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Ahbstract

This paper studies the linear complementarity problem LCPM . ) over the second-order
{Lorentz or ice-cream) cone denoted hy A", where M is a n xn real square matrix and
g & R This problem is denoted as SOLCPIM, ¢). The study of second-order cone pro-
gramming problems and hence an independent study of SOLCP is motivated by a number of
applications. Though the second-order cone is a special case of the cone of squares (symmetric
cone) in a Euclidean Jordan algebra, the geometry of its faces is much simpler and hence an
independent study of LCP over A" may vield interesting results. In this paper we characterize
the Ry-property (x A Mix) e A" and ix. M{x) =0=x=0)ofa quadratic represen-
tation Py (x):=2aciacx)—aoxof A" fora, x e A" where ' is a Jordan product and
show that the Rg-property of Py isequivalent to stating that SOLCP(F,. ) has a solution for
all g & A",
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1. Introduction

In a p-dimensional real vector space R with the usual inner product, the sec-
ond-order cone denoted by A" is defined as A = {re R : |T|| £ xp} wherex =
{xg. ©)7 is indexed from zero. Given a n x n real square matrix M and a vector g
in RB" the second-order linear complementarity problem (SOLCP( M, g)) is to find
a vector v in A% such that Mx + g isin A% and {x. Mx + g} = A‘T{M.r +g) =10
Mote that the second-order cone 15 a closed convex cone which is self-dual in nature,
thatis, A% ={xr € R" - {x, ¥} = 0¥y € A" | It is well known that the second-order
cone is the cone of squares (see Section 2) of 1ts associated Evclidean Jordan algebra,
see [4]. In this regard the complementanty problem SOLCP s a special case of the
more general lincar complementarity problem studied in the setting of a Evclidean
Jordan algebra, see [6,9]. Howewver, the important feature which makes the SOLCP
interesting and draws a special attention 5 the nature of the faces of the second-
order cone. Unlike the cone of symmetric positive semidefinite matrices, which is
also studied in the setting of a Euclidean Jordan algebra, the only nontrivial faces of
A" are its extreme rays and its only nonpolyhedral face is the cone A" itself, see [5].

Second-order cone programming and complementanty problems have been sub-
jects of some recent studies. Pang ¢t al. have studied the stability of solutons o
semidefinite and second-order cone complementarity problems in [11]. Swdy of
smoothing functions for second-omder cone complementarity problems o develop
nonmterior contnuation methods has been made by Fukushima, Luo, and Tseng in
[5]. One can see the same paper and the references therein for various applications
of second-order cone complementarity problems. For a comprehensive exposition
to various applications and algodthmic aspects of second-order cone programming
problems, the reader 15 advised o refer to Alizadeh and Golfarb, [1].

Loewy and Schnewder [ 8] have studied the closed convex cone of matrices which
leave AL invariant, denoted by 11(A" ), and characterized the extreme rays of [1{A" ).
Our focus in this article is on the SOLCP{M, g) where the matdx M e [I{A" ). Our
study is motivated by a result proved by Murty [10] in the context of a LCP over
R" with a nonnegative square matrix. [t states that LCP(M _ g) is solvable for all
g  R" if and only if the diagonal entries of M are positive, where M isan xn
nonnegative matrix, that is, M(R?) © R Though we do not have a complete gen-
eralizaton of Murty s result o a second-order cone, in this artick we shall show that
for a guadratic representation Py of A" fora € A", defined as Py(x) :=2aoiao
xh— a* o x, see [4], SOLCP{ Py, g) has a solution for all g € A" if and only if a
or —a lies in the interior of A% . An important featre that is useful in showing the
above equivalence is the property of the faces of the second-order cone. Note that
the quadratic representation P, € f1{A") for all @ € R" and P,{A" ) = A" when a
15 invertible. The gquadratic representaton plays a fundamental role in the study of
Euclidean Jordan algebras. On the space of real symmetric matrices the quadratic
representation is seen o be the map X — AX A where A 15 a real symmetric matrix.
The solvability of semidefinite linear complementanty problem SDLCP(L, @) with
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LiX)= AXA, where A 15 real symmetnc, has been chameterized in terms of A
being positive or negative definite in [12,13].

We shall begin with a briel survey of some Jordan algebraic properties of the
second-order cone in Section 2. In Section 3 we present our main results and discuss
some open problems.

