v (N} simple
flows of value one with (pairwise) edge-disjoint carners. Such a simple low (unit Qow) s
using the arcs of a path from s 1o ¢ (a weir flow path) at full capacity and no other arcs. The
decomposition can be obtained successively by following the flow from the source o the
sink, subtracting the unit fow obtamed in this way and following the same procedure with
the remaining flow of which the value is one unit lower. Given a flow X, a unit flow path
15 cilled an X -unit flow path if X (e) = 1 lor every edge e on the path.

Paths are supposed not to contain circuits (are non-self-intersecting). If & is any path
from source to sink, the coalition §{ Q) is called a path coaliion. P is the collection of
path coaliions.

If X is a maximum flow and @ is an X-unit flow path, then vr(S()) = 1 and
vpiN A S Z vp(N) — 100 vy is balanced (or superadditive), the mequalities are in
fact equaliies. Hence, every core element allocates | to coalition ${Q) and 5{ Q) has ex-
cess () throughout the core. For players who do not own an X -used are, there s nothing
left; they are assigned O by every core element.
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2. The core, nucleolus and core-kernel of a simple flow game

Theorem L If f is a simple flow network and the associated TU-game (N, v ) is balanced,
then the core, the nucleolus and the intersection of the core and the kemel are determined
by P the collection of path coalitions), the 1-coalitions and the grand coalition.

Prool. (About the core, cf. Reijnierse et al., 1996.) We have to prove that the core of
{N.vy)can be given by the {(injequalities:

x =0, (i e N)
.T{J"i'r::l = l"f'{h'l},
xT)=1. (TP

Let § be a striet subset of N. Decompose a maximum flow X g in the flow network con-
trolled by coalition § (inclusive the public arcs) into v p(85) Xg-unit flow paths. Then § s
the disjoint union of the corresponding path coalitions and some 1 -coalitions. Hence, the
payoll to coalition § is at least ve(§) times one.

(About the nucleolus)) Hubermann (19800 calls a coalion § essential if vi5) =
E:LI v(&;) for all partitions {5y, ..., 5,4} of §, i.e. the value of § exceeds the sum of the
parts. In a simple fow game (N, v ), all essential coalitions are path coalitions or single-
toms. The paper proves that the nucleolus of a balanced game 1s determined by the essental
coaliions only. This means, il we define the general nucleolus by only using the excesses
of essential coalitions and restrct the set of candidates to the core allocations, one finds the
standard nuckeolus.

{About the core-kemel) Let x be a core allocation of (N, vy) and define 5;;(x) =
max{vg(i) —x. 1 —x(T)| T ePwithi e Tand j T}

As every coalition § 15 the disjoint union of path coalitions and 1-coalitions and x 15 a
core allocation, 5j; (x) = &;(x) (take the component containing i ). The core-kemel is the
set of core allocations where &; (x) = 5;;(x) for all pairs (i, j) with i # j. Hence, it is
determined by P, the 1-coalitions and N. [

Corollary 2. If (N, vy) is superadditive, the kernel is determined by the path coalitions
and the 1-coalitions.

Prool. If (N, v¢) is superadditive, the bargaining set is equal to the core (Reijnierse et
al., 1996) and, as the kemel s a subset of the bargaining set, the kernel coincides with the
intersection of the kernel and the core. [

The part of Theorem | concerning the nucleolus can even be sharpened. It is possible to
give a further reduction of the collection of coalitions that determines the nucleolus.

For this purpose we need a slight generalization of Theorem 1 in Reijnierse and Pot-
ters (1998). We will formulate and prove this result first. Let (N, v) be a TU-game with
nonemply imputation set. Let JT be a closed convex subset of the impurarion ser with
MNu(v) € IT and let B be any nonempty collection of coaliions. Let:

Z(T) = {2 C Nt x(Z) 15 constant on H}
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and finally, for § ¢ B let:
Bs(IT) := [T € B: exe(T, y) > exe(S, y) forall y € 17}

Proposition 3 (cf. Reijnierse and Potters, 1998) Ler (N, v) be a TU-game with T{v) # .
Let IT be a closed convex set with Nuiv) € 1T C I (v) and let B be any nonempty collection
of coalitions. Then B determines the nucleolus inside the set IT if, for every coalition § ¢ B,

the vector ex is a nonnegative linear combination af ey with T € Bg(IT), plus a lincar
combination of ez with Z € Z{IT). In formula, Nu{ [T, B) = Nuiv), if for afl § ¢ B:

es €Ryler: T e Bs(M))+ Rlez: Z € Z(IT)). (1)

Prool. Let v = Nuiv) and v € Nu(fT,B). Letid = {5 C N: x(5) &£ v(5)}. We prove that
i =¥, Suppose, on the contrary, that &4 = .

By defimition 8 o Exc(x) =gy & o Exe(y). Then & o Excg(x) e @ o Excpg(v). Here, the
map Excyy assigns to cach imputation the vector of excesses of the coalitions in 4.

