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'?'I This arbcle studies some geometrical aspects of the semidelinite linear complementarity pro-
1 blem (SDLCP). which can be viewed as a generalization of the well-known linear complemen-

tarity problem (LCP). SDLCP is a spedal case of a complementarity problem over a closed
convex cone, where the cone considered 15 the closed convex cone of positive semidelinite
matrices. [L arises naturally in the unified Formulation of a pair of primal-dual semideflinite pro-
gramming problems. In this arbcle, we introduce the notion of complementary cones in the
semidelinile setting using the [ees of the cone of positive semidelinite matrices and show
that unhke complementary cones induced by an LOP, semidelinite complementary cones
need net be closed. However, under Rg-property of the linear transformation, closedness of
all the semidefinite complementary cones induced by L is ensured. We also introduce the
notion of a principal subtransformation with respect Lo a lace of the cone of positive semideli-
nite matrices and show that for a sell-adjoint linear transformation, strict copositivily is equivi-
lent o strict semimonotonicity of each principal subtransformation. Besides the above, various
other selution properties of SDLCP will be interpreted and studied geometrically.
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1. Introduction

Consider the space 85" of all symmetric real » » n mairices and the self-dual closed
convex cone S of symmetric and real n x n positive semidefinite matrices. Given a
linear transformation L: 5" — 8" and Q0 € 5", the semidefinite linear complementarity
problem SDLCP{L, Q) is the problem of finding a matrix X € 8" such that

Ye&, Y=LX)+0e8, and (X, Y} = trace(XY)=10.

It is easy to observe that the above problem is a special case of a more general cone
complementarity problem, where the cone is specialized to be the cone of symmetric
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real positive semidefinite matrices. SDLCP can also be regarded as a generalization of
the well-known linear complementarity problem. But strikingly, the properties of LCP
do not carry over to SDLCP trivially as the semidefinite cone is nonpolyhedral.

Various aspects of the above problem have been siudied in recent years. The above
form of the problem is due to Gowda and Song [4] who initiated the study of solution
properties of SDLCP, particularly for Lyapunov and Stein transformations. Following
this article, the solution properties (existence and uniqueness of solutions) for a general
SDLCP as well as with special transformations like Lyapunov and Siein transforma-
tions have been studied in [5.7.8.18). Some stability related issues of SDLCP as well
as Lorentz cone complementarity problem have been studied in [17]. Algorithmic
aspects and an interior point algorithm with a more general form of SDLCP are
discussed in [14].

In this article, we introduce the notion of semidefinite complementary cones in
connection with the SDLCP, using the faces of the positive semidefinite cone, general-
izing the notion of a complementary cone studied in linear complementarity theory,
see [3]. Unlike complementary cones in the LCP [17], we show that semidefinite comple-
mentary cones need not be closed. However, Ry-property of the linear transformation
L provides a sufficient condition for the closedness of the semidefinite complementary
cones induced by L. In section 3, we study Murty's result [16] (Q-property is equivalent
to Ry-property in LCP for nonnegative matrices) in the semidefinite sefting and
provide a necessary condition for the transformations of the type L(S{)Z 8] to have
the Q-property. Continuing with the geometrical concepts, in section 4, using the
notion of a projection onto the subspace generated by a face, we introduce the
notion of principal subtransformations with respect to a face F of &) and show
that for self-adjoint linear transformations, strict copositivity is equivalent to strict
semimonotonicity of the principal subtransformations. Finally, we end this article
with a discussion on the question as to whether the matrix representation of a transfor-
mation L with the P-property, with respect to the canonical basis in 87, is a P-matrix.

We use the symbol X=0 (= 0) to say that X s symmeiric and positive semi-
definite (positive definite); the symbol X = () means that —X = (. We write {X, ¥} for
trace (X'Y). The orthogonal projection onto the subspace S 15 denoted by Projs, and
span £ represents the linear span of a subset £ of a linear space. A nonempty subset
Fof a closed convex pointed cone K in 8" is a foce of K if Fis a convex cone and

XeKk, Y-—XeK and YeF=XekF
A complemeniary face of Fis defined as
= {Xe FX. Y =0vYeF]

Also the smallest face of 5 containing X is the face containing X in its relative
interior, see [2].

