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In this article, we introduce a new matrix class almost & (a subelass of almost Ag-matrices
which are obtained as a hmit of a sequence of almost M-matrices) and oblain a sullicient
condition For this class to hold Q-property. We produce a counter example Lo show that an
almost & n@-matrix need not be a Be-matrix. We also introduce another twn new limiting
matrix classes, namely N of exact order 2. E(d) lor a positive vector o and prove sulicient
conditions [or these classes to satisly  Q-property. Murthy et @l [Murthy, GSR.
Parthasarathy, T. and Ravindran, G., 1993, A copositive J-matrix which is not R,
Mathematical Programming, 61, 131-135] showed that Pang's conjecture (Ex 0@ < Ao is
not true even when £51s replaced by Oy We show that Pang's conjecture is true il £, 15 replaced
by almost Oy, Finally, we present a game theoretic prool of necessary and sullicient conditions
of an almost Pe-matrix sabsfying O-property.
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1. Introduction

The notion of an almost type class was introduced by Viliaho for the first time where
he defined and thoroughly investigated the class of almost copositive matrices [1.2]
and showed that such matrices are of crucial importance in deriving criteria for
copositivity. Olech et al. [3] introduced the class of almost N-matrices, namely the
class of matrices whose determinant is positive and all proper principal minors are
negative. Pye [4] studied the class of afmost Py-matrices of order n whose determinant
is negative and all proper principal minors are nonnegative.
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Suppose a class of square matrices of order n is defined by specifying a property J
which is satisfied by all proper principal submatrices but the property does not hold
for the matrix. 4. We then say that 4 € R"™" is an almost Y-matrix and the class of
such matrices is the almost YV-class. For example, for an almost N, matrix, all proper
principal submatrices are Ny, but 4 & Ny. The almost type classes are referred as
exact order matrices of order | in Mohan ¢ af. [5]

We will now describe the finear complemeniarity problem, which is stated as follows:

Given a real square matrix 4 of order n and a vector g € R", the linear complemen-
tarity problem is to find w € R" and z € R" such that

w—Az =g, w=0 z=0 {1.1)

wz=10 1.2

This problem is denoted as LCPig,A4). It is well studied in the literature on
Mathematical Programming and arises in a number of applications in Operations
Research, Mathematical Economics and Engineering. For recent books on this
problem, see Cottle #¢ af. [6] and Murty [7]. In what follows we first define some well
known matrix classes.

A matrix 4 € £ is called a Q-matrix or is said to satisfly Q-property if for every
ge R, LCP(g, A) has a solution. We say that a matrix 4 is a Qy-matrix (or a
matrix satisfying Qy-property), if for any g€ 8" (1.1) has a solution that implies
that LCP(g. 4) has a solution. A is said to be an R-matrix (a subclass of -matrix intro-
duced by Karamardian), if for all ¢ = 0, LCPite, 4) has only the trivial solution. A is
said to be an E{d }-matrix if LCP(d, 4) has only the trivial solution for = 0. A is
said to be an Ry-matrix if LCP(0, A) has only the trivial solution. Any solution (w, )
is said to be nondegenerate if w4 z = 0. The vector g € R is said to be nondegenerate
with respect to A, if every solution of LCP(g, A4) is nondegenerate. Given a matrix 4 and
a vector g, we define the feasible set F g, A) = {(w.z)|w=Az+ g, w=0,z =0} and
the solution set S(g, A)={{w.2) | w=Az+ g, w'z=0w=0z=0}

We say that A is positive semidefinite (PSDY Il x'Ax = 0¥ x € 8" and A4 is positive
definite (PD), if X'Ax = 0¥ 0 £ x e R'. 4 is said to be a P{Py)-matrix, if all its princi-
pal minors are positive {nonnegative). A € £ is said to be an N{Ny)-matrix, if all
its principal minors are negative (nonpositive). 4 8 called copositive (Cy) (stricdy
copositive (C)), if XYAx=20¥x =0 (XAx=>0¥02£x =0). A4 is called copositive
(stricdy copositive, copositive-plus, PSD, PD) of ovder k, 0 = k = n, if every principal
submatrix of order & belongs to the class. 4 € £ is said to be an Egpmairiv (or
Semimonotone), if for every 03 y=0, 3 an ¢ such that y; =0 and (4y), = 0. If A4
belongs to any one of the classes Ey, Cy, E, C, C; then so is (i) any principal submatrix
of A, (i) any matrix A, which is obtained by a principal permutation of the rows and
columns of A.