By definition # o Excgiy) = & o Excrix). Then also, 8 o Excgryg(y) =i 0 0
Excgry(x).

Both implications rest on the property of 8 and =/, :

fa,beB"apd ce B9, thenfila, o) =« #{b. o) if and only if #{a) = #{b).

These two inequalitics combined give:

V exc(s, vl = V exc(§, vy = V exc(S. x) = \,"' excl &, v),

Selir3 Selird Seld Seld
in which V_TFMCM{S,I}I 5 the ‘maximum’ over the excess functions exci( S, x) with
S el Let E :=N/ g exelS, v). We prove that the inequalities in the previous rela-
tion are, in fact, equalities. Let § € & be a coalition with exc(S, y) = E. If § € B, then
V seprmenc( S, y) = E and we are done. If § ¢ B, we can denote:

es= Y irer+ Y pzez, withir>0andpuz el

Teliyim ZeZ(IT)

Take the inner product with x — y:

(8 =3 = D M(x(M—yM)+ D pz(x(2)-y(2).

Teliz(m) ZeZ(m

As_ x££ = viZ), the latter summation vanishes, Since 5e i, .r{ﬁ'}l 7 _v{.';'}. Even
x(5) = y(8), because /o exe(S, x) £\ gqyexe(S, ¥). Therefore there is a coali-
tion T € B (7)) with x(T) = y(T). Hence, T € i N B. The definition of Bg(IT) gives
exe(T, v) = exci§, v) = E. Accordingly we find:

V exc(S. y) = V exci§, vy = V exe( S, y).

Selir3 Seld Seld

VIfEd N1 8 =4, it iscasy to see that & =%, Every chamcteristic vector ey with § € &4 is a linear combination of
vectors ey with T e B and e with Z € Z(07). For all these coalitions x(T) = (71 and x{ £) = v(Z). Hence,
x(Ni= (5
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As the collections of coalitions {§ € U: exci(§.x) = E} and {T € Y: exe(T, y) = E} are
digjoint, %_{.r + v} has a lower highest excess i i and is, therefore, a better candidate for
the nucleolus than x. 0O

Corollary 4. If B satisfies the conditions af Praposition 3, every collection 5" = B satisfies
them too.

Prool. Suppose § ¢ B'. Then § ¢ B and B (/T) 2 By(IT). Iff e5 can be written as the
sum of a positive combination of vectors in {ep: T & Bg{IT)} and a linear combination of
veetors in {ey: Z € Z{IT)}, the same linear combination can be used in 5. O

3. Determining the nucleolus by jump coalitions and singletons

This section gives an application of Proposition 3. Let § be a balanced simple flow
network and let X be an integer-valued optimal flow in f without circuits. A path J from
node a to node & is called a jump if:

a and b are elements of Vy,
J does not visit other pomts in Vy, and
there 15 no X-unit flow path visiting both @ and &,

A path @ from source 1o sink is ajump path if:

ve(S(Q) = 1. and
2 15 the composition of a series @ of X-used ares, a jump Jp and a second series .
of X-used ares.

Such a composition is denoted by @ = Q_ # Jp # 0. We use  for the concatenation of
paths. The players owning an edge on jump path @ form the jump coalition 5(Q). Let PV
be the collection of all jump coalitions and all 1-coalitions. The following theorem says that
the nucleolus of (N, vy) s determined by P It is proved by applying Proposition 3 in
the case that 1T = Core(v ) and 5 ="7" by

Theorem 5. Inside the core, the nucleolus of a balanced simple flow game is determined
by the collection PV In formula:

Nu(v ) = Nu(Core(v ), P'V).

Proof. Let 7 := Core(vy) and B := PV, Each coalition § is the disjoint union of path
codaliions and 1-coalitions (cf. the proof of Theorem 1). Inside the core, each one of these
have a weakly higher excess than § itself. So, we are left o prove that path coalitions are
satisfying the condition (1) of Proposition 3.
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Similarly, a path coalition 5(() is the disjoint union of path coalitions with value | and
l-coalitions, all having a weakly higher excess than §{0) itselfl So, assume o be a path
from s tor with v (S(Q)) = 1. It can be decomposed as:

Q=0+ R+ 0 #%--- %Ry Oy,
in which ; are paths consisting of X-used arcs and Ry are paths consisting of non- X -used
ares and with only the endpoints in Vy . Note that some of the paths J; can be empty. Then
the head of B; is the tail of 8+ . The prool consists of three steps. The first step deals with
paths with r = 1:

Step (1): Suppose that the decomposition of (2 contains r parts K, with r 2 2. For each
kell,....r — 1}, let by be the head of Ry and let Uy be an X-unit flow path visiting fg.
Decompose U in UA_ * U;, in which Uk_ 1§ the part of Lf from the source tofy; and U; 1%
the part from fi to the sink. Define r (possibly self-intersecting) new source to sink paths
Ty T, by:

T| = Q:] *R| *UI_
L =00 o« * Ry w U

Tip-n=U,_ 5 *#Qu-n*Ry_pn*U;
T =U L *Qu-n* Ry * ()