2. Semidefinite complementary cones and nondegenerate transformations
The following theorem is a restatement of a theorem proved by Hill and Waters ( 1987)

in [10]. See also Pataki [19], wherein the notions of faces and complementary faces are
used to study geometrical concepts in cone linear programming problems.
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THeOREM | Let X € 8] be a matrix of rank r. Then

(i) there exists an orthogonal U, such that the smallest face of 8 containing X is

. v Y o T, o+
F= Io(n ﬂ)o .res+}

(i) the face complementary to F is

- SR ! 00 fT. = r—F
F _lo(ﬂ Z)o.zes‘; }

(i) the dimension of the fuce Fiv (rir 4+ 1))/ 2 and the dimension of the complementary
face F* is {{(n — r){n — r 4+ 10),/2.

At this point we notice that due to the nonpolyhedral nature, for any face Fof 8,
span F+ span F° does not generate the whole space S*. This leaves a nonzero residual
subspace (spanF +span F*)" of §”", which makes the geometry of SDLCP different
from that of LCP. Note that in case of £] the residual subspace is {0}.

Definition 1

{a) Given a linear transformation L: 8" — 8", a semidefinite complementary cone of L
corresponding to the face Fof 87 is defined as

Kr={Y—LX):Xe F.Ye

{b) A linear transformation L is said to have the Ry-property, if ¥ =0 is the only
solution to SDLCP(L, 0).

{c) A linear transformation L: 8" — 5" has the Q-property, if SDLCP(L, Q) has a
solution for every 0 £ 8%

Mote that corresponding to every face # of the cone 8, there is a semidefinite comple-
mentary cone Kp. Thus there are an infinite number of semidefinite complementary
cones. Mote that the given SDLCP(L,Q) has a solution X, if and only if there
exists a semidefinite complementary cone Ky, such that Ye F, Y= L(X)+ Qe F°
and 0 = ¥ —L(X)e K. Thus the union of all semidefinite complementary cones is
the set of all symmetric matrices ., for which the SDLCP (L, () has a solution. But
unlike complementary cones in LCP over R, complementary cones in SDLCP need
not be closed.

Example I Let L: 8" — 8" be a linear transformation defined as

(5 22 )= D)

Note that
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However, there exist no X = () such that
0 -1
o= (2 71)
Thus the complementary cone of L corresponding to the face Si is not closed.
In Theorem 2 we give a sufficient condition for the closedness of semidefinite com-
plementary cones induced by a given linear transformation L in terms of its Ry-prop-

erty. For this we appeal to a result which can be deduced from Theorem 9.1
in Rockafeller [20], but an independent proof has been supplied here.

Lemma 1 Let © be a elosed convex cone in B” and A: R'— R If Az=0,zeC
implics = =0, then A(C) iv closed.

FProoft Let {x,.} be a sequence in C such that 4(x,) — . We shall show that y € A(C).
When y =0 the result is trivial, so consider the case y=£0. Then x,#£0 for large n and
hence there exists a subsequence {x,,} of {x,} such that x,/||x,| converges to some
g€ C. Thus A{x,)/|xmll = Als). Note that the sequence {x,,} 5 bounded, otherwise
we have A(s) = 0, which by the hypothesis gives s=0, a contradiction. Since {x,,}
is bounded, it has a subsequence converging to some x e (. Thus we have y=
Alx) € C, which completes the proof. [ |

Tueorem 2 Jf L 8" — 8" has the Ry-properiy, then all the complementary cones of L
are closed.