2. Second-order cone and its Jordan algebra

A Euclidean Jordan algebra V is a finite dimensional vector space over the field
of real numbers B equipped with anmner product {x, v} and a bilinear map (x, y) —
x oy, which satisfies the following conditions:

(lxoy=yox,
) xo {.r: ay]= 2o (xov) wherer? =x o x,and
() {xoy. g} ={y.x oz}

forall x, v, z € V. The product x o v is called a Jordan product. A Euclidean Jordan
algebra V' has an identity element, if there exists a (umgue) element £ € V' osuch
that v o e =¢ o x = x for all x € V. The cone of squares in V is defined as & =
{x ox:xe V] which is a symmetric cone [4], that is, K is a self-dual closed convex
cone such that for any two elements x, v € inl K, there exists an invertible lincar
transformation & : V — V suchthat &{K) = K and &(x) = y.

Forx € V let d be the smallest positive integer such that the set {e, x, x%, .. ., %1
15 lincardy dependent. Then & 15 called the degree of x. The rank of Vis defined as
the largest degree of any x € V. An element ¢ € V is an idempotent if ¢* = ¢. It is
primitive idempotent if it is nonzero and cannot be written as a sum of two nonzero
idempotents. A finite set { fi. fr. ..., Tt of primitive Wempotents in Vs a Jordan
Jrame il

L3
fiofi=0 ifji and ) fi=e
i=1

Theorem 1 ({Spectral thearem). Let V' be a Enclidean Jordan algebra with rank n.
Then forevery x € V, there exists a Jordan frame | f1, fa. ..., Ful and real numbers
Apha, ..., Ay such that

x=hfitrafrt -+ Aafa

The numbers A; (with their multiplicities) aw uniguely determined by x and are
called the eigenvalues af x.

With the above decomposition we shall define determinant of x £ A" as follows:

det(x) = Ajhar--- Ay
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x 1% sad w be invertible if det{x) = 0, in which case the inverse of x is defined as
i e

For a complete treatment on Euclidean Jordan algebra, one can refer to the book
[4] by Faraut and Koranyi. Brief summaries can also be found in [14,15].

In this paper we shall confine our attention to the case when the space is B whose
elements ¥ = (xp, ©)7T are indexed from zero, equipped with the usual inner product
and the Jordan product defined as

xoy=({x, v}, xoF + yod)'.

Then R" is a Euclidean Jordan algebra, denoted by A", with the cone of squares as

second-order cone which is seen tobe A" :={xr € R" : ||T|| < xp}. The interor of
A" is the cone given by int A", = {x € R" : ||¥| < xp}, see [1]. The identity element
in this algebra s given by e = (1,0, .. ., 0T, Also the spectral decomposition of any

rwithx = 01s givenby x =41 fi + Az f2 with
ki t=xp 4 ||X], A2 = o — |1F].

Frt

1 1
SLE/NEDT, and  fo = S —E/IEDT,

where { £, f2} constitutes a Jordan frume. From the above decomposition det{x) =
.rg — ||%||1*. The rank of A" is always 2 and it can be shown that all Jordan frames are
of the above form. Alsox € A" (int .4’1_} if and only if both &) and A7 are nonnegative
(positive), see [15]

A linear transformation Ly : A" — A" for x € A" is defined as Ly(v) ==x0 ¥
for all vy € A". We say that two elements v, y of a Euclidean Jordan algebra V
operator commute i x o (yvoz) =yo(roz) forall z €V, which is equivalent to
stating that Ly L, = L, L,. Specializing Lemma X.2.2 in [4] to the space A", we
have the following charac lerization of operator commutativity. Also see [1] where
an independent proof is provided.

Proposition 1. Two elements x. v of A" operator commute iff there i a Jordan
frame | fi, f2} such that x =, fi + A2 frand v = B fi + f f2 for some real num-
bfm‘ J"L|, J"LI, ﬁ| 5 ﬂ]'!ﬂ'ﬂl.

In view of the above proposition il is casy 1o see that vectors v and v in A"
operator commute iff either ¥ is a multiple of ¥ or ¥ is & multiple of 7.
The guadratic representation of A", denoted by B, fora € A", is the matrix

Py i=2L2 — L2 =2aa" — det{a).#

where F, 1sthe n x n matrix defined as

E D
Fui= (u —I)'

Observation . Fora £ A", P, € [1{A").
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Proofl. Case 1: When detia) # 0, F',,.{A‘l_}l = A" and P, (int A’_Z} = int A", see [1].