T has at most one series of non- X -used arcs. Each path T contains a non-sell-intersecting
subpath, say Ty, We have:

-1

r r—1

E :".';z:r;] S eg0) t+ Zfslm]-

k=l k=1
Therefore, there are nonnegative integers ap, . . ., ay such that:

r—1

r H
€50 = Z‘-’S[Tl'] T Zﬂﬁ-’f - Zfﬂ'[u“-
k=1 k=l

i=l
Let x € Core{v ). Then x(5(L7:)) = 1 for all k& (see the last lmes of Section 1). The ner
product of the equation above and —x gives:
r M
—x(S(@) =) —x(S(T)) + > —axi +r—1.
k=1 =l
Since v (S{Q)) =1, we have:
-
vr(5(Q)) = x(S(@) < D [ur(S(77)) = x(S(T)]+ 3 ailvri) — x]-
k=1 PR e
Henee, all coalitions at the nght hand side have at least excess exc(5( Q). x). We can apply
Proposition 3 to infer that the collection of all path coalitions with at most one senes of
non-X-used ares united with the L-coalitions determines the nocleolus.
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Step (i1). Let @ = Qg+ Ry * @ be a unit low path with one seres of non-X -used arcs,
This time 1tis not allowed to assume that v (5( Q') = 1. because the path of a subcoalition
with value 1 may contain more than one non-X-used series.

If By is ajump and ve(S5(0Q0) = 1. then §{ Q) s an element of P If Ry 1s a jump and
uvr(S(Q)) = 1, we have forall x e Core{vy) that:

r{S{Q;]}} = 1, because Oy is contained in an X -unit flow path,
.r{S{RHI}l =10 because §(R|) consists of players without X -used arcs,
r{S{Ql}} = 1, because ¢ is contained in an X -unit flow path.
Hence, 2 < v p(S(Q)) < x(S(2)) = 2 and S(Q) € Z(IT).
So, we can assume that B 1% not a jump: there 15 an X -unit fow path 7 contaming both
endpoints of K. There are two oplions:

{a) Lf and R have opposite directions,
(b} L' and R have equal directions.

In case (a), we denote = U_ & Uy + UL in which U_ 15 the path from s to the head
of Ry, Up is the part between the head of R and the tail of R and U2 is the part of I/
from the wil of R} o . Define the X-unit flow paths 3" and @7 by @ := Oy * U2 and
" .= U_ % (. They are not self intersecting, because X is free of circuits. We have:

500 = €570 T €510 — €5 T 5y T EsR -
The coalitions ${Q", ${ Q") and S{L') have constant excess 0 inside the core and are
thereby elements of Z{[T). Let x € Core{v ) and take the mner product of the previous
equation and —x:

—x(S(Q))=—1—1+1—x(S(R1)) — x(S(Uo)).
Therefore:

exe(S(Q). x) =vs(§(Q)) — 1 — x(S(R1)) —x(S(Un)). (2)
e (S(Q)) = 1, we see that the excesses of all 1-coalitions contained in S{Uy) U SR}
are al least the excess of §(0) and we are done. So, assume that ve(S(02)) = 2.

(SR = 0forsome ¥ € Core(v ), then B must consist of one private arc of, say,
player i and X wses his other are. Then we can assume that Uy consists of this other are
and 5{R) = 5{Li) = {i}. Equation (2) shows that x; = 1/2 for all x € Core{vy). Because
the extreme points of the core are integer valued (ef. Regnierse et al., 1996), x; = 1 inside
the core. Hence, 5{Q) € Z0T). If x(5(R)) =0 for all x € Core(vr), Eq. (2) indicates
that x{5{Lq0) =1 inside the core and again §{0Q) € Z(7). This ends case (a).

In case (b), let Ly be the X-unit flow path parallel to By and let & := Qg+ Up + Q.
Then @ is an X-unit flow path, so x{ 5{ Q")) = | inside the core. If ${5{#)) = 0 for some
core element 1, then Ry must consist of one private arc and X uses the other arc of the
owner. However, this other are forms an X -used cyele with U, which has been assumed
not to exist. So, v{S(R)) =0 for all x EC{}m{uJ-}, resulting in:

1 £x(S(Q) =x(S(Qp)) + x(5(Q1)) < x(5(Q)) = 1.
Hence, §{ Q) € Z(17). This finishes case (b).
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Step (1ii). Finally, assume that r = (). In this case, the coalition §(() corresponds 1o an
X-unit flow path and is thereby an element of Z(7).

Apply Proposition 3 and conclude that 'Y determines the nucleolus inside Core{ug).

[

4. Potentiak and the modified digraph g

Let f ={V.5.1, E, e, N, g} be a simple flow network and let (V, E, ) be the under-
lying graph. Let X be an integer-valued maximum flow i f without circoits. Take a
decomposition (P, ..., Pr_.f[,-q-]}l of X. Let Py == (S(H), ..., S{H-;[N]}}'Z the collec-
tion of the comesponding X-unit flow path coalitions. The coaliions in Py are pairwise
digjont. Let §y be the coalition of players who own an arc in Ey. For every element x of
Core(vy) we define its corresponding potential p, - Vy — [0, 1] as follows:

pela) = {x(5§)|§C T e Py, § consists of the members of T owning
an are between s and a.