The notion of Ny (N), Py (P), Cy(C) ete. are further generalized to almost Ny (N),
Fy (P), Cy (C)in [1-5]. We say that 4 is an almost Py (Pl-marrix if det 4, = 0 (=0)
Yoc{l,2,....n} and det 4 = 0. Similarly, 4 is called an almost Ny (N)-matrix
ifdetdg =0 (<) YacC{l,2...., n} and detd = 0. A matrix 4 € B™" is said to
be an Ny (N)-matrix of exact order & {1 =k = n), if every princpal submatrix of
order (n—£&) is an Ny (N)matrix and every principal minor of order r,
(n—k)=r =n is positive. N-matrices of exact order 1 and 2 are studied in detail
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by Mohan e al. [3]. 4 € R 18 said to be an almost copositive, if it is copositive of
order n— 1 but not of order n. A copositive matrix 4 € R™" is said to be an almost
copoxitive-pluy, if it 1s copositive-plus of order (n —1) but not of order n. 4 € R"™" is
said to be copositive of exact order 2, if it is copositive of order n—2 but not of
order n and (n — 1). Similarly, a copositive matrix 4 € £"" is said to be swrictly copo-
sitive {copositive-pluy) of exact order 2, if it is strictly copositive (copositive-plus) of
order (n—2) but not of order » and (n — 1).

In linear complementarity theory, much of the research is devoted to find out con-
structive characterizations of matrices satisfying Q-property. The class of matrices
due to Saigal [B] for which LCP(0, 4) has a unique solution and LCP(g, 4) has odd
number of solutions for some nondegenerate g with respect to 4 is a large class
satisfying Q-property. The almost Py, and almost &, classes satisfying Q-property
are in Ky

In section 2, some notations, definitions and some well known results in linear
complementarity and matrix games are presented, which will be used in the sequel.
In section 3, we introduce almost N-matrix (a new subclass of almost Ny-matrices
which are obtained as a limit of a sequence of almost M-matrices) and obtain a suffi-
cient condition for almost N class with positive value to hold Q-property. We give a
counter example to show that an almost N Q-matrix need not be an Ry-matrix.
In section 4, we consider a generalization of almost N-matrix, namely, N-matrix of
exact order 2 and extend the results proved for almost N class to this class.
In section 5, we introduce another new class called E(d) and show that E(d)N &
belongs to class Q. Finally, in section 6, we show that Pang’s conjecture is true if £,
is replaced by almost . We also consider almost Py-matrices and give a game
theoretic proof of necessary and sufficient conditions for this class to hold Q-property.

2. Preliminaries

We consider matrices and vectors with real entries. For any matrix 4 € ™", a;
denotes its ith row and jth column entry. 4.; denotes the jth column and 4., the ith
row of 4. If 4 is a matrix of order n, a C {1,2,..., w} and g {1,2,..., n} then A4
denotes the submatrix of 4 consisting of only the rows and columns of 4 whose indices
are in & and f# respectively. For any set o, |o| denotes its cardinality. For any set
BC{1,2,...,n}, B denotes its complement in {1,2,..., n}. Any wector xe R" is a

as the matrix given by
MW J”m
M=
Mz, Mz
where My = (Aua)™'. Mag=—(Aaa) " Aua. Maw = Aae(Aaa)™ . Mas = Asa — Asa
(Aw) ' A.s. Note that PPT is only defined with respect to those o for which

det Ay #£ 0. When o = @, by convention det 4, = 1 and M = A. For further details
see 6]



Downloaded by [Indian Statistical Institute] at 03:06 29 August 2011

246 5 K Neogy and A. K. Das

2.1. Matrix games

The linear complementarity problem and the matrix game have some important con-
nections. Many of the results of LCP can be stated in terms of the value of a matrix
game. In this connection, Kaplansky's result [9] on matrix games is useful for deriving
certain results. See also [10]. A matrix game may be stated as follows:

There are two players, player | and player 11, and each player has a finite number of
actions (called pure strategies). Let player I have s pure strategies and player 11, » pure
strategies. Suppose player | chooses to play a pure strategy i (i = 1,2,.. ., m) and player
11 chooses a pure strategy f(f=1,2,._ ., n) simultaneously. Then player | pays player 11
an amount ay (which may be positive, negative or zero). Since player IT's gain is player
I’s loss, the game is said to be zero-sum. A mixed strategy for player 1 is a probability
vector x € " whose ith component x; represents the probability of choosing pure
strategy { where x; =0 for i=1,..., moand ¥}, v = 1. Similarly, a mixed strategy
for player 11 is a probability vector y € R".