Case 2: When det(a) =0, aj = ||@||* and B, (x) = 2a"xa for x € A If g =
||, then @ € A" and 2aTxay — 2Ja"x|ag =0, because a’x = 0. Again if ap =
—lall, then 2a"xap + 2la T x|ay = 0, because a"x < 0. O

Below we shall state some of the important properties of a quadratic representa-
Licn.

Proposition 2 [1]. Let @ be a real number and x & A", For a € A" with the spectral
decomposition a = by fi + da f> with L) 3£ L2, we have the following properfies:

i)y =ap+ &l and by = ag— ||a|| are the eigenvalues of L, each with multi-
plicity one and corvesponding eigenvectors fi and fa, respectively. Also ag is
an eigenvalue of L, with multiplicityn — 2.

(ii) A7 = (ao + llal|)* and 13 = (ao — |l@||)* are eigenvalues of Pa. each with mul-
tiplicity one and corvesponding eigenvectors fi and [z, respectively. Also
detia) = ﬂ:l—] — |\@||? is an eigenvalue of P, with multiplicityn — 2.

(1) Py is an invertible matrix iff a is invertible.

(iv) Pag = 0” Py.

(V) Pp,ixy = Fa Py Py

(vi) det Pyix) = dctI{ﬂ Jdet{x).

(vii) If a is invertible, then P,(a~') =a and P,., = P, \.

Proposition 3 [5.6]. For x, v € A", the following conditions are equivalent:

xeA, ye AL, and (x, y} = O
(ifjredt, ved  andxoy=10.

In each case, elements x and v operator commute.

Definition 1 [2].
{a) A subset F of a closed convex cone C in A" is called a face of C, denoted by
FaC,if Fisaconvex cone and

zel, y—xelUad yeF = xeF.

{b) The smallest face of a closed convex cone C containing a point x £ C is defined
as

Plx) ={F:FalC,xe F}.

(¢) For a self-dual closed convex cone C the complementary face of the face F of C
is defined as

Fl={xeC:ix, ¥y =0¥yve F}L
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Theorem 2 [2]. Let F aC and x € C. Then F is the smallest face of C containing x
if and only if x lies in the relative interior of F.

In view of the above discussions the second-order cone A% can also be rep-
resented by A" :={x e A" : 2T F,x =0, xy= 0} and any x € A" has det(x) =
.rT}’”.r. The elements on the boundary of A" are exactly those for which xy = | 1.
Below we shall state some relations on the boundary structure of the cone A%, which
will be useful in this paper.

re AT U(—AT) = Faxe At U(—A%),
T Fx =0 = xeintA” Uint(—A"),
TFx20 = xedt U(—A"),

S Fax=0 = xebdA” Ubd(—A"),

T Fx=0 = x A U(—A").

Definition 2 [4]. A linear transformation ¥ @ A" — A" s said o be an antomor-
phism of A" if ¥ is invertible and ¥(x o y) = Pix) o P(v) for all x, v € A". The
setof all automorphisms of A" is denoted by Aut{ A").

One of the important properties of automaorphisms of A", which we shall make
use of in this paper, is that for any two Jordan frames {e), ez} and {f, fa}in A"
there exists an automorphism Y such that ¥ f) = e and ¥ f3 = 2, see [4]. Also
any automorphism ¥ of A" can be writlen as

10
e (n U) :
where U715 an (n — 1) x (n — 1) orthogonal matnx, see [8].
Definition 3
(a) A matrix M : A" — A" has the Ry-property if
xeA, Mx)e A", {x, M(x)}=0 = x=0.
(b) M is said to have the Q-property if SOLCP{M , g) has a solution for all g in A",

There is a nice geometric interpretation of Q-property in terms of the complemen-
tary cones associated with a matrix M which are defined as follows. Given a matrix
M A" — A" a complementary cone of M corresponding to the face F oof AL is
defined as

Krp={y—Lx):xeF,ye F*}.

The SOLCP{M, g) has a solution if and only if g £ Kg for some face F, see [9].
Thus M has the Q-property if and only if the union of all complementary cones is
the whole space A", The above interpretation is motivated by the study of comple-
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mentary cones in LCP over R, see [3]. But due to the nonpolyhedral nature of the
second-order cone, complementary cones in SOLCP need not be closed.

Example 1. Let M : A7 — A% be a matrix defined as

xp + xg
Mix) = 0
x2
Note that
Le+1/e) 0
M i_{(. ey ] = {]'1 as e — (.
| .

