
Association against Dissociation: some pragmatic
considerations for Frequent Itemset generation under

Fixed and Variable Thresholds
Sukomal Pal Aditya Bagchi

Indian Statistical Institute Indian Statistical Institute
 203, B.T.Road, Kolkata, India 203, B.T.Road, Kolkata, India
 Sukomal_r at isical.ac.in aditya at isical.ac.in

ABSTRACT
Traditionally, support is considered to be the standard measure
for frequent itemset generation in Association Rule mining. This
paper provides a new measure called togetherness where
dissociation among items is also considered as a parameter in the
frequent itemset generation process. Results of performance
analysis show that association against dissociation is a more
pragmatic approach and discovers truly associated candidate
itemsets. Second part of the paper extends this togetherness
measure to the domain of variable threshold. Here, like variable
minimum support, a variable minimum togetherness has been
proposed where this minimum value decreases as the itemset size
increases. A simple and pragmatic process has been described,
which can be easily implemented. It also provides ample control
facilities in the hand of the users. Necessary change and extension
of the existing algorithms have been made to establish the
concepts. Here as well, results of performance analysis justify the
approach.
Keywords
Association rule mining, frequent itemset, support, togetherness.

1. INTRODUCTION
Discovery of association rules is an area of study in data mining.
Starting from the earliest work in this area[1], many efficient
methods including parallel algorithms have been
developed[2,5,6,7]. The two usual metrics for measuring
association among different items are support and confidence.
Considering a set of transactions containing different data items,
an association between data itemset X and data itemset Y,
represented as X ⇒ Y, signifies that the transactions that contain
X tend to contain Y as well. In this context, the first measure of
association called support is obtained as,
“the support for a set of items is the % of transactions that
contain all of these items”.
In other words, if A and B are any two items, then P(AB) or the
joint probability of A and B is its support. A set of items will be
considered for mining rules if its support is above a threshold
called MINSUP. A user, interested in mining a data set, normally
specifies this minimum support or MINSUP. An itemset that
crosses the MINSUP threshold is called a frequent itemset.
Similarly, the measure of confidence is obtained as,
“out of the transactions that have the itemset LHS, the % of
transactions that have RHS as well, is the measure of confidence
of the rule LHS ⇒ RHS”.

In other words, between two items A and B, it is the probability of
the availability of one given the other, i.e. P(B/A) or the
conditional probability is the measure of confidence for the rule
A ⇒ B.
This type of association is called binary association, where in
each transaction, only the presence and absence of the items are
considered. So, an environment involving n data items, would
tend to produce 2n possible itemsets for which support has to be
measured. However, if a particular itemset fails to cross the
MINSUP threshold or does not become a frequent itemset, all its
supersets would not cross the MINSUP threshold as well. So, the
frequent itemset generation algorithm will not generate the
supersets of an itemset X, if X itself fails to cross the MINSUP
threshold. Starting from the well known Apriori algorithm[2],
almost all frequent itemset generation algorithms follow the same
principle.
However, for an itemset X, a transaction is considered for
counting support only if all the items in the itemset are present in
the transaction. Figure-1 shows 10 transactions involving 4 items.
Here presence of an item is denoted by 1 and absence by 0. TID is
the transaction-id and the data set has 4 items A,B,C and D.

TID A B C D

1 1 1 0 0
2 0 0 1 0
3 1 1 1 1
4 1 0 0 0
5 0 1 0 1
6 1 1 0 0
7 0 1 1 1
8 1 0 1 1
9 1 1 0 0
10 1 0 1 1

Figure 1: An example set of ten transactions.

Considering MINSUP =0.3, for itemsets AB and CD (i.e. 30% of
transactions should have AB or CD appearing together),
support(AB) = 0.4 and support(CD) = 0.4.
Both the itemsets cross the MINSUP threshold and they have the
same support. So, both AB and CD are frequent itemsets and
should be considered for subsequent measure of confidence.