From von Neumann's fundamental minimax theorem, we know that there exist
mixed strategies x*, y* and a real number v such that

i)
ZI;HU =P, V=12 0R

i=l

The mixed strategies (x*,3*) with x* € 8" and y* € R are said to be optimal
strategies for player 1 and player 1l respectively and v is called minimax valwe of
game. We write W 4) to denote the value of the game corresponding to 4. In the
game described above, player 1 is the minimizer and player 1l is the maximizer.
A mixed strategy is completely mixed if x = 0. The value of the game wA4) is positive
(nomnegative), if there exists a 0 % x = 0 such that Ax = 0 {4x = 0). Similarly, v(4)
is negative (nonpositive) if there exisis a 00 #£ y = 0 such that 4’y < 0 (4" = 0).

Remark 2.1 1t is easy to show that 4 € @ if and only il 4 € Oy with v 4) = 0. Also
Ae Egifand only if d,)=0foralle C {1,2,. .., n}. See [11].

We make use of the following result on the class By due to Murty [12] and Saigal [8].

Tueorem 2.1 If A e Ry and LCPig, A) has odd number of solutions for a nondegenerate
g, then 4 € Q.

The following resulis were proved by Viliaho [2] for symmetric almost copositive
matrices. However, it is easy to see that these results hold for nonsymmetric almost
copositive matrices as well.

TueorReM 2.2 Let 4 € B be almost copositive. Then A iv PSD of ovder n — 1, and
A PD of ordern— 2.
TueoreM 2.3 Suppose A iy almost strictly copositive. Then A is PSD and PD of

order n— 1.

Tueorem 2.4 Suppose that o copositive matrix A & almost copositive-plus. Then it is
strictly copovitive of exact ovder 2.
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The following result on semimonotone matrices is due to Pang [13].

Tueorem 2.5 ([13]) Swppose A e Eyn Q. Then the system Ax =0, x =0 hay no
sodution.

The inconsistency of the above system is equivalent to the fact that any nonzero
solution to LCP{0, 4) must have some zero components. Further, every nontrivial
solution of LCP(0, 4) has at least two nonzero coordinates.

The following results will be used in the sequel.

Tueorem 2.6 ([14]) Suppose A € R™" is an almost Py-matrix. Let B = A~ Then there

existy a nonempty subset o of {1,2,..., n} such that B, =0, Bz =0, 8z, =0 and
B = 0.

Tueorem 2.7 ([14, p. 1271 Suppove A€ Q (). Assume that A =0 for some
ie{l,2,..., b Then Ao, € Q(0g), where o =1{1,2,.. ., nphi}.

Tueorem 2.8 ([8, p. 43]) A sufficient condition for LCPlg, A) to have even number of
sofutions for all g for which each solution v nondegenerate is that there exists a vector
z = 0 such that z'4 < 0.

Tueorem 2.9([11, p. 195]) Let A € B be a Ey-matrix with n = 3. Suppose any one of
the folfowing conditions holds:

i)y Every principal submatrix of order n—1 iv an By-matrix.
(i1) Every principal submatvix of order less than or equal to n—2 iy an By-matrix.

Then A is a Q-matrix i and only if A s an By-matrix.

Definition 2.1 Suppose 4 € Ry and g is nondegenerate with respect to 4. For any
{w,z) € S(g. A), define the index of z, ind(A.g,z)=spn det(d..) = I‘j’;t‘{::’” where
a ={i: z; # 0}. For an Ry-matrix A, the number }°__. , ind(A4.g.2) is the same for
all vectors g such that LCP{g. 4) has a finite number of solutions. This number is
called the degree of the matrix 4 and we write deg(A) = 3. g, 4 5en det(A4.,). For

further details on degree theory see Ref. [6, Chapter 6).