FProof” By the defimtion of the Ry-property of L and Lemma 1 above, it is apparent
that L(F) is closed for every face F of the cone 5% . Consider a linear transformation
M: 8" % §"— §" defined as M(X, )=X+ VY. Let Kp={Y-LX): XeF, YeF"
be a complementary cone corresponding to the face F of 8. Let K = {¥: ¥ e F*}
and K» := [—L(X): X € F}. Then M(K|,K:) = K| + K> = Kr. Now, M(Y, —L(X))=0
for some X € F and ¥ e F* implies that ¥ — L(X) = 0. Hence L(X)e F*, which by
the Ry-property vields X =10. Thus we have ¥ = LX) =0. Appealing to Lemma 1
again, we gel Ky is closed. ]

Mondegenerate matrices [3] are studied to characterize the finiteness of the set of
solutions to a linear complementarity problem LCP{M,q), which is geometrically
equivalent to the assertion that for a given g € R there can be at the most one solution
to LCPIM, g) in every complementary cone induced by M, ie. each complementary
cone is nondegenerate, see [3]. Since there are finitely many complementary cones
(finitely many faces of R}), for a nondegenerate M, LCP(M,q) has finitely many
solutions, for each g. Motivated by this we define the notion of a nondegenerate
semidefinite complementary cone and study its connection with the notion of non-
degenerate transformations introduced and studied by Gowda and Song [7] in the

semidefinite setiing.
Definition 2

{a) A semidefinite complementary cone Kp above is called nondegenerare, if the comple-
mentary fransformation

Tr:span F 4 span F* — L{span F) 4 span
defined as THX + ¥) = ¥ — L{X) 1s invertible.
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(b} A linear transformation is nondegenerate (see [7]) if
XLiX)=0= X=0.

Prorosimion 1 A finear transformation L: 8" — 8" s nondegenerate i and only if each
af the semidefinite complementary cones of L iy nondegenerate.

FProof If part

Let all the semidefinite complementary cones of L be nondegenerate in the above
sense. Let XL(X) = 0 for some 0 #£ X € 8 of rank r. Then there exists an orthogonal
matrix {/ and diagonal matrices £ and E, such that

_ il B 0N @ ONar
X_L({} {})b and L{X}_L(ﬂ E)L.

Consider the senudefinite complementary cone K corresponding to the face

. Y 0V r o

Since X £ span Fand L(X) £ span F* | the complementary transformation Tp: span F4+
span F* — L{span F)+span #°_ defined above is not invertible because Te(X 4+ L(X)) =0
with X4+ L(X):0, which contradicts our hypothesis that Ky 1s nondegenerate.
It follows from here that L is nondegenerate.

Only if part

Let K be a semidefinite complementary cone corresponding to the face F. Let there
exist Xy, X2 € Fand ¥, Y> e F® such that ¥) — L(X|) = ¥> — L(X3). Then (X, — X3)
(¥ — Ya) =X, — X5)0X) — X3) =0. From the nondegeneracy of the transformation
L, we have X, = X>. Again, for LX)+ Y& Lispan F) + span F*, TH—X+ ¥)=
LX)+ Y. Thus T'gis one-one and onto and hence invertible. n

The following example due to Gowda and Song [7] shows that even if L 15 non-
degenerate, there may be a @ for which there are infinitely many solutions to
SDLCP(L, 0). In fact, the same example can be used to illustrate that all the semidefi-
nite complementary cones are nondegenerate in the sense defined above, and hence
each of the infinitely many solutions of SDLCP(L, Q) comes from a distinct semidefi-
nite complementary cone.

Example 2 Let L: 5 — 5 be defined by L(X)=—X Let Q =/ Consider any
one-dimensional face £, Note that the semidefinite complementary cone corresponding
to Fis Kp={Y+X:XeF YeF* Consider now the complementary transforma-
tion Tp:span &+ span F — Lispan F) +span F*, which is seen to be THX+ ¥) =
X'+ Y. This is obviously invertible.

3. Q-property of positive semidefiniteness preserving transformations

In this section, we study the transformations L: 8" — 8" for which L(§))CS].
We call such transformations semidefiniteness preserving. Special cases of such
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transformations have been studied earlier by [5.8.,18]. These transformations
generalize a nonnegative matrix in the context of the linear complementarity
problem.

We first note that transformations satisfying L(5) = &' can be represented as
L(X)= AXA" for some invertible matrix 4 of order n, see [21]. However, there are
semidefiniteness preserving transformations which cannot be represented as AXA".
The following is an example.