However, there exists no x € .43_' such that
0

Mxy=10
-1

Thus the complementary cone of M comesponding o the face A is not closed.

Howewver, 1t can be shown (in a more general setting) that the Ryg-property of a
matnx M provides a sufficient condition for the closedness of complementary cones,
see [9].

Fix a canonical Jordan frame {e;, 2} where

e =(1/2,1/7207 and e :=(1/2.-172. 7.
In case of a second-order cone with a fixed Jordan frame e, e2} consider the fol-
lowing subspaces of A", {Similar subspaces have been considered in Theorem 1V

2.1 in [4].)
Vii={reA" :xoe=x}=1{key: L e R},

VH:{IE.‘{”ZID(’I:I}: {fex:f e R}, and
|
Viz = I.rE A" ixoe = ;.r =roer={re A" iy =x; = 0L
Thus given an x € A" we can write
r=l(xp+xe;+{xg—x e + {00 x2. ..o, T e
We shall designate (xg + xp ) and (xg — x1) as the diagonal entries of a vector x with
respect o the Jordan frame {e), ez},

Observation 2. For a € A" we have the following relationship among its entries.
= :i‘l{im:i‘i:} if and only if (ap+a) 20 (=0, (ap—a1) 20 (=10, and
(@o +a1)(ap —ar) — [|@]* = 0 (> 0) where & = (ax. ..., an_1)".
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Similar to the notion of a diagonal matnx we introdece the notion of a diagonal
vector d € A" with respect 1o a canonical Jordan frame {ey, e2} as

d:)-.|¢.’|+)-.1i.'1, )L|,)LIER.

3. Equivalence of () and Ry-property of a quadratic representation

Proposition 4. Let M = 11{A"). Then M has the Ry-property if and onlv if
{x, M{x)} = 0 forall0 £ x e A",

The proof of the above proposition follows easily from the definitions.

Remark 1. For a lincar complementarity problem LCP{M, g) over R with
MR C R?, we have LCP{M_ g) is solvable for all g € R" iff LCP{M () has a
unigue solution zem, which 15 also equivalent o stating that M s stnctly copositve,
see [3].

Theorem 3. Let M € I1(A2). Then M has the Q-property if and only if M has the
Ry-property.

Proof. Observing the fact that {e, €2} is the only Jordan frame of A% unique up
to permutation, By-propeny of the above matnox M is equivalent w the property
that (e, Mie1)} = 0 and {e2, Miez)} = 0. Now suppose without loss of generality
that {e}, Mi{e)} = 0. We shall show that M does not have the Q-property. Take
g=er—e =0, — 1,{}}7. Let x € A% be a solution to SOLCP{M, g). Then we
have

x=Mhep+hwer and Mx) 4 g = fie) + frez

such that 41 = Oand 2 = 0. Since M(x) € A" and x £ 0, J3 = i) = 0. Thus
{er. M)+ g} =lel, LM {e)) + ex — &1} = — ey, €1} < 0, which contradiets the
fact that Mix) 4+ g € A" . The ‘“if pant” is apparent from Karamardian’s theorem [7]
on the solvability of the complementarity problem. [

Loewy and Schnewder [8] proved the following result which charactenzes the
extreme matnees of the closed convex cone of square matrices which leave the cone
A" invarant.

Theorem 4 [8]. Let M be ann x n real matrix, withn 2 3 Then M is  n extreme
matrix of II{A") (generates a |-dimensional face of 1{A%)) if and only if either
M(A®) = A" orM =uv" foru, v e bd A%,

Remark 2. Any M : A" — A" satisfying M(A") = A% can be wrillen as M =
P, wherea €int A" and ¥ € Aut{ A"), see page 56 of [4].
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Proposition 5. Let M € [I{A" ). Then M has the Q-property if and only if @M @7
has the Q-property forall @ : A" — A" such thar @({A" )= A",

Proof. Take an arbitrary g € A" and define § = @~ 'g. Then SOLCP(M. §) has a
solution ¥ such that

Fedl M(E)+§eA? and (¥, M(E)+4)=0
Define x = (@~ ") 71, Since both @', @7 & [1(A"), we have

xedl, M@ +0 'geal and [@Tx. MEOx+07'g) =0,
equivalently,

redt, OMOx4+ge A" and {:.r, OMATx +4)=0,
which implies that @M @7 has the Q-property. [

Theorem 5. Let M = wv” for u, v € bd A", Then M does not have the Q-property.