3. Almost N-matrices

The class of N-matrices was introduced by Mohan and Sridhar in [15]. The class of

almost N-matrices is studied in [5] We introduce here a new matrix class almost N,
which is a subclass of the almost Ng-matrices. See also Ref. [3, p. 119]

Definition 2.2 A matrix A € R™ is said to be an almost N-matrix if there exists
L I . &

a sequence {A®} where AY = [4}"] are almost N-matrices such that aj;’ — ay for all

i.fefl,2, ..., n}.

Example 3.1 Let

e

Il

=
== ]

I I
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Note that A4 is an almost Ny-matrix. It is easy to see that 4 € almost N since we can
get 4 as a limit point of the sequence of almost N-matrices

=y 9 2
AV =1/ —1/k 2
1 1 =1

which converges to 4 as k— oo,

Remark 3.1 1t is well known that for Py (almost Py)-matrices, by perturbing the diag-
onal entries alone one can get a sequence of P (almost P)-matrices that converges to Py
{almost Py). However, this is not true for Ny (almost Ny )-matrices. One of the reasons
15 that an N (almost N)}matrix needs to have all its entries nonzero. In the above
example, we can see that even though the matrix 4 € almost N, but it cannot be
obtained as a limit point of almost M-matrix by perturbing the diagonal. However,
we show in the above example that 4 € almost N.

_The following example shows that an almost Ne-matrix need not be an almost
N-matrix.

Example 32 Let

0 -1 -1 0 '|
S I R R |
{0 10 0
1 1 0 =1
Here 4 is an almost N-matrix. However, it is easy to verify that 4 is not an almost
N-matrix since we cannot get 4 as a limit point of a sequence of almost N-matrices.
Mow we consider almost Ny-matrices and ask the following question. Suppose 4
almost Ng. Then is it true that (i) 4 € Q implies 4 € & (i) A € By implies 4 € 7

In the sequel, we partially settle the above questions. The following example
demonstrates that 4 € almost Ny N Q, but 4 & Ry.

Example 33 Consider the matrix

-1 1 1 1

1 0 0 0
A= i

1 0 0 =1

HEE

It is easy to check that 4 € almost Ny Now taking a PPT with respect to o =11, 3}
we get

I
o S S
=
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Now 4 € () since M, a PPT of 4@ (see [11, p. 193]). However, (0, 1.0,0) solves
LCP(0, A). Hence 4 & Ry.

The following example due to Olech e al. [3, p. 120] shows that an almost Ng-matrix,
even with value positive, need not be a Q-matrix or an B-matrix.

Example 34 Let

-2 -2 -2 2 —1001
4— -2 -1 -3 3 . —500

-2 -3 -1 3 =500

2 3 3 0 500

It is easy to check that 4 € almost Ny but 4 & Q even though v(d) is positive.
Furthermore 4 & £,.

However, if 4 € almost N N Ry and wA4) = 0, then we show that 4 € Q.

In the statement of some theorems that follow, we assume that n = 4, to make use of
the sign pattern stated in the following lemma.

Lemma 3.1 Suppose A € R™" is an almost N-matrix of order n = 4. Then there exists
a nonempty subset o of {1,2, .., n} such that A can be written in the partitioned form
as (i necessary, after a principal rearrangement of ity rows and columns)

[.4W .4m;j|
A=

Az Azz
where Ay =0, Agz = 0, Age = 0 and Az =10,

Proof” This follows from Remark 3.1 in [5, p. 623] and from the definition of almost
N-matrices. [ ]

Remark 3.2 In the proof of the sign pattern in Lemma 3.1, we assume n = 4 since the
lemma requires that all the principal minors of order 3 or less are negative.

Tueorem 3.1 Suppose A € Ey M almost N(n=4). Then there exists a principal

"'E'(ﬂ'f'f"!gff”{"ﬂf
[ B B ]
5=
Ba. Bz

of A where B, Bz ave nonpositive stvict upper (riangular matrices and Bg., B are
nonnegative malrices.

Proof” The proof follows from Lemma 3.1 and the properties of Eymatrix. |
The following example shows that almost N 1 £ is nonempty.