Example 3 Consider the transformation L: 87 — 8 given by

X +xn 0

- " _ {1 Xz
LX) = ( 0 it ) for all symmetric X = ( )

X2 X

If we try to represent it in the form AXA7 we get inconsistent equations in the elements
of the matrix A.

For a general L the semidefiniteness preserving property and in addition the
Rg-property, have the following interpretation in terms of the faces of 5.

ProposiTioN 2

(i) A transformation L has the property L(ST)C 8 if and only if for every pair of one
dimensional faces F and G of the semidefinite cone S’_"_, (Y. LX) =0, ¥vX e Fand
YeG.

() Let L{S‘_lr_] ES‘_;_. Then L has the Ry-properiy i and ondy if (X, LIX)} = 0 for every
nonzero X € F, where F iy any I-dimensional face of S,

Proof

(i) The ‘only if part’ is trivial. For the ‘if part’, note that any ¥ =0 can be written
as the sum of matrices on one dimensional faces, i.e. ¥ =YL, VEVT where V is
orthogonal and E; is a nonnegative matrix with all entries 0 other than the
ith diagonal entry. Let X'=0 be given. Consider an arbitrary ¥ =0. Writing
X=Y1_,UDUT for U orthogonal and Y as above, we get (¥, L(X)} = 0, since
each term is nonnegative by hypothesis. Since Y= 0 is arbitrary, from the self
duality of 87 we get L(X) is positive semidefinite.

(it The proof of this part also follows easily from the definitions and the argument
used above in part (i). [ |

Remark 1 MNote that the defining condition (X, L(Y)} =0, for all X e Fand ¥ £ @7, is
a generalization of the condition that e;Me; = my; = 0, where M is a square matrix and
e; 15 a vector whose ith entry is 1 and others (.

We say that a square matrix M of order n s a Q-matrix (see [3]), if LCP{ M. g) has
a solution for each g € £, In the context of the inear complementarity problem, Murty
[16] shows that a nonnegative square matrix M 1s a O-matrix if and only if the diagonal
entries of M are positive (g;Me; = 0), which is equivalent to saying that M is an
Ry-matrix. This motivates us to introduce the following definition.

Definition 3 L has the positive diagonal property, if for every one-dimensional face F
of 81, {X, L(X)} = 0 for every nonzero X € F.
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The above proposition shows that a semidefiniteness preserving transformation has
the Ry-property if and only if it has the positive diagonal property. Al present we
are unahble to setile the question whether for such transformations Q-property implies
Ry-property. However, we have the following resuli.

Tueorem 3 Let L: 8" — 8" satisfy L(S})C 8. If L has the Q-property then for every
one-dimensional face G there exists a one-dimensional face F of S|, such that
(Y, LX) = 0 for all nonzero X € Fand Y e G

FProgf” Suppose the result is not true. Then without loss of generality we assume
that (£, UTL{X)U/} =0 for all rank 1 matrices X =0 and some fixed orthogonal
matrix (. Consider the matrix

-1 0 0

01 0
0=

0o oo 1

Let R= UQUT. Since L(X) is positive semidefinite for all X >0, it follows that for
all X =0 at least (n— 1) eigenvalues of UT(L(X)+ R)U = UTL{X]U+Q are positive.
Since X=0 cannot be a solution to SDLCP(L, ), it follows that if X is a solution
to it, then the rank of L(X) + R must be (n — 1) and hence ¥ must have rank 1. Now
for any rank 1 matrix X =10,

(En UTILXN + RUY = (), UTLOUY +(E). Q) = —1,

which shows that any X'=0 of rank 1 cannot be a solution to SDLCP(L, R). Since
X is an arbitrary rank | matrix, it follows that there s no solution o SDLCP(L, R).
This concludes the proof. [ ]

The necessary condition for Q-property proved in Theorem 3 is seen to be
equivalent to

LiXy=0, XY=0=X=0,

where L¥ is the adjoint of L, which immediately leads to a following corollary.
CoroLtary 1 ff L: 8" — 8" satisfying LIS])C 8 has the Q-property then LNF) s
closed for every face Fof 5.

In the last result of this section we observe that a nonnegative matrix 1s a J-matrix
if and only if a related linear transformation on 8", to be defined below, has the
Q-property.