Proof. First we shall show that if M = f;f:,-r, where i, § €11, 2}, then M does not
have the Q property. When M = 1."|é"3- or M = L'|1:’T we can take g = (0, 1, 0T and
can show easily that SOLCP(M ., g) does not have 4 solution. Again when M = e'geT
or M = f;fg we can take g = (0, =1, {}}IT and can easily prove that SOLCP{M. g)
15 not solvable. In fact, n both the above cases SOLCP(M, g) 15 not even feasible.
Now we consider the two cases.

Case I: Suppose that v and v are linearly dependent. Then there exists an auto-
marphism ¥ of A" such that ¥u = ). By Proposition 5, uv” has the Q-property
implies that E[EF has the Q-property. Since we know that f|f|T is not Q). we have
proved our claim.

Case 2: Suppose that n and v are linearly independent. Then by Lemma 3.7 in
[&]. there exists a @ & [1{ AT ) with (A" ) = A" such that Ou = e and Ov = e2.
Again by Proposition 5, uv” has the Q-property implies that e .-3! has the Q-property.

Since we know that ejel is not Q, uv" does not have the Q-property. [

Theorem 6. For aguadratic representation Py of A™ . n = 3, we have the following
equivalence:

(1) aemA"” or —a eint A",

(1) Fy is positive definite.
(iii) SOLCP( F;.q) hay a unigue solution for all g € A",
(iv) P, has the Bg-propeity.

Proof. The proof of (i) = (ii) follows from Theorem 3 in [1], since all the cigen-
valoes of F, are positive. From (i1}, F, 1s positive definite implies that SOLCP(F,. g)
has atmost one solution for all g € A", Also from Karamardian’s theorem [7], Py
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has the Q-property. Thus (iii) follows. The proof of (i) = (iv) is obvious. To prove
(iv) == (1), ket us suppose that neither a € int fl‘: nor —a € int A% . To complete the
proof, it is sufficient to show that there exists some z € bd A" such that {a, z) = 0.
We consider the following two cases.

Case 1. When a € bd A% or —a € bd A", we can find a nonzero z € bd A" or
—z € bd A" on a face complementary to which a or —a lies.

Case 2. When a g bd A” and —a & bd A", there exists anx e bd A" and y €
bd A% such that {a, x} = 0 and {a, v} = 0. Since the inner product {a, -} 15 con-
tinuous on the line segment joining x and v denoted as [x, v], there exists a 7 =
ox + {1 —e)yfor( < o < 1 such that {a, Z} = 0. Since A% has faces of dimension
0, 1 and n only, either 7 lies on a one dimensional face of .4‘_L in which case we are
done otherwise 7 € int A" . It means that a=— Nint A" is nonempty where a* is the
orthogonal complement of the span of @ in A", Note that a— is a (n — 1) dimensional
subspace of A" intersecting a full dimensional cone A" in its interior where n = 3.
Henee from [3, Lemma 3.6] there exists an invertible linear transformation I on A"
such that £{A") = A® and MNa—) = {x € A" : x,,_1 = 0}. Thus there exists 4 non-
zero £ € a— such that 'z = e, which by [5, Lemma 3.3] lies on the boundary of A" .

Mow for the above chosen z we have {z, P (2)) = {z. {'_)ﬂ.raT —det(a) )z} =0,
which contradicts that F; has the Ryg-property. T

Lemma 1. If the guadratic representation Py has the Q-property then a is invert-
ible.

Proof. Taking —g € int A% ket x € A% be a solution to SOLCP(F,. g). Since
Pix)+ge A% and —g € int A", B, (x) € int A" . From Proposition 2, det P, (x) =

dELE{ﬂ} deti x) and since x € A", we have a is invertible. [
The following lemma is analogous to Lemma 4.3.2in [13].

Lemma2. Lei d =dje) + drex be a diggonal vector with nonzem eniries. Let
|d| = |d\ler + |dz|ez. Write d = |d| 0 5 where s = Lo £ e2. The coefficients af e
and e3 in the expression for s are determined by the signs af d| and d3, respectively.
If Py has the Q-praperty then P, has the Q-propeirty.