Example 35 Let

R
o—c |
oo -

L=
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Here A is an £y N Ny-matrix. It is easy to see that 4 € almost N since we can get A as
a limit point of the sequence

~1k -1 2k 2 '|
P VRV 2/k

4k 1 —lk -l

L 1 Yk —1/k —m-J

of almost N-matrices which converges to 4 as £ — oo,

THEOREM 3.2 Suppose A € ™ is an almost N0 Qg N Ey-matrix with n = 4. Then
there exists o principal rearvangement B of A such that all the leading principal

submatrices of B ave Qy-matrices.
FProof” The proof of this theorem follows from Theorem 3.1 and Theorem 2.7, [ |
TueorEM 3.3 Let A € almost NN R™" n =4 with (A)=0. Then A Q if A € Ry.

Aue Aoz
A= |i.4,;,_, .4,5,']
where dg. =0, dgz = 0, Az, =0 and 4.z = 0.

Mow consider 4,,. Suppose 4, contains a nonnegative column vector. Then clearly
LCP(0, A) has a nontrivial solution which contradicts our hypothesis that 4 £ K.
Hence every column of 4., should have at least one negative entry. Hence 3 an
x e Rl x =0, such that x4, < 0. It now follows from Theorem 2.8 that for any
go = 0, where g, s nondegenerate with respect to 4., LCPig., A..) has r solutions
{r = 2 and even). Similarly, LCP(gs, 4z5) has s solutions (s = 2 and even) for any
ga = 0, where gz is nondegenerate with respect to Azz. Now suppose (w).z)) is a
solution for LCP(g,, 4..). Note that

e [ and == 2,
W= da E=o

solves LCP(g, A). Similarly, associated with every solution (w}, z5) we can construct a
solution LCP{g, 4). Thus LCP(g, 4) has (r+s— 1) solutions accounting for only
once the solution w=g,z=10. Thus there are an odd number (r4+s—1= 3) of
solutions to LCP(g, 4) with all solutions nondegenerate. We shall show that
(r+5—1)=3 and hence there are only three solutions to LCP(g. A). Let S(g, A)
be the set of solutions to LCP(g, A). Since g is nondegenerate with respect to A4, this
is a finite set [12, p. 85). Suppose (W,Z) is a nondegenerate solution to LCP(g, A).
Then (w.2) € S(g. A). Now since A is a limit point of almost N-matrices {A™],
we note that the complementary basis corresponding (w,2) will also yield a
solution to LCP{g, A™™) for all k sufficiently large. From Theorem 3.2 [3, p. 629,
which asserts that there are exactly three solutions for LCP(g, 4A'™), for any nondegene-
rate g (=0) with respect to A™, we obtain (r +5— 1) < |8(a, A)| < |S(g, 44| = 3.
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Bui{r+s— 1) = 3. Hence LCPig, 4) has exactly three solutions for any nondegenerate
gl =0) with respect to 4. Since 4 € By and LCP(g, 4) has an odd number of solutions,
it follows from Theorem 2.1 that 4 € Q. [ |

CoroLrary 3.1 Suppose A € almost N Ry with v(A) = 0. Then |deg(d)| = odd.

FProgfs This follows from the fact that LCP{g, 4) has three solutions for any non-
degenerate g (=0) with respect to 4 and 4 € Ry.

However, the converse of Theorem 3.3 1s not true. Consider the matrix

1 1
o 0
0

e B e B e B

in example 3.3 which is also a Q-matrix. Note that 4 € almost N, since we can get 4
as a limit point of the sequence of almost N-matrices

-1 1 1 1

1 =142 1k —1/k
S ) S S |
1 =1k -1 1tk

A#-‘:J —

which converges to 4 as k — oco. However, 4 & Ry,
The converse of the statement is not true for n<4 is illustrated in the following
example.