Tueorem 4 Let M be a given nonnegative matrix and define the n = n diaggonal mairix
A; by taking its jeh diagonal entey as my, the (i, j0th entry of M. Let the transformation L
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he defined hy
{41, X} 1] 0
0 {42, Xy ... 0
LX) =
0 0 0 (4,X

Then L has the Q-property i and only i M s a Q-matrix.

Proof Suppose L has the Q-property. Given any g € R" let Q denote the diagonal
matrix whose ith diagonal entry is g, Note that SDLCP(L, Q) has a solution X,
since L has the Q-property. Define x € R" as x; = x;. Then it is easy to note that
x>0 and that x is a solution to the LCP(M,g) proving that M is a (-matrix.
Conversely, note that M is a Q-matrix if and only if all the diagonal entries of M are
positive, see Murty [16]. We shall show that L is Ry when M is a (-matrix. Let
X =0 solve SDLCPIL.0). Then XL(X)=0 implies .1',-,-{21%.::?,-)-.1",;+m,-,-.t,-,-] =} ¥i.
Since my; = 0 Vi and my = 0 Wi &£ j we get x; =0 ¥i, which in urn gives X =10. Also
on observing the fact that for any Q= 0, SDLCP(L, Q) has the unique solution
X =0, it follows from Karamardian's theorem [13] that L has the Q-property. |

4. Relationship between sirict copositivity and strict semimonotonicity

For a linear transformation L: 8" — &, we say that

(a) L is copositive (strictly copositive) if {X, L(X)} = 0(=0) for all X =0 (nonzero
X>0)
(b) L has strict semimonotone (SSM or E)-property (see [4]) if

=0 XLXY)I=LX)X=0=X=0

{c) L has the semimonotone property or the Eg-property (see [4]) if L+ &f has the
SSM-property for every g = (.

The above definitions are motivated by the notions of copositivity and semimonotoni-
city in linear complementarity problems and the next two theorems study the relation-
ship between the two properties in the semidefinite setting.

Tueorem 5 For any linecar  transformation L: 8" — 8 we have the following
implications
(1) L iv copositive = L hay Eg-property.
(i) L ix sevictly copositive = L hay SSM-property.
(i) L is copositive = SDLCP(L, () has a wigue solution for @ = .
(1v) L iv strictly copositive = SDECP(L, () hay a wigue sofution for O = 0.
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FProgl” We shall present the proof of (i) and (ii1). The proofs of the other two parts
are similar.

(1) Fxane =0 Let X = 0and X(L4+)X)=(L+eNXIX =0 IfT X #£0, then by
copositivity of L it follows that

LX)+ =X LX) +elX X =0

On the other hand X(L + /) (X) = 0= (X . LX)+ X)) =0, a contradiction!
{1t} Let X = 0 be a solution to the SDLCP(L, ) for some @ = . Then

X=0, LX)+Q=0 and (X LX)+0)=0

Now, (X, LX)+ 0 =0 mmplies (X, =0, which in turn gives (X, 0} =X0 =0
resulting in X = 0. |

In the context of a LCP, strict copositivity and strict semimonotoniaty are known
to be equivalent for real symmetric matrices, see [3]. To study a similar kind of relation-
ship in a SDLCP, we introduce the notion of a principal subtransformation of a linear
transformation corresponding to a face Fof 8. Observe that this is a generalization of
the concept of a principal submatrix of a matrix in R,

Definition 4

(a) Let L: 8" — 8" be a linear transformation and F be a face of §%. Then a princi-
pal subtransformation of L, with respect to a face Fis a linear transformation
Lpp: span F— span I such that Lpe(X') = Projyp, pE(X) for X € span F.

(b)Y Lpp i strictly semimonotone if

Xe F, Xand Lge(X) commute, and XLgdX)e—F=X=10.

Remark 2 The notion of a principal subtransformation in a semidefinite setting
was also introduced independently by Gowda et al [8]. Though the connection of
their notion with our notion has been described in detail in [15], our notion of the
principal subtransformations corresponding to faces of 87 seems to be more peneral
and geometric in nature.

