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Abstract

In this paper, we study and characterize various classes of matrices that are defined based
on principal pivot transforms. We show that matrices in these classes have nonnegative prin-
cipal minors,

Kevwards: Principal pivot transforms; Almost copositive matrix: Almaost fully copositive matrix; Semi-
monotone matrix; {y-matn £

1. Introduction

The concept of principal pivol transforms (PPTs) was intmodoced by Tucker [20].
PPTs play an important role in the study of linear complementarity theory. In the
ensuing definitions, the symbol A will denote a meal n % n matnx. The principal
pivot transform (PPT) of A with respecttoa C{1,2,..., n} 15 defined as the matnx
given by
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Mg Mo
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where Moo = (Ao0) ™', Maa=—(Aae) "' Awi, Mae = Aga(Aae) ™', Maa = Aaa —
Age {Aua}_lﬂaa.Thu FPT of LCP{g, A) with respect to o (obtained by pivoling on
Age ) is given by LCP(g', M) where g, = — Azl ge and g% = ga — Aga A7l Ga-

MNote that PPT is only defined with mespect to those o for which det A, = 0.
When o = W, by convention det A, = 1 and M = A. For further details see [1,
19.2] in this connection. In what follows we first define some well-known matnx
classes.

Wi say that A is positive semidefinite (PSD) if x'Ax =0, ¥ x € B and A is
positive definite (PD) if FdAr=0.¥0 #x e R" Aissaidto bea P({Py)-matrix if
all its principal minors are positive (nonnegative), and A s called a N{Ng)-matrix
if all its principal minors are negative (nonpositive). A 15 called copositive (Cp) 1f
Ay 20,9 x = 0. Ads called copasitive (PSD, PD)af order k, 0 = k < n.if every
principal submatrix of order & belongs w the class. A 15 sad o be an Eg-matrix
if for every 0 £ v =10, 3 an § such that y; = 0 and (Ay); = 0. The class of such
matrices 15 called semimonotone matrices. The linear complementarity problem 15
defined below.

Given A € R™" and a vector g € R", the problem of finding a solution w € R"
and z € R" to the following system of linear equations and inequalities is the linear
complemeniarity problem (LCP)

w—Az=¢q, wz=0 =20, (1.1}

w'z =0 (1.2)

This problem is denoted as LCP(g, A). A € R™" is called a Q-marrix if for every
g € B, LCP{g, A) has a solution. We say that a matrix A is a Qg-mateix if for any
g & R", (1.1} has a solution implies that LCPig, A) has a solution. A is said to be
a completely O{Qp)-matrixif all its principal submatnees are O{QJg) matrices. For
details on this problem, see Cottle et al. [2] and Murty [12].

The noton of N{Ny), P{FR), Cp, ete. s generalized o almost N(Ng). almost
P(Fp), almost Cp in [13,18,14-16]. We say that A 1s an almost Fo( P )-matric if
detAgy 20 (=0 VaC(l.2,..., n} and det A < 0. Similady, A s called an
almost No(N=matrix fdet A, £ 0{=0O¥Va C {1L.2,....n} and detAd = 0. A &
R s said to be o almest copositive iF L 1s copositive of order n — 1 but not of order
n. Almost copositive matrices are also called exact order matrices of order (n — 1)
in Viiligzho [17]. We say that a matnx is called copositive of exact order &, if it is
copositive of order &£ but not of order (& + 1). For details see [16,17].

Maotivated by the class of exact order copositive matrices considered by Villiaho
[16]. Mohan et al. [8] studied exact order N P) matrices. Given a matnix 4 € B,
let B e RO-Dx0=D 5 3.2 .. i denote the principal submatrices of 4, ob-
tained by deleting the ith row and ith column of A. Note that if A s of exact order
kthen By, 1 =1 = name the matrices of exact order (£ — 1). We say that a matrix 4
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is called an N (P)-matrix of exact order k, 1 £ & < n, if every principal submatrix
of order (n — k) is an N-matrix (P-matrix) and if every principal minor of order r,
n—k = r<nispositive (negative). A s called a matrix of exact order £ if it is a
FP-matrix or a N-matrix of exact order £ Note that an N{P)-matrix 15 an N{P)-
matnx of exact order 0 and an almost N{P)-matrix 15 an N{P)-matnx of exact
order one. An N-matrix of exact order 1 is of first category if both A and A~! have
at least one positive entry, otherwise it is N-matrix of exact order one of second
category. A P-matrix of exact order 1 is of first category if A~ has a positive entry
otherwise it is said to be of second category. We say thata matrix A (A £ 0) of exact
order 2 is of first category if there exists at most one index & (1 < & = n) such that
the (n — 1) = (n — 1) exact order | principal submatrix By 1s nonpositive and every
in —1) = (n — 1) prncipal submatrix B; whichis £0,1 <7 £ nis exact order 1 of
the first category. We say that it is of the second category, if all B; are of the second
category. For further details see [8].