We have o show that the definition does not depend on the choice of T I the sum of
the payments along the path of another element T of Py from 5 to a is smaller, we can
take this path from s o g and continue along T. Then we have an X -unit flow path with
total payment less than one, which cannot be inside the core. If it is larger, we switch the
roles of T and 77 and get the same contradiction.

Proposition 6. Forevery x € Core{vy), pyis) =0and p,(t) = 1. Furthermare, fora. b e
Vy:

(1) pola) < poib)ifoie) = (a, b) and ¢ is an X -used are,
(2) pola) = pell) if there exists a route from a to b not using as of players in 8y

Proof. Because of the assumption of the existence of at least one source to sink path, we
have p,(s) =0and p,(r)= 1. The first statement about edges 15 siraghtforward.

Suppose there are a, b € Vy and a path from a to b not using arcs of playersin Sy. Let
§ be the unon of a path coalition in Py, restricted from s to a, together with the players
owning an arc on the route from a o b, wgether with a path coalition in Py, restricted
from & ot Because veiN) = v {8y ). players with an are on the route from a o b get
zero allocated from x. This gives: 1 = o8 £ x(8) = pela) + (1 — pe(B)), which gives
pxla)z pub). O

Corollary 7. X -used public arcs have potential difference zem.

Any function p: Vy — [0, 1] saustying p(s) =0, p(t) = | and properties (1) and (2) 15
called a potential function on Vy .

Proposition 8. There is a one-to-one corvespondence between the core elements of vy and
the potential functions on Vy.
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Proof. Let p: Vy — [0, 1] be a potential function on Vy . Define x, € EY by:

xpl(i) =10 ifi &5y,
xpli) = pib) — pla) otherwise. (wie) =(a.b)il e1s the X-used arc of i)

We prove that xp 15 4 core element. By property (1), xp(i) = (), so we only have to show
that xp(T) = 1 for every path coalion T with value 1, and that xp (N) = v (N} (cf
Theorem 1),

Let T & Py. Let e be an are used by T (ale) = (a,b)). If e is public, then pyia) =
Py (b)) forevery core element y (Corollary 7). By property (1), the potential increases along
cach path T in Py. Therefore, xp(T) = p(t) — pis) = 1. Since vy(N) = |[Px|. we have
rp(N)=vr(N).

Now let T be a path coalition with value 1. Let ¢ be an are wsed by T (again
ale)=(a,b)). If pla) = p(b), ¢ must have an owner i in Sy and xpli) = pib) — pla).
Hence, xp(T) is at keast the sum of the increments of the potentials along a unit flow path
corresponding w0 T, Since the total increment 15 al least one, we have x,(T) = 1. We
conclude that x, € Core{v ).

To show the existence of a one-to-one correspondence, it s sufficient o show for all
core elements x and potentials p on Vy we have: xp = v and pie = p.

Letiin &V oand ket (a. b)) be an are of i with the convention that we choose the X -used
ane if available. Then:

Tip i) = pulb)— pyla) = x(i).
MNow let v be in V. Let P be an X-used path visiting v, Let § be the coalition of players

who own an arc on P before v. For i in &, denote the arc of i used by P by e;. Then:

Puy W)=Y xp(i) =Y [plheadie)) — pluilien))] = p(v) — p(s) = p(v). O
ieP ieF
Define the following equivalence relation on Vy:
a~b if  pla)=plh) for every potential on Vy.
Equivalence classes are called components. The modified digraph (V,, E, o} s defined
as follows. The vertices of g are the components of ~.

Let [a] £ [#] and ([a], [£]) &£ ([s]. [t]). There is a directed edge from vertex [a] o [&]
if:

o thereis an X-used private arc ¢ with a(e) ={a’, &) such that @ ~a and & ~ b, or
o there is a path consisting of non-X -used arcs in f from an elementof [b] to an element
of [a], not visiting vertices in Vy.
Because arg 15 an injective function, the arcs of g can be identified with their o -images.
Since potentials are constant on components, they can also be defined on V:

my i Ve — [0, 1], [a]— pyla) forevery x € Core(v ).
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Proposition 6 gives that for every x € Core{v ) mpe([s]) =0, me([r]) =1 and if there
15 an arc from [a] to [B]. then m (Ja ) < 7 ([#]). In the case of an empty come, the set of
potentials is empty as well and [5] = [¢]. Section 6 gives a construction of g.

5. The potential corresponding to the nucleolus

Let IT, be the polytope of potential functions on V.. By Proposiion 8, there is a
bijection from 1, o Core{vy). Let Nu(g) be the collection of “lexicographically best’
potentials in [T, i.e. the smallest difference between two adjacent potentials is maximized,
then the second smallest 15 maximized, and o on.