In order to study the connection between strict copositivity and the SSM-property,
we shall generalize Theorem 1 in [12] to the semidefinite setting.

Lemma 2 Ler L2 8" — 8" be a self~adioint linear transformation. Then, L is stricdy
copositive i every principal subtransformation Leg of L hay no elgenvector V' oin the
relative interior of F with avsociated efgenvalue 3 < (.

Proof” Suppose there exists a nonzero Xy =0 with (X L(Xy)y = 0. Define
S={X =0 X0, (X, LX) =0} Let m(X) denote the number of positive eigen-
values of X. Since we can choose an X € § that has the least number of positive
eigenvalues among all X €8, we can assume, without loss of generality, that
r=miXy) = mX), VX e & We consider the case r = 1. (For r=1 the proof follows
easily.) Let F be the smallest face containing Xy and X :={Y: Ye F, | Y| =1}
We can also assume without loss of generality that | X, || = 1. Consider the function
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QYY) = (¥, L( ¥)) restricted to the set %. Note that Xj is in the relative interior of 3 and
{Xo, LX) = 00 Moreover, any matrix X on the relative boundary of % will have less
than r positive eigenvalues and hence for such a matrix X, (X, L(X)) = 0. It follows
that O ¥) restricted to X will attain its minimum at some point F in the relative interior
of % and (V) = 0. But then V¥ would be an eigenvector of Ly with a negative or
zero eigenvalue, contradicting our hypothesis. Thus, L is strictly copositive on §7. B

THeorREM 6 Suppose L iy self~adfoint. Then L iy strictly copositive §f and only if every
principal subtransformation Lpe of L is stvictly semimonotone .

Progf For the “only if” part note that if L is strictly copositive over 5}, then every
principal subtransformation Ly of L is siricly copositive on F. Thus it s sufficient
to show that L is stricly semimonotone, which follows from Theorem 5 proved
above. Now assume that L is not strictly copositive. By Lemma 2 above, there exists
a nonzero face F of the cone & such that Lee(X) = AX for some X in the relative
interior of #F and A < (. Thus we have

YEF X=X esr

which contradicts the fact that L, has the SSM-property. ]

5. Relationship between P-property and P-matrix property

Definition 3 For a linear transformation L: 8" — 8", we say that
(a) L has the P-property (see [4]) if

XYe&', XLXY=LXX=0=X=0
(b} L has the P-property if
Xespan F, X and Lge(X) commute, and XLpdX)e—F=X=(.

{c) a matrix M & R s a P-matrix (see [3])1f all principal minors of M are positive.

A matrix A e R™" is positive stable if the real part of every eigenvalue of A is
positive. Given a matrix A, the Lyapunov and Stein transformations are defined by
LiX):=AX +XAT and S4(X):= X — AXA", respectively.

Given a linear transformation L: 5" — 8§ we denote by N(L) the matrix of
L of order nin+ 1)/2 corresponding to the basis {£j) where E; for i# ), is the
symmetric matrix whose ijth and jith elements are 1/v/2 and other elements are 0,
and £ is the symmetric matrix whose ith diagonal entry is 1 and all other entries are
equal to 0. The elements in a column of this matrix represent the matrix L{E,) as a
lincar combination of the basis elements Ej; taken in the order {E, E). En,
E\3, Eay, B3y, Elgy ..., E.}. MNote that each column will have nin + 1)/2 entries.

We say that L has the P-matrix property if N(L) is a P-matrix. The motivation for
asking whether a L with P-property has the P-matrix property is partly the issue sindied
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in Theorem 8 of [4] (also see [6]). Also, when L is sell-adjoint, we have the following
equivalence:

Lgp has the P-property for all F < L has P-property < L is strictly monotone
< N(L) is symmetric positive definite (see Theorem 1 in [8]). In this section we shall
study the relationship between the P-property of L and the P-matrix property of L.

The following example shows that AN(L) may be a P-matrix, but Ly does not
have the P-property for all F.