Proof. Fix an arbitrary g € A" and define § = P arlg) where Jd| = diler +
Jdlea. Let x € A" be a solution to SOLCP{ Py, §). Then £ := Py(x) +4§ € A"
is such that x o z = 0. We have 2 = Pyjeslx) +§ = By Pilx)+ P g = P

P Ill.;'lllP (xy+ P ] (g). where the |HHTI|IJ|£;U{HH{F I'::Tllmi.'l'j Illil'un'f F‘i‘{}p{}s\iﬂi—t”}: fl}fv}. ﬁm
by Proposition 2{vii), P T 1z = P T-‘TP x)+g=FF a]—;-[{r}l +g. Define vy =
P jax) and w = .F' 1(z). Then y e A%, w= Pyl +q € A and {y, w}=

{.r P T”P i 1z }:I_(]' Hence v € A% solves SOLCP( P, g). O
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Lemma 3. lers be a diagonal vector of the form s = te| £ 1 and s = +e. Then
Py does not have the Q-property.

Proof. Without loss of gencrality take s =) — ez = (0, 1, 0) 7. Then the matrix P,
will be

I 0O 0
P, =2ss" —deti)d, =0 1 0
0 0 -1
Consider a vector g = (0,0, —1,0, ..., 0). If v £ A" is the solution of the SOLCP

{F;. g ) then
yedi, R(¥)+qgeAd} and (y, Pi(y)+4q)=0.

The complementary condition {y, P (y) +g} = 0 gives us _1;;'; + _1.'|2 —n=>
Also from y € A% and P (v) +g € AL we have

+etye, and B Ey+ 0+ +y 4+
LT U O o e . L 5 alitime s gt P ;
Sul:e-.ullluung the value {_}I EL% ¥; I[I-[hth{}"rL two inequalities we get 2y7 = v and
2_1;" + 1 4+ y2 £ (), which are inconsistent, [

Theorem 7. Let Py be a quadratic representation of A", n = 3. Then P, has the
Q-property if and only if P, has the Ry-property.

Proof. Since F; has the Q-property we have by Lemma 1, a is invertible. By the
spectral decomposition and Theorem IV.2.5in [4] we can wrile a = o Ve + drPea,
where d), da = 0and ¥ € Aut{A"). Since PP, ¥T = Py, . by Proposition 5, P, has
the Q-property implies that Py, has the Q-property, which is equivalent o the state-
ment that Py has Q-property where d = dye) + daez. By Lemma 2, P, has the 3-
property where 5 is the vector corresponding (o  as defined above. Since Py has the
Q-properny if and only if s = +¢, citherd) > 0and db = Oord) = Oanddy = 0. It
means thateithera € int A% or —a € int A", which by Theorem 6 proves that P, has
the Ry-property. Conversely, Ry implies @ is evident from Karamardian®s theorem
[7]. O

The above result can also be extended to the inear complementarnity problem over
the direct product of second-order cones, which is defined as follows. Given a matnx
M on R and g € R the lincar complementarity problem over the cone K" is the
problem of finding an x € K" such that M{x) 4+ g isin K" and {x, Mix) 4+ g} =0,
where the cone K is defined as

K" := AY sooe ¢ AT,

withn=mny 4+ --- + ny.
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It should be noted that " is a Euclidean Jordan algebra with the usual inner prod-
uct and the Jordan product defined as the componentwise Jordan product of the cle-
mentsof A™ i =1...m. Formally, forx == (x.. .., Xon }IT andy = (Frseeey _1.',”}1-,
where each component vector x; 18 written in a row vector form, the Jordan product
15 defined as

xoPi=(Xp 0P, anyd Y O Ym)

The cone of squares with respect 1o the above Jordan product is the cone K. Also
the quadratic representation F; fora € B" is a block diagonal matrix of the form

Py, 0 EZeh 0
0 P 0
Fo= i : : '
0 0 0 Py,
wherea = (ay,.. ., i }IT. For further information one can see the Refs. [1.4].

Theorem 8. [In the space R" with the cone of squares K" and the Jordan product
defined above the following statements awe eguivalent:

(i) For a € R", Py has the Ro-property, that is, x € K", Paix) € K" and (x,
Fy(x)y = Oimplies x =10

(i) The lincar complemenarity problem LCP{F;, g) over the cone K" has the solu-
tion for all g € R".

Proof. The proof of the above theorem is apparent once we notice that Fj; has the
Ry-property ift and only if Py, has the Ry-propenty for each component vectora; € A’
fori=1,..., m. O

An open problem

In this paper we have shown that when the marix M = B is a quadratic repre-
sentation, SOLCP(M, g) has a solution for all g € R" if and only if SOLCP{M, 0)
has a unigue solution zero. However, it 1s not known whether the above equivalence
holds for all matrices M € [1{A%) for n = 3. This question remains open.
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