Tucker [20] proved that if the diagonal entnies for every PPT of A ame positive,
then A 15 a P-matrix. However if the diagonal entries forevery PPT of A 18 nonneg-
ative, then A need not be a Fy-matrix. Cottle and Stone [3] introduced the notion of
a fully semimonotone matrix {E,!']}l by requiring that every PPT of such a4 matrix is
a semimonotone matrix. For the class Etr], if g € R" is in the interior of a full com-
plementary cone (a complementary cone is fufl with respect oo < {1,2, ..., n}f
det Age = 0) then LCP{g . A) has a unigue solution. This is a geometnce character-
ization of Etr:; class. A s called fully copositive {Cﬂ}l if every legitimate PPT of A
15 Cp. By & legitimate principal pivet transform we mean the PPT obtained from A
by performing a principal pivot on i nonsingular principal submatrices. For further
details on the class of fully coposiive matrices see [7.9.10]. If 4 belongs 1o any
one of the class Ep. Cp. Et']' or C!] then so s (1) any principal submatrix of A and
(ii) any matrix A obtained by a principal permutation of the rows and columns of
A.IT A € Q(Qp) then every PPT of A is Q(Qp). Nowe that PC A © E"]' C Ep
and Ctl]' = Etr:;. We mmtroduce two new classes of matnces based on pnincipal pivot
transforms. One of the new classes has the property that its PPTs are either G or
almost Cg with at least one PPT almost Cy, and the other class has the property that
its PPTs are either Ey or almost Cp with at least one PPT almost Cy.

In Section 2, some notations, definitions and a few well-known results in linear
complementarity and matrix games are presented that will be used in the next section.
In Sectuon 3, we present some results on the class for which PPTs are either in Cy
(Eg) or almost Cp with at least one PPT almost Cy. The almost classes stodied in
this paper have algorithmic significance and if these classes are also in Oy then
these classes are processable by Lemke’s algorithm. For 4 desenption of Lemke’s
algonthm see the book by Cottle et al. [2]. For many results we present proofs which
use some lerminology from matrix games. Finally in Section 4, we consider the
problem of charactenzing a class of matnces whose member possess at least one
PPT that is a4 Z-malrix.
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2. Preliminaries

For any set f € {1,2....,n}, f denotes its complement in {1, 2, ... n}. Any
vector v € R is a column vector unless otherwise specified and x' denotes the row
transpose of x. For any matrix A € R™™", a;; denotes its ith row and jth column
entry. A.; denotes the jth column and A;., the ith row of A.If A isa matrix of order
nftac {12 ..., nland@ £ 8 C{1,2, ..., n} then Ay denotes the submatrix
of A consisting of only the rows and columns of A whose indices are in o and §,
respectively. For any set oo, |af denotes its cardinality. We state some game theorelic
results due o Von Neumann and Morgenstiern [18] which are needed in the sequel.
See also [6]. A two person zero-sum matrix game may be stated as follows:

Suppose player I choosesaninteger i (i = 1,2..... m ) and player 11 chooses an
mtegerj (j=1,2,..., n) simultaneously. Then player I pays player 11 an amount
ajj (which may be positive, negative or zem). Since player II's gain is player I's
loss, the game 15 said o be zero-sum. A strategy for player 11s a probability vector
x € B" whose ith component x; represents the probability of choosing an integer §
where x; 2 0fori=1,.. ., m and Z:.":l_r,- = 1. Similarly, a strategy for player IT is
a probability vector v € RY.