Example 36 Consider the matrix

It is easy to see that 4 € almost N since we can get A as a limit point of the sequence

S 1
L P (5 S 1
S R )

of almost N-matrices which converges to 4 as k — oo.
We show that 4 € Q, by showing that its 4~ € Q. Now look at

—1/6 1/6 12
A= 156 =16 172
12 172 —1;2
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Suppose that ¢, = ¢ in LCP(g, A) where

It is easy to see that 4y € Q and 4,3 € Q. Since 4> € Q, there exists a solution

Wa Z3
wy | 3
to LCP(g.. Au) where o = {2, 3}, Now define
W) ]

Wo=| na and z=
w3

[
[

s

where w) = wa+ g — g2 + _%:3. It is easy to check that (w, z) is a solution to LCPig, 4).
If g, = g, then we can get a solution to LCP(g, 4) using a solution to LCPig,. 4,,)
where ¢ = {1, 3}. Now define

W) 2
W= | Ha and z=| 0

Wy I3

where wa = w) + g2 — g + _%z|. It is easy to check that (w, z) is a solution to LCPig, 4).
Since g is arbitrary, it follows that 4 € 0. However, 4 & Ry.

4. A generalization of almost N-matrix

Mohan ef al [3] introduced the N-matrix of exact order 2 as a generalization of almost
N-matrix studied by Olech et af. [3]. In this section, we introduce a new class of matrix
as a generalization of almost N-matrix introduced in the earlier section. This class
originates from the limit of a sequence of N-matrices of exact order 2.

Definition 4.1 A matrix A € R is said to be an N-matrix of exact order 2 if there
exists a sequence {A*'} where A = [:;LF’] are N-matrices of exact order 2 such that

(k) -
ay —ayforallije{l2..., n}.

Example 4.1 Let

|- o -9 -8 -70 0
-9 -2 -2 -2 2
A=|-m -2 -1 =3 3
-5 -2 -3 08 3

0 2 3 i

Here 4 is an Nyp-matrix of exact order 2.
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Also A4 is an N-matrix of exact order 2 since we can get A as a limit point of the
sequence of N-matrices of exact order 2

—1/i —90 —80 -—70 1/k
-0 -2 -2 2 2
A= | 0 2 -1 -3 3
-5 =2 -3 08 3
1/k 2 3 g R

which converges to 4 as k — oo,
The following example shows that N-matrix of exact order 2 is a proper subclass
of Ny-matrix of exact order 2.

Example 42 Let

o 0 o 1 2
6o 0 -1 -1 2
A=|0 -1 0 -1 1
I =1 =1 0 0
2.1 o O 0

Clearly A4 is an Ny-matrix of exact order 2. However, 4 is not an N-matrix of exact
order 2 since we cannot get 4 as a limit of a sequence of N-matrices of exact order 2.

Remark 4.1 It is easy to see that Lemma 3.1 holds for N-matrices of exact order 2
for m = 5.

Tueorem 4.1 Let A€ NN R™" n =5 of exact order 2 with wWA) = 0. Suppose there
existy al most one nonpositive principal submatrix of order n—1 and the values of
proper principal submatrices of order (=2) which containg at least one positive entry
are positive. Then A e Q if A € Ry.

FProof
Case | Suppose there is a nonpositive principal submatrix of order (n — 1). We may
assume, without loss of generality that A..= 0 where @ =1{2,..., n}. Since 4 e

NN R"™ n =5 of exact order 2 with W A) = 0 and A € Ry the sign pattern of A can

be written as
|'— 7 = - $'|
+
(5.4

A== A
+
where the sign symbol & denotes a nonnegative real number. Choose a g = ) which
is nondegenerate with respect to A and the partitioned form of ¢ 5 g = [q1.q.]
where |@| = (n — 1). By repeating a similar argument as in Theorem 3.3 we can show
that LCP{g.. A.e) has r solutions (r = 2 and even). Similarly, LCP(g,q) has two

solutions. Thus there are an odd number (r+ 1 = 3) of solutions to LCP(g, 4) with
all solutions nondegenerate.
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Mow we show that for this g (g = 0), LCP(g, 4) has no other solution. Suppose (w, )
is another solution distinet from the odd number of solutions listed abowve.

Let §={i: z; = 0}. Since (w, 2) is different from the solutions histed above, it follows
that the index 1 e 8 and AN {2, ..., n} #¢. Mote that all 4y contains at least one
positive entry. So, by assumption wAgq) = 0.

Now w — 47 =g, leads to AgaZ < 0 which contradicts our assumption v{4g) = 0.

Thus LCP{g, A) has an odd number of solutions. Since 4 € £ and LCP(g, A) has an
odd number of solutions, it follows from Theorem 2.1 that 4 € Q.