Example 4 For

the matrix of the Lyapunov transformation L 4 is

+ QR Uiy S
N(L)=]0 2 =23
0o 0 2

Note that A'(L4) is a P-matrix. However 4 is not positive definite, which implies from
Theorem 12 in [9], that not every principal subtransformation of L4 has the P-property.

The next example shows that P-property of L need not imply that ML) is a
FP-matrix.

Example 3 Consider a Lyapunov transformation L,: §° — 5. Take

1=(73 3)

MNote that 4 is positive stable and hence from Theoerm 3 in [4] L, has the P-property.
The matrix of L 4 is

) 22 0
ML)=]| 242 1 22
0 247 4

which s not a P-matrix.
Given a set of indices = {§) =i = --- = i} where | = {}; i = n, the canonical face ¥
of 8§ corresponding to a is the face defined as

F, = Strl 0 P,
0o 0
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of &, span F 4+ span F* does not generate the whole space §". This motivates us to
study a class of linear transformations for which

Lispan F,) Cspan £, 4 span F‘u‘

where F, is a canonical face. In what follows we shall characterize these transforma-
tions and study the P-property and the P-matrix property for these transformations.
We shall assume, without loss of generality, the following form of a linear trans-
formation L.

(A, X}y - {dga X}
L{X) = : : (1)
{‘4JI|"X} {AJHI" X}
where 4; and Ay are n x n symmetric matrices and Ay = 4y for all i je{l...., n}.

We will use the notation ay for the (i, f)th entry in the matrix 4,,.

Tueorem 7 A lincar transformation L: 8" — 8" weitten in the form (1) satisfies
L(span F,) < span F, +span F2 for all e {1.2....n})..." iff every entry other than the

with i # .
Proof” If part

Let e c{l.2,..., n} and Lpp be a principal subtransformation of L corresponding
to F,. We shall show that L(span F,) C span F, +span F2. Without loss of generality
assume that e =1{1,..., k}, where 1 = & = n. Consider an arbitrary X € span #, and

Then by our hypothesis {4;. X} = 0, which immediately proves our claim.

Only if part

Consider an n x n symmetric matrix 4 for i,je{1.2,..., n}, { #j. We shall show
that every (k, ith entry of A; is zero where (k,0) £ (i, /). Let F,, be a canonical face
of 8 corresponding to o) := {1.2,...., n}\ {i}. Since L(spanF, )Cspan £, +span £, .
we have {4, X} =0V¥.X espan F,, which gives (4;), ., = 0. Thus all the (&, )th entries
of A other than k=i or /=i are 0. Similarly (4), ... =0 for ax:={12,....0}\ {J}
which shows that every (k,/th entry of A, other than k=j or /=j is 0. Thus every
entry other than (i f)th entry of A, is (. ]

Tueorem 8 Suppose L: 8" — 8" has the property that L(span F,) € span F, 4 span F&

Jor all aC{1,. ., nl with Lispan F ) CspanF, for o ={1.2,.. .r}, 1 =r =n. Then

{il=sfii) = (iii) in the following statements

(1) L has the P-properiy.
(i) Al the real eigenvalues of L and those of ity canonical principad subtransformations
dre positive.
(i) N(LY is & P-matrix.
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FProgf” (1) = (i)
Let F be a face of & for which L{spanF) Cspan ¥+ span F*. Then for any
XespanF, XL(X) = XLpplX) and LIX)X = Le( X)X, This immediately gives us that
Lpp has the P-property when L has the P-property. Now by wsing Theorem 1
in [8], the above implication follows.
(i) <=(iii)

We assume w.lg that the given L is represented in the form (1). The proof is by
induction on n. We first verify the theorem for n = 2. For n =2, N(L) is given by:

=
o
=

a{ I ﬁal -'. o
NLY=] 0 243 0
0 2a3 B

The hypothesis that the real eigenvalues of the canonical principal subtransformations
are positive shows that the diagonal entries a}] and 33, and the determinant of the
above matrix are positive. From the structure of the matrix it follows that 24]3 is also
positive. Further note that any principal minor of the above matrix is a product of a
subset of the diagonal entries and hence is positive. Thus the theorem holds forn = 2.

fncduction hypothesis: The theorem is true when n = k.