Formally, define the map of differences A 1y — R Ee by: A,m:=m(b) —mla), m
whiche = {(a. b) € E;. Then:

Nulg) = {JT e, |8 0 A(T) =1 B o A(x ) forall x’ e ”x}-

Here, 8 : s — RI%:] maps the coordinates of a vector in a weakly increasing order.

Theorem 9. I (N, v ) is balanced, then Nu(g) is a singleton and its element corresponds
ter the nucleolus af v .

Prool. To every arc ¢ € E, we allocate a coaliton §, such that excl(S,. xz) =
m{[al) — mx{[&]) for every potential m on Vi, in which e = ([a], [£]). Of course we have to
show that such coalitions exist. Let e = ([a]. [b]) € E,.

If there exists a path coaliion T & Py that visits vertices a” with a" ~ a as well as
b with & ~ b, let § be the set of players in T that have an are sitnated after o as
well as before &', Since ([a ], [P]) # ([s]. [r]), we have m(5") — mia’) < 1 for some poten-
tial w. Henee, vy(8:) < x5 (5,) < 1. This gives vy(5,) =0 and exc(5,, vz ) = —1z(8) =
mi[aly — m{[f&]) for every potential 7.

Otherwise, let a’, &' be such that @’ ~ a and & ~ b and such that there is a path from
b tooa’ not visiting nodes in Vy . Take a path coaliion T € Py that visits 5" and a path
coalition T> € Py that visits @' (s0 T3 N T2 = #). Let 5 be the set of players owning an
arc on T before b, together with the players owning an arc on the path from & o &',
together with the players owning an arc on T3 after a'. Becawse ([al, [B]) = ([s].[t]), we
have x(0) + (1 — m(a’)) = 2 for some potential 7. Hence, vp(S,:) < x5 (S.) < 2. This
gives vp(8,) =1 and exc(S, . xz ) =m([a]) — x ([&#]) for every polential on V.

Let B=1{5|ec E,}. Then for every x € Core{vy), e = {[al, [#]) € E;, we have
m([b]) — mel]a]l) = —exci 8. x). Hence, # o Excl(x) = —# o Almx,) and:

Nu(Core(v ). B)
= {x € Core(vs) | 8 0 Exe(x) =iex @ 0 Exe(y) for all y € Core(uy)}
={x € Core(vy) | =6 0 A(my) <ex —6 0 Alm, ) for all y € Core(vy) )
= {_r € Core(vy) | BoAlmy) s FoAx ) foralln’ e ”g}
=[x € Core(vy) | m: € Nu(g)}.
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Let @ =0Q_ % J % (: bea jump path with jump J. Let the head of J be a and the tail
of J be b. Then either [a ] = [b] and the excess of §{Q) is constant zero inside the core, or
e={[a].[P]) is an edge of g and exc( 5{Q), x) = exel 5. x) for every core clement x. In
both cases, Nu(Coreluv ¢}, B)= Nul Core{v ), BUS(0)}) since it is harmless to include
{or exclude) an excess function that is constant, or one that is already there (of . Maschler
etal., 1992, properties Py and Py3).

Hence, Nui{Core{v ¢), B) = NuiCore{vys), B U Py, Corollary 4 and Theorem 5 give:

Nu(v) = Nu(Core(v ), '?3’“]} = Nu(Core(vys), B L.'?:’“]}l. O

6. The construction of g

Let f={V.s. . E o, N, o} be an arbitrary simple flow network. We shall prove that
the modified graph can be found by the following procedure.

(i) Construct an integer-valued maximum flow X without cyeles. This can be done by
the algorithm of Ford and Fulkerson (1956). The sets Vy and Ey are found.

(it) Identify the vertices connected by an X -used public are. These vertices have the same
potentil value anyhow.

(i) Reverse the direction of all non- X -used ares. The potential difference over any are in
the present network 15 nonnegative.

(iv) Identify vertices in any circuit of the present graph. Because of (i), all potential
functions are constant on circuits. Circuits in a directed graph can be found by a well-
known depth-first algorithm (see e.g. Weiss, 1999, p. 373).

(v} Let V;.' be the subset of the current vertices that represent vertices in Vy. I [a]. [#] £
Voo il ([a]. [£]) 15 (at this stadiom) not an edge, and if there exists a path from [a] o
[£] in the curent network visiting only nodes not in 'r’x, add edge ([al. [&]). Remove
all vertices not in Vy as well as all edges starting at or ending in such a point.

Paths can be detected by the Flovd-Warshall algonthm (Papadimitnou and Steiglite,
1982, p. 132). Let (V,, E,) be the digraph after step (iv) has been performed. Let k be
in Vg.DcIint the V. = V. cost matrix ct by:

O i, jle E,,i=kand j & V,,

Ci=140 if(i. )eE.andi ¢V,

1 otherwise.
The Floyd-Warshall algorithm finds all cheapest paths. Arce (&, 7) is added if the algo-
rithm finds a free path from & w j (j € V, \ {k}). The algorithm has to be performed
for every k in V.

i(vi) Remove all loops, double ares and, if present, the are ([s], [r ).