From Von Neumann's fundamental minimax theorem we know that there exist
strategies x*, v* and a real number v such that

i
Z_r;‘ﬂ;ja‘;u, Wi =3 ey n
i=l
i
Z.vjl‘_ﬂ”- =g, ME=ride. .. m
=l

The strategies (v*, y*) with x* € B™ and y* € R" are said to be oprimal strate-
gies for player [ and player I respectively and v is called minimax value of game. We
write v{A) 1o denote the value of the game corresponding to A. In the game desenbed
abowve, player ©is the minmimizer and player 11 is the maximizer. The value of the
game v{A) 8 positive (nonnegative) if there exists 4 (0 =£ x 2 0 suech that Ax =0
(Ax = 0). Similady, v{ A) s negative (nonpositive) if there exists a0 £ v 2 O such
that A'y < 0 (A'y < O).

Theorem 2.1. Let M &€ R"™" be a PPT of a given mawix A € R™" . Thenv({A) = 0
if and only if (M) = 0.

Proof. It is enough to show that v{A) = 0 = v(M) = 0. Let v{4) > 0. Then there
exists 4 7 > 0 such that Az = (.

W Aar  Aai | | Za
Let = ;
[wa] [A&a f‘-z.z.] [E&]
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where Mag = (Aga) ™ Maa = —(Age) ' Aua, Mae = Age(Aga) ™' Mag = Aga —
A Ay s Shnice [‘“ > O and ["’“] > 0, it follows that u (M) > 0. [

I Y | and rewriting we get
=\ dsia) . |ondrewTiting we pe

i

Ta
If Aisa Q-matnx then v{A) = 0[11]. Since any PPT M of a4 O-matrix is again a
(-matrix, it follows that for any -matrix v{M) > 0 in all of its PPTs M. However
it 15 easy to prove that for any matnx A with v{A) = 0, A € Qifandonly if A £ Qp.
The following result was proved by Viiliaho [16] for symmetric almost copositive
matrnces. However this holds for nonsymmetne almost copositive matrices as well.

Theorem 2.2. Let A € R be almost copositive. Then A is PSD of ordern — 1,
and A is PD of ovdern — 2.

Theorem 2.3 [9]. Assione A € R™" is nonnegative, where n 2 2. Then A € Oy if
and only if for everyi € {1,2, ...,n} A;. £ 0= a;; = 0.

Theorem 2.5 [11]. Let A & R"™"_ The following statements are equivale ni:

(i) A £ Ep.

(1) The LCP{g, A) has a wunigue solution for everyg = (.
(1) v{Age) = Oforeveryindex seta = {1,2, .., n}.
(iv) u{ALa}l =z Oforeveryindex setw © (1,2, ..., n}

(v) A' € Eq.

Theorem 2.6 [9]. Suppose A€ R™™™ (n = 3) is a nonsingular Ny-matrix. Then
there exists a nonempty subset o of {1,2, ..., n} satisfying

f‘laa -"‘-a&
A= .
[r’lz..:. f‘-aa]
where Age = 0, dzs = 0, gy = 0and Agz =00

Theorem 2.7 [9]. Suppose A € R"™" (n = 3) is a nonsingular Eg 0 Ny-matrix.
Then there exists a principal rearrangement

B.:mf Ba&]
B =
[B.::.:. Bz
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of Asuchthatae =W, o £ {12, .., nl, Bsw 20, Byg = Oand Byy., Bas are strict
upper trigngular nonpositive matrices.

It is easy o observe the following.

Theorem 2.8. Assume A € R"™ (n 2 3) iv a EgN Ny N Qo-matrix. Then there
exist a principal warrangement B aof A such that all the leading principal submatri-
ces af B are Qo-matrices.