Case 11  Suppose there is no nonpositive principal submatrix of order (n — 1). Then
by Remark 4.1, there exists a § £ac{1,2,..., n} such that 4 can be writien in the
partitioned form as

where A, =0, dgz = 0, 4z, =0 and 4. = 0.

Mow consider 4... We proceed as in Theorem 3.3, Thus there are an odd number
{=13) of solutions to LCPig, A) with all solutions nondegenerate. As before (Case 1)
we can show that there are no other solution. Since 4 € £ and LCP{g, 4) has an
odd number of solutions, it follows from Theorem 2.1 that 4 € Q.

Remark 4.2 Now since A is a limit of a sequence [ A% of N-matrices of exact order 2,
we note that the complementary basis corresponding to a solution will also yield a
solution to LCP(g, A'*") for all k sufficiently large. Hence there are exactly five solutions
[5. p. 634] for LCP(g, A™) for any nondegenerate g(=0) with respect to A", Therefore
3 < |S(g, A)| < |S(g, A = 5.

5. E(d)-matrices

Gareia [16] introduced the class of matrices E{d) which is dependent only on  as a
generalization of £y For a given o = (), the class E(d) is the class of matrices for
which LCP{d 4) has a unique solution w=d, z=10. Now we ask the following
question.

Is E{d) closed for a given =107

The answer is no and it is illustrated in the following example.

Example 5.1 Consider the following matrix

_ =2 3] . i _ —2 3
A_[_ 4] and A _[_3_% 4]_

It is easy to see that for

Lad I

[}
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LCP(d, A™") has a unique solution w = o, z =0 but LCP(d, 4) has two solutions. Thus
we have a sequence { A"} of matrices where 4" € E(d) and as k — oo, nf.j" — ay for all
ije{l.2,..., n}. However, 4 ¢ E(d ). Thus the class E(d) is not closed.

We now introduce a new matrix class, similar to almost N-matrix, containing a
matrix A if it is the limit of a sequence {A"'} of matrices where A e E(d) for a
given positive vector 4. We call this class as E(d). Note that the matrix A in the
above example belongs to E(d).

Definition 5.1 For a given positive vector € R", a matrix 4 € R"™" is said to be
an E(d)-matrix if there exists a sequence {4} where 4™ = [&"'] are in E(d) such

if
that a}j’ —ay for all i,j €{1,2,..., n}.

Although E(d) is not closed, so that LCP(d, 4) may have more than one solution, we
have the following theorem.

Tueorem 5.1  Suppose A € E(d) 1 Ry for a given positive vector d € R'. Then A € Q.

Proof Since A € E(d) 3 a sequence {A"'} of matrices such that 4® € E(d) and
A% — 4. Note that d is nondegenerate with respect to A™ for all k and d > 0.
Suppose d is depenerate with respect to 4. Since the set {g| g is degenerate with respect
to A} has dimension = (n — 1), it follows that wecan find a¢ = Qand ¢ & N.(d) where
N, (d) is the eneighborhood of & such that &* is nondegenerate with respect to A
and also A" for all k. Now let S(d*, A) = {(w,z)| (w,z) is a solution to LCP(d*, 4)}.
MNote that S(d*, 4) £ @, since (d*,0) € S(d*, 4) and also S(d*, 4) is finite since d* is
nondegenerate with respect to A4 [12, p. 85).

Let ¢ =0 be given. Suppose (w*.z*)e S(d*. A). Thus for & large enough
S(d*, AR N NAw*, 2*) £ B where N(w*,z*) is the eneighborhood of (w*,z*). To see
this, let 8 be the complementary basis submatrix of (f, — 4) induced by (w*, z*) and
let B9 be the corresponding complementary basis submatrix of (7, — A%). Note that
B is arbitrarily close to B for large k and hence (B*)~'d¢* can be made arbitrarily
close to B~'d* and in particular (B*)~'d* = 0. Therefore the corresponding solution
(wh, 25) of LCP(d*, A% € No(w*, 2%,

Thus every solution of LCP(d*, A) corresponds to a distinct solution of LCP(d*, 4**")
for k sufficiently large. Hence f + |S(d*, 4)| = |S(d*, A" =1, since LCP(d*, A*)
has a unique solution by our choice of &*. Therefore LCP(d™*, A) has a unique
nondegenerate solution. Using Theorem 2.1, it follows that 4 € (.