Note that only equivalent vertices are dentified dunng this procedure. We will show
that this procedure results into the network g, but let us first give an example.

Example 10. Consider the network f depicted in Fig. 1.

An integer maximum flow X has been chosen. Ares in Ey and vertices in Vy have
been depicted boldly. If a player controls two arcs, they are depicted by one undi-
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rected arc. There are three public X-used ares. By (i), these ares are contmcted (see
Fig. 2).

By now, the distinction between public and private ares is of no use anymore in the
construction of g. We omit the attachments P. The following step is to reverse all arcs not
i Ey. After this step, two arcs owned by a player in 8§y are both directed according to the
flow X. Figure 3, showing the network after step (in), depiets only one of such a pair.

From here, the distinction between X-used and non-X-used arcs can be forgotten but
wi have o keep in mind which vertices represent elements of V. The network contains
two circuits (an undirected are 15 a cirewit on isell), which must be contracted. Figure 4
arises (only one are of a parallel set has been depictled):

[ —

I:l
= - + P P\\

// e »’

¥
————
i

Fig. 3. Step (iii) has been performed.
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fp em—ir—

Fig. 4. Twa circuits have been contracted.

E 3 il 4
i i [ i
}i o
Uy \\Eu/ =il - B
b,
%

Fig. 5. Network g (with an injective labeling on the nodes).

Only one are has to be mserted at step (v). Two nodes and their adjacent edges are re-
moved. Finally, at step (vi) superfluous arcs are removed. Figure 5 illustrates the resulting
network g.

Proposition 11. After the operations (1), .. . (vi), the resulting network eguals g.

Proof. Let f be the digraph resulting from the procedure. f is a digraph without circuits.

For all a € Vy. let [a]” be the node of f_ containing a. Since nodes have been identified
only if their values coincide for every potential on Vy, the class [a]’ is a subset of the
class [a].

If [s] = [¢]’, there are no potential functions on Vy and the core of the flow game is
emptly. S0, by the procedure it can be decided whether the core of (N, v ) 1s empty or not.
Hence, we can assume that [5]° = [r]"

In a digraph without circuits (like f) the nodes can be numbered such that each node
gets a different number and the number of a 1s smaller than the number of & whenever
(. B) 1% an are. This numbering proceeds as follows:

Let [@] be a node of f without incoming arcs. Such a node exists as there are no
circuits. Define A{[a]”) ;=0 and let &k := 1.
As long as there are nodes without a number:
There is a node [b] without a label such that the tails of all incoming arcs have
already a label Let A([b]) :=k and let k:=k+ 1.
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MNote that A{[s]) = A[a]y = A{[t]") for every a & [s]" U [t]. By (v), every component
of [a]’ represents an element of Vy. Hence, every node can be reached from the source
of f and gets a label.

Define p(b) = (A{[b]) — L[« 0/t ]) — A{[s]")) for every b € Vy. Since every
node of f has been given a different label, p is a potential function on Vy that separates
the nodes of V7. Hence, the nodes of f correspond one-to-one with the nodes of g.

If there is a private X-used arc from a to band [a] £ [b], there is, by definition, an are
{[al.[b]) € E; and also an arc ([a]’. [B])in f,us such an are 15 only contracted if itoceurs
in an circuit (step (iv)) (but then [a]’ = [b]'), or when there is a parallel arc (step (vi)).

If there 15 4 non-X-used path in f from an element of [#] o an element of [a]. not
visiting other vertices of ¥y, this path has been reversed (step (1ii)) and replaced by one
arc (step (v)). Henee, there is an are from [a] to [B] in _,f_ These are all reasons for the
existence of arcs in g. Hence, f contains certainly the arcs of g but maybe more.

During the steps (i-(iv ) some arcs of f disappear becavse their endpoints are identified
(in step (1i) if they connect an X -used public are and in step (iv) if the arc occurs in a cir-
cuit). Furthermore, the orentation of some arcs has been reversed. What is left are X-used
private arcs (and these define also ares in g) and paths of non-X-used arcs, only visiting
Vy i the endpoints. In step (v) cach such path is replaced by an are between the endpoints
and also in g this defines an are. O

In the example, the mjective labehng can be given as in Fig. 5.

7. The computation of Nuig)

The input of the algorithm is the network g = {Vg. Eg. [s] [r]}. given in the previous
section. The computation of the potential on g corresponding to the nucleolus will be by
an improving-direction method. The statting point is found by a labeling only shightly
different from the one used in the previous section. In fact it is an algorithm to find all
longest paths from the source o the sink.

After having venfied that the source and the sink do not coincide, label the nodes of g
as follows:

Foralla e Voo Ala) =0, let k=10,
Aslong as [1] is not the only node with label &:

ki=&k4 1.