Proof. By Theorem 2.7, there exists a principal rearrangement
_ By B
b= [Briu Baa]
of Asuchthat e # ¥, @+ {1.2...., nt, Bag = 0, Bys = 0 and By, Bss are stnct
upper mangular nonpositive matocees. It is easy to conclude from the structure of B
that By = (. Notethat B € (. since B is a principal rearrangement of A, Therefore

by Theorem 2.4, Bgg € O where § = {1, 2, ..., n}\{n}. Similardy, we can show
that the other leading principal submatrices of B are g, O

3. Some PPT based matrix classes and its subclasses

Cottle and Stone [3] inroduced a class called fully semimonotone matncees fE{']}
for which every legiimate PPT s a semimonotone matrix. Stone conjectured that a
fully semimonotone (p-matnx has nonnegative prncipal minors. Vanous subelasses
such as E'Tl]', C,:l]' were studied earlier in [3,9,10,7]. In this section, we consider some
more classes, defined using principal pivot transforms. One of these classes has the
property that its PPTs are either Cyp or almost Cp with at keast one PPT almost Cy.
The other class considered in this paper has the property that its PPTs are cither Ey
or almost Cp wath at least one PPT almost Cyp. Note that an almost Cp-matnx s not
necessarily Eg. We show that if this class also belongs o Qg then it is in E{] by
showing this class isin Fy.

Definition 3.1. A is said to be an almost fully copositive (almost C‘l]'}-mutrix il its
PPTs are either Cyp or almost Cp and there exists at keast one PPT M of A for some
a C {1,2, ... n}thatis almost Cy.

Example 3.1. The following mairix A is almost fully copositive:

1 -2 0
A=| 0 10
-1 0 1
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Theorem 3.1. If A € RN almast Ci N Qo (n = 3), then A is a Py-matrix.

Proof. Suppose M is 1 PPT of A so that M € almost Cy. By Theorem 2.2, all
the principal submatrices of order (n — 1) of M are PSD. Now o show M € Py it
15 enough w show that det M = 0. Suppose det M < () Then M is an almost Py-
matrix. Therefore M~! € Ny and by Theorem 2.6 there exists 4 nonempty subset
a < {1,2, ... n}sabsfying

Ml<o Ml <0M] 20and M! 20. (3.1)

But M~ 'isaPPT of Mand by definition of almost C{'], M~ e almost Cpor M-le
Cp. We consider the following cases:

Case (i). M~ e almost Cyp. Note that by Theorem 2.2, the principal submatrices
of order (n — 2) are PD. Therefore the diagonal entries of M~! are positive. But
M-le Np and hence contradicts (3.1). Therefore det(M) = 0 and M € Fy. Since
MisaPPT of Aitfollows that of 4 € Fy.

Case (ii). M~'e Cyn Qg. Since M~! € Ny we must have M =0, M7 = 0.
Therefore

By
T 0 M_. _
Ml 0
But this contradicts that M~ is 4 Op-matrix. See Theorem 2.3 Therefore M <
Fp. O

Mow we consider the matnx class whose members have PPTs that are either Ep
or almost Cp with at least one PPT that is almost Cp. The following example shows

that this class is nonemply.

Example 3.2. Consider the following matrix:

1 =1 0
A=|-1 10
g -2 1

It is casy to verify that all its PPT are either Ep or almost Cp. Also A € (Op.

Theorem 3.2. Suppose A € "™ M Oy (n = 3) and the PPTy af A are either Ey
or almost Cp with ar least one PPT almost Cy. Then A € Py.

Proof. Suppose M be a PPT of A so that M € almost Cpy. By Theorem 2.2, all the
submatrices of order n — 1 of M are PSD. Now w0 complete the proof, we need to
show that det M = 0. Suppose det M < (1. Then M s an almost Fp-matnx. Therefore
M-le Np and by Theorem 2.6 there exists a nonemply subseto C{1,2,...,n}
satisfying
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Ml €0, M7l<0, MZ>0 and MZ'>0. (3.2)

CFiE | CECE &

But M~ is a PPT of M and by definition M~ e almost Cp or Ml g Ep. We
consider the following cases:

Case (i). M~ & almost Cp. Then the diagonal entries of M1 are positive. But
M-le Np and contradiets (3.2). Therefore det{iM) Z0and M € Py, Since M 15 a
PPT of A it follows that of A & Fy.

Case (ii). M~'e Eyn @y Since M~ € Ey 1 Ny then by Theorem 2.7 there exists
a principal rearrangemaent

B = Bow Bus
Bze Daa
of M~ such that By, Bsg are nonpositive stoct upper tangular matnees and By,
Bsg are nonnegative matrcees.