CoroLrary 5.1 Suppose A E(yn Ry. Then deg(d)=1.

Proof This follows from the uniqueness of the solution of LCP(g, A) for a non-
degenerate g = o* = 0 and det Ay = 1. u

For implementation of Lemke’s algorithm (see [6] for details), one needs a positive
vector d, called the eovering vector. The above proof uses the fact that if 4™ — 4 with
A®) e E(d) one can find a d* by perturbing d slightly, to be used as covering vector
for processing LCP(g, 4) by Lemke’s algorithm. In the above example one may take

2

It is easy to check that LCP(d™, A) has a unique solution w = d*, z = 1.
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6. Almost Oy, and almost Py-matrices

Viliaho [1.2] introduced symmetric almost Cy-matrices. The following example shows
that an almost Cy-matrix need not be an E-matrix.

Example 6.1 Consider the following matrix

It is easy to see that A4 € almost O, but 4 & £,.
Pang [16] proved the following theorem.

TueoreM 6.1 Suppose A€ £y If 4 € By then A € Q.

Pang conjectured that the converse must be true, i.e., EyMnQ C K. However, this
was disproved by Jeter and Pye [17]. Murthy et af. [18] showed that the conjecture is
not true even if Epmatrix is replaced by Cy-matrix. Here we show that if Cymatrix
is replaced by an almost Gy-matrix then Pang’s conjecture is true. We present a game
theoretic proof.

TuHeorREM 6.2 Suppose A € almost Coy withn= 3. If A € O then A € Ry.

FProof A e @ implies v(4) = 0. Suppose W Ady) <0 fore C{1,2,..., n}. Then there
exists a mixed strategy y such that y, 4., < 0. Define x € R such that y, = x, and
xg = 0. Hence x'dx = yl Auuye = 0 which contradicts that submatrices of order n—1
are PSD. Therefore wAdu) = 0¥ aC {1,2...., n}. It follows from Remark 2.1 that
A e Ey. From Theorem 2.2, it follows that 4 is PD of order (n — 2). Hence every
principal submatrix of order less than or equal to n—2 is an RyFmatrix. Since
A e Q, by Theorem 2.9 it follows that 4 € Ry. [ |

To prove the converse we need the additional assumption wA4) = 0.
Tueorem 6.3 Suppose A € almost Cy with v(d) = 0. If A € Ry then 4 € Q.

Proogf” Using a similar argument we can see that 4 € £y Since £, N Ky-matrix is a
(y-matrix with v(4) = 0. It follows from the Remark 2.1 that 4 € . [ |

Tueorem 6.4 Suppose a copositive marix A with n= 3 iv albmost copovitive-plus. Then
AeQ ifand only if A € Ry.

FProof” By Theorem 2.4, A issirictly copositive of exact order 2. So, by definition every
principal submatrix of order less than or equal to n—2 is a strictly copostive matrix.
It follows that every principal submatrix of order less than or equal to n—2 is an
Ry-matrix. Since every Cy-matrix is an Egematrix. By Theorem 29, it follows that
AeQifland only if 4 € Ry. |

The following result was proved by Pye [4]. We present a game theoretic proof.

TueorReM 0.5  Let A be a nonsingular almose Py 0 R matrix with v(A) = 0. Then the

Sollowing statements hold.

() if A Ry then A e Q.
(i) if A Q then A R.
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Proof NMNote that 4 e £ since WAd)=0¥a C{1,2....0n}. Assume 4 Ry Then
A e Qg with w(4) = 0. Hence 4 € Q. Conversely assume that 4 € 0. We show that
A e R. Suppose A & K. Let = be a nontrivial solution of LCP{te, 4) where ¢ = 0.

Case(a)t =0 letfg=1{i|zz=0}. Leta ={1,2,...,n} " 8. Note that (w,,z.), z. # 0
is a solution of LCP{te,, Ao ). Hence Apez, <0, z, = 0. Therefore =L 4], <0, z, = 0.
But this implies wAL,) <=0. This contradicts that 4", s a Pymatrix. Therefore

LCP{te, A) where ¢ = 0 has no nontrivial solution.
Case(b) t =0. By Theorem 3[4, p. #41], it follows that if LCP(0), 4) has a nontrivial

solution then 4 & Q. Hence 4 € £ [ |
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