For all edges e of which the tail has label (k —1):  Afheadie)) := k.
Normalize the labeling by dividing by A{[+[): Aa) ;== Aia)/A[t]). (ae V)

Figure & depicts the initial labeling of Example 10 (the bold edges form the longest
path).

If n is the label of the sink before normalizing, the longest path from source 1o sink
consists of n edges. Hence, at least one edge on this path has at potential difference of
1/n or less. The found potential has a minimal increase of 1/n. So the maximal minimal
merease has been found.
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Fig. 6. The initial labeling {before nomalizing ).

Let Fiy be the set of nodes that are situated on a longest path. All labelings with a
rmaximal potential difference of 1/r give the nodes in Fy the value of the current labeling.
Therefore, labels of nodes in Fy will not be changed during the procedure and are called
Jixed. We can caleulate Fyy as follows:

Fo :=={lr]}.

Aslong as [s] ¢ Fo:
Let A be the set of nodes a for which there exists a node b= Fy such
that {a.b) € E, and A{b) — g = 1/n.
Let Fyp = FpU A,

In Fig. 6, the elements of Fiy have been depicted boldly. Let the curment stepsize be £ =
lin.

It urns out® that the speed of the algorithm improves if at this stage all edges between
fixed nodes are removed (they are no longer interesting ):

Let Ep:=E, '\ {e € E;: both ends of ¢ are situated in Fy}.

Furthermore, again to improve the performance of the algonthm, it is nseful to store the
edges in a sequence e, ..., ey msuch away thatif i = ., then Alhead(e; )) = Alhead(e;)).
This has the advantage that every path (not only from source o sink) consists of a sequence
of edges with increasing rank.

After having found the initial potential, 8 number of iterations will be performed to find
successively the next maximal level of the smallest imerease of the potential along edges
that are sull there. The input of iteration § + 1 1s the network g; .= {V,. F;. E;. [5].[t]. A},
If E; =¥, the algorthm terminates. The iteration finds the next stepsize £ and updates
the labeling & accordingly. Let 7 be the collection of paths with endpoints in F; consisting
of edges in E;. Each path P in 7 gives a ratio of the potential increase along this path
divided by the number of its edges. In fact, the next stepsize £ equals the minimum over
these mtios.

Ab) — Ma)

EJ'—| =min|T a, e FL P E?.-"- froma to by,

2 We actually have written the algorithm in Matlah, For information, please send an email to
1.H.Reijnierse @uvi.nl.
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The iteration § 4 1 is given by:

Caleulate £+ (this submoutine will be given below).
Relabel as follows:
For j =1 to | Ej):
Adheadie ;) := max{i(headie;)), Atail{e;)) + £}
Update the set of fixed labeled vertices:
Let Fiyp = Fi.
For j = |E;| down to ©: (edges must be considered in decreasing order)
If headie;) € Fio and A{head{e;)) — Altail{e;)) = £

Fis1:= Fiap U ftail(e))).
Update the set of interesting edges:
Let Ejyy :=Ep\ {e € E; : both ends of £ are situated in Fio ).

This ends iteration i + 110 Fyop £ Ve leti ;=i + 1 and perform the ileration again,

The subroutine calculating the stepsize £+ 15 a generalization of the longest path algo-
rithm of the initial step. Instead of starting at the source and ending at the sink, paths can
start and end anywhere in Fj:

e i=1.  ({or any other upper bound)
For all a € F; with {e € E; ttailie) = a} &£ i
pla) =10.
For j =110|Ej|:
If tail{e; ) has a p-label and head(e; ) does not:
plheadie ;) := pitailie;)) + 1.
If both ends have j-labels:
plheadie ) = max{p(head{e;)), pitailie;)) + 1}
If headle;) € Fi:
Alhead{e;)) — Lia)
pihead(e;)) — pula)

fi+1 r=min{fie,

Remove the p-labeling.

In the example, £ = 3/22. Figure 7 shows the new labeling. The path with minimal ratio
has been depicted boldly and so are the elements of F.

Let us explain why an iteration finds a potential & with the next maximal minimum level
fio1.Lete e Ej.

If head(e) & F;. then:

A(head(e)) = max{A(a) + £i+1 | (a. head(e)) € E;} = A(tail(e)) + £+

So, the potential difference along e is at least 4.

If headie) € F;, then tail{e) is not. We can find an edge ending at tail{e) with potential
Fioq, just ke the {an) argument of max{d{a) + & | {a, taillie)) € E;}. If the tail of
this edge is stull not in F;, we can find another edge with potential £;4 0, and again, and
eventually find (backward) a path P & 7 from some node @ in F; to headie), of which the
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GO0 mn: i
L]

el

Fig. 7. The second lubeling.

last edge is ¢. Furthermore, we know that all other edges along P have a polential £,
Because

Eoar & Athead(e)) —Ada)  [Athead(e)) — A{tail(e)) | + (| F| — L)
i+1 = - .
IPl IP]

we find that A{headie)) — Aitail{e)) 1s at beast £,

Given that the potential values on elements of F; are fixed, £;2 18 an upper bound of
the minimal potential increase along arcs in E;, because of the path P in 7 with minimal
ratio. The new potential is a potential of which the minimal merease along such arcs equals
£i+1. S0, the next maximal minimal potential difference has been found.