Take o ={1,2,..., pland y ={1,2,..., {p—+ 13} Note that by Theorem 2.8,
By £ Q. Consider
Baa Bal,r.l--l] Bu;ﬁ'
8= Bu:-e— 1 e B[p—l][;:-—l] B[p-:-l]?
Bje Byipeny By

Mote that

i [Bl.n—.l]l.ﬂ—l] Btp—l]?]
Byipsn By

is a strict upper tiangular matrix nonpositive matrix, Therefore B py 1y0pa1y = 0 and
Bypsny =0,

Now look at the principal submatrix 8y of order {p + 1). We shall show that
B (pa1y = 0. Suppose by pe1y = Oor some ip € o Since by payy = 0 there exists
aqy suchthat g, = Oand g = O foralli € . § 3 ip and the set of feasible solution
Figy, Byy) of LCP{(g, . By,) 1s nonempty. Let {wy, z.) € Fig. A). Then zp4) >
0. Now Bipie = 0implies wp = Ocontradicts By, € Qp. Therefore Bepepy =
0. Hence B is singular. But this leads to a contradiction. Therefore A € £y, O

Remark 3.1. Note that Theorem 3.1 also follows from Theorem 3.2 However, in
the proof of Theorem 3.1, we use different arguments that uses the structure of a
Cp-matnx.

Theorem 3.3, Let A € E::r] with one zero principal minor. Assume that A € Op, 0.
Then there exist a PPT M of A such that the following holds: (1) rankiM) =n — 1,
(i Mz =0 and 7'M = O for vectors z, m = ().
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Proof. Assumedet{d,,) = 0forsomeo ©{1,2, ..., } Let M bea PPT of A with
respect 0 a nonsingular pnncipal submatnx, say Agg of A such that det{M) = 0.
Hence mnkiM) =n — 1. Since M € Etr:;, LCP{d, M) has a umique solution for d =
0. Note that M £ Qg Q@ since M is a PPT of A, Thus there exist a g € B" such that
LCPFi{g, M) does not have a solution. Therefore Lemke’s algorithm when applied
LCPig, M) terminates in a secondary ray, Since no proper principal minor of M
15 zero and M £ E::ll-, it follows that, we get a positive vector £ such that Mz =00
Now we show that there is a positive vector = 0 such that 7'M = 0. Without
loss of generality, assume that 7 and 7 are probability vectors. Note that M' e Ep.
Therefore valiM") =0 by Theorem 2.5 Let 0% 7 = () be the optimal strategy for
M. Therefore Mz = 0. Now since ' M = 0, therefore vali M) = 0 which implies
M'm =0, Since det(MY) = 0 and the principal minors are nonzero, it follows that
there is a positive vector T = Osuchthat 7'M =0, [

The class O matrices wentified in the above theorem is contained in the class
of (p matnices of order n and mnk{n — 1) with positive vectors d and 7 satisfying
Md = 0and 7'M = 0 mentioned in [4]. Note that the class is not contained in any
well-known classes of (Op matnces such as those studied in Gareia [5]. Lemke’s
algonthm is not applicable for this class. However Algzorithm-1 of Eagambaram and
Mohan [4] can be applied to solve this class. Finally, we conclude the paper by
mentioning an open problem associated with PPTs in Section 4.

4. Characterization of matrices lor which at least one PPT isa Z-malrix: an
open problem

The principal pivol transform of 4 Z-matnx need not be a Z-matrix. However
WViiligho's [15] observed that the inverse of a symmetne almost coposilive matnx is
a £-matrix. Mohan et al. [8] considered a class of matnees of exact order 2 whose
inverses belong to class Z and observed the following result.

Theorem 4.1. Let A € R"™ " (n = 5) be a matrix of exact onder 2. A~" € Z if and
only if v{A) < Qand A is of second cate gory with each By #£ ().

For the class stated in the theorem the following result on algorithmie significance
was also proved by Mohan et al. [8].

Theorem 4.2. Ler A € R"™" (n = 5) be a matrix of exact order 2 of the second
category with B; £ 0 for 1 <1 £ n. Then a solution to LCPl{g, A), if one exists,
can be computed by obtaining a solution to LCP(—A~'g, A™"), in at most n steps.

However the complete characterization of the class of matrices for which at least
one PPT is a Z-matnx remains an interesting open problem.
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