We shall now show that the theorem holds when n=&+1. When n =&+ 1
the matrix (L) of order ((&+ 1)(k+ 2))/2 can be partitioned as follows: Let o =

# A C

where 4., is of order kik+ 1)/2, 8 is of order (k4 1) = k(k+ 1)/2, C is of order
(hik+ 1)/2) = (k+1) and & is of order (k+ 1) = (k+ 1). The matrix 4 is the same
as N'(Lg,r,) where F, is the canonical face of 8 corresponding to a. Since L and all
its canonical principal subtransformations have the property that all their real eigenva-
lues are positive, it follows by the induction hypothesis that 4., 15 a P-matrix. We now
note that B=10. This is so since the column entries in the block 8 are the
coefficients of Ey..\y for 1=/ = (k4 1) in the representation of I{Ey), 1 =i =k,
l=j=k i=j and by our hypothesis L(Ej;) € L{span F,) € span F,. Since B is
zero, any principal minor of AN{L) will either be a principal minor of 4,, or a product
of a principal minors of 4., and a principal minor of G. Note that 7 is given by

= L4110
2a 471 0 0
kA1)
n

; 0 “a+ 2 0
r=

A M1 A S k-1 k1)

*c“uul: *’C“‘zqun “{£+Ix£+|:
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Since G 1s lower triangular, it follows that any principal minor of G is a product of
some of its diagonal entries. That these diagonal eniries are positive follows by consid-
ering the canonical principal subtransformations Lg, ., of L and using our hypothesis
about the eigenvalues of such canonical principal subtransformations. From these
observations it follows that A(L) is a P-matrix. [ |

Below we give an example to illusirate the above proposition.

Example 6 Consider a Stein transformation §4(X) = X — AXA" corresponding to

_fan an
"'—(ﬂ {})'

ltis easy to check that § 4 satisfies the assumption made in Theorem 8. The matrix of §
with respect to the basis {E), £2, En} is

1 —aq —~2ana2 —dis
N(84) = 0 1 0
0 0 1

which is not a self-adjoint matrix. The eigenvalues of 4 are 0 and ) and from
Theorem 11 in [5] we have &, has the P-property iff |ay| < 1. Thus choosing
layy] = 1 it s immediate that N(54) is a P-matrix.

ProrosiTioN 3 For A € R** we have the following implications:

(1) (L g)pr has the P-property for all F = (L 4) iv o P-mairix.
(i) N(Lg) is a P-matriv = Ly has the Pproperty.

Proof
(i) For

i) &2
A= 11 12
ay an

2a ﬁ(ﬂj 0
ML) = 2oy an +an 2ap
0 V2ay 2am

note that

Let (L4)gp have the P-property for all F. Then from Theorem 12 of [9], A is positive
definite. From simple calculations we can easily see that all the principal minors of
ML) are positive. Hence N(Ly) isa P-matrix.

(it If(L4) is a P-matrix, then detd = (. The eigenvalues of 4 are given by

TriAy+ J{Tr{fi]]: — ddet( 4)
A= 3 A

Since det(A) = (), the real parts of the eigenvalues of 4 are positive. Hence A is positive
stable and L, has the P-property. ]
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We do not know if the above proposition can be proved for any n.
We conclude the article by presenting an example, which shows that P-property of

Lgy, for all F need not imply the P-matrix property of L.
Example 7 Consider L(X) = AXAT with

G 7).

Mote that
1 =22 4
MOD=]242 -1 —62
4 642 9

Since 4 is positive definite we can check easily that Lgp has the P-property for all ¥
(see also Corollary 6 in [8]) but A(L) is not a P-matrix.

6. Concluding remarks

(1) Since Ry-property is implied by the P-property, strict semimonotonicity and the
nondegeneracy of a linear transformation L on 8", complementary cones are
closed under any of the above stated properties.

(i1} Another question of interest, as it is relevant to the solvability of a SDLCP(L, (),
is: are the complementary cones corresponding to a transformation L with the
Q-property closed? Except for an affirmative answer in some special cases like
Lyapunov [4] and Stein transformations [3], where Q-property is equivalent to
P-property, this question remains open.
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