When the algorithm stops, becanse all vertices have a fixed potential, the final poten-
tial is the one with lexicographically maximal differences. The nucleolus Nuig) has been
computed. This proves the following theorem:

Theorem 12. Let g be the modified digraph corresponding to a balanced simple flow net-
work. Then the algorithm described above computes the element of Nuig).

In the example, all nodes but one are elements of Fi. We need one other iteration, in
which the stepsize £7 equals 522, The final labeling becomes 1s depicted in Fig. 8.

4711 3701 ki1l lu/ll
L

.,
-

Fig. 8. The final labeling.
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8. The complexity

The final section investigates the complexity of the algonthms in Sections 6 and 7. In
Section 6, the construction of the modified graph g contains the Ford-Fulkerson algorithm,
the algonthm to detect the strong components of a directed graph and the Floyd-Warshall
algorthm to find the shortest path matrix.

The Ford-Fulkerson algorithm has a complexity of O | E]), as the search for a flow-
increasing path can be done in G| E|) steps and there are at most vp(N) = n ilerations,
when the core 1s nonempty. In fact, when a maximum flow X has been discovered, one can
increase the capacity of the X -used public ares from one to two and continue the search for
another low-inereasing path. When this is possible, the core of the flow game s empty;
when there 15 no flow-inereasing path one finds 8 minimum cul consisting of private arcs
and the core 1s none mpty.

The detection of the strong components of & directed graph has a complexity of O] E[)
by a well known depth first algorithm.

The Floyd—Warshall algorithm has a complexity of (] Va }'1"} = (| 'I.f'}l}l. It has to be
performed | V| times.

The computation of the nucleolus i Section 7 has at most |V,| iterations, as in cach
iteration the value of the polential Nu(g) in at least one new point is discovered. The i-th
iteration requires at most O] E; || F; ) steps. Beeause the graph g does not have multiple
connections), we have [Eg | < |V, i: Ls0 N E; | | F; 1) can be estimated by:

O(1E I F]) < O(1ElIVe]) € O(1VelP) < O(IVP).

Therefore, the entire computation of Nu(g) has a complexity of at most OV |4}|_ The total
complexity 1s the maximum of 7 |E| and |'|.f'|4.

Before one can hope w obtain an estimation of the complexity interms of n = |N| only,
one has to avoid the oceurrence of superfluous ares and nodes. This means that before one
starts with any computation:

(i) one has to remove nodes that cannot be reached from the source or from which the
sink cannot be reached,
(i) forevery are e one has to remove parallel pablic ares as long as the wtal number of
parallel ares is larger thann, 1e. |E| < n| 'I.f'il,
(1) one has to contract a public are withits preceding are when there 15 only one preceding
are or with 1ts succeeding are when there s only one succeeding arc. This means, paths
of length 2 or more without intermediate exits should contain private ares only.

In a preliminary (4| E|)-algorithm one can transform a general directed graph into a graph
satisfying (i), (i1) and (iii).

If there is not an overwhelming number of public ares, e g. | E| = ({n), then also | V] =
Mn) and the algorithm has a complexity of ((n’). This is in particular the case when
there are no public arcs.

Let us finish this section by a final remark conceming a recent result of Fang et al.
{2002). Their model differs from ours in the sense that capacities are not necessarily 1 and
public arcs are not allowed. Under these assumptions the paper shows that determining
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whether an imputation x is a core element is an N P-hard problem. A byproduct of Pro-
position 8 is that in our model this test can be performed in polynomial time. It can be done
as follows.

Suppose we have a simple flow network (V. 5,1, E, @, N, o) and an element x of BV,

o Determine a maximal cycle-free flow X and thereby v i V).

o Check whether v s an imputation: does it hold that x(N) = v (N) and x =7

o If 50, decompose X into ve(N) edge-disjoint paths Py, ..., Pu;{.w']- Define for cach
pad separately and for each node v on such a path £ a potential: pg(v) == x{5). in
which § is the coalition corresponding to the part of Py from the source to v,

o Check forall k, § whether pg{v) = peiv) for all nodes v situated on both Py and Py,
Moreover, verify that pg(t) =1 forall k.

o If 50, define a candidate-potential on Vy by: plv) == pelv) for an arbitrury path B
on which v s sitwated. Remove all X -used edges. By now, in order 10 have a core
element, it should be the case that all remaining paths have a decreasing potential.
With the algorithm of Floyd-Warshall, one can determing the pairs of nodes (a, b)
such that a path from a to b sull exists.

o [f this testis affimnative, the candidate-potential p s a potential indeed and the corre-
sponding core element v, equals the test-vector x.

The complexity of this test is of onder l.’?{m:ix{[V[“’,nlEI}}l. If there are, similar o the
maodel of Fang et al, no public ares, then both V and E are bounded by 2n, so we find a
complexity of order O(n*).
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