Page 151Volume 7, Issue 2SIGKDD Explorations

However, the dataset also provides the count where out of the two
items in the example itemsets, only one is absent. In other words,
for itemsets AB or CD, it provides the count of occurrences of 10
and 01 patterns. If 11 pattern provides a measure of association,
10 or 01 pattern should provide a measure of dissociation.
Considering the same set of itemsets again,
dissociation(AB) = 0.5 and dissociation(CD) = 0.2.
So, though both the itemsets AB and CD had the same support, if
the measure of dissociation is considered, CD has less
dissociation than AB. So, the dissociation of an itemset is
obtained by finding,
the % of transactions where one or more items but not all are
absent.
Logically speaking, between two itemsets of same size (e.g. both
AB and CD are 2-itemsets) and same support, the one having less
dissociation should be considered to have stronger association.
This paper provides a measure of togetherness similar to support,
for extracting frequent itemsets from a set of transactions under
high association but low dissociation. The algorithm is similar to
the well known Apriori algorithm. Authors are aware that Apriori
is not a very efficient algorithm and many better algorithms for
frequent itemset generation have already been developed.
However, since the purpose of the paper is to establish a new idea
of association, efficiency of the algorithm has taken a back seat
here. Future efforts would try to develop better algorithms.
In the present paper, adequate test results have been provided to
compare the usual support measure against the new measure of
togetherness. It has been found that measure of togetherness tends
to discover more frequent itemsets than that is done under the
usual support measure. The results have been explained and
justified.
An earlier effort[3] has provided a similar measure called
similarity. However, the authors did not observe the possibility of
defining a stronger association minimizing dissociation among
items. On the other hand the authors considered the similarity as a
measure in lieu of support in the environment where confidence is
high but support is low. In the process, the authors studied the
phenomenon for two itemsets only and observed that the measure
of similarity for higher orders of itemsets is computationally
prohibitive. The present paper considers togetherness for any k-
itemsets and provides a simple method for its enumeration.
Another recent effort[6] has considered the concept of variable
MINSUP constraint. The classical way of frequent itemset
generation considers uniform value of MINSUP irrespective of the
size of the itemset. However, this is quite logical that if itemset
AB has a certain support, the support of its supersets would tend
to decrease as the size of the superset increases. So, it would
definitely be desirable if the value of MINSUP becomes a
function of the itmesize and its value decreases as the size of the
itemset increases. Therefore, a method should be developed where
the MINSUP defined by a user should get modified in such a way
that the MINSUP for (k+1)-itemset is less than that for k-itemset.
In [6], an elaborate method has been proposed, first to classify the
items, then to define MINSUP ranges for each class and then
again, a method to change the MINSUP within a range as the
itemset size increases. Accordingly, the authors have defined an
Adaptive Apriori algorithm and studied its performance against
the classic Apriori algorithm.

As mentioned earlier, this paper considers togetherness as the
effective measure for frequent itemset generation in lieu of
support and user may specify a min_togetherness similar to
MINSUP. Extending this idea to an environment similar to
variable MINSUP proposed by [6], this paper offers a very simple
and pragmatic method to specify variable min_togetherness where
this threshold value decreases as the itemset size increases.
However in the proposed method, a user can specify a maximum
value of the threshold and an acceptable lower bound. As a result,
even when the threshold is decreased with the increase of the
itemset size, it never goes below the lower bound irrespective of
the extent of increase in the itemset size. Experimental results
have been provided to elaborate the process.
While Section 1 provides the introduction Section 2 covers the
effect of dissociation in frequent itemset generation. Section 3
discusses the variable threshold phenomenon and Section 4 draws
the conclusion.

2. THE DISSOCIATION EFFECT
2.1 Togetherness in lieu of Support
An itemset is accepted as a frequent itemset if its support crosses
the MINSUP threshold.
Let T= Total no.of transactions.
Let Si = The subset of transactions containing the item i.
Let Ni = The no. of occurrences of item i.
 = The no. transactions where the item i has appeared.
So, Ni = | Si | = The cardinality of Si.
So, the support for i = (Ni / T)
Hence, the support for an itemset (AB)=The support for the set of
items {AUB} = (NAB / T)
where, NAB = | SA ∩SB |
Referring to Figure-1 again, NAB = NCD = 4, and hence both the
itemsets have support = 0.4.
Once again in Figure-1, out of the 10 transactions, 5 of them have
either A or B appearing alone. In case of CD, C or D has appeared
alone in only 2 transactions. Defining this as the dissociation
among items, CD is found to have a stronger association than AB
even when they have the same support value. So, in case of ideal
association, all the items of an itemset would either appear
together in a transaction or none of them should be present.
Following the classical work of Agrawal and Srikant[2], the
problem may be formally presented as,
Let I = {A1, A2, A3,.., Am} be the set of all items in a database
where each item Ai is a boolean attribute.
Let D be the set of all transactions in the database, where each
transaction T = {i1, i2,……,ik} (k ≤ m) is a set of items such that T
is a subset of I.

So, the whole database may be viewed as a 0/1 matrix of size (|D|
x m) with Ai’s as columns and transactions as rows. If we take Ci
as the set of rows that have 1 in column Ai then the classical
measure of support for itemset {Ai, Aj} = |Ci ∩Cj| / |D|.
Now, considering the degree of dissociation along with
association, a new measure togetherness may be defined as,
togetherness of itemset {Ai, Aj} = |Ci ∩Cj| / |Ci U Cj|.

Page 152Volume 7, Issue 2SIGKDD Explorations

So, extending the definition to k-itemsets,
togetherness of k-itemset{A1, A2,….,Ak}
= |C1∩C2∩….∩Ck| / |C1UC2U….UCk|
Now, for a k-itemset {A1, A2,….,Ak},
|C1∩C2∩….∩Ck| = cardinality of the set of rows where all the
items A1, A2,….,Ak are 1 simultaneously.
Similarly, |C1UC2U…UCk| - |C1∩C2∩….∩Ck| = dissociation of
itemset {A1,A2,….Ak} = cardinality of the set of rows where at
least one of the items in {A1,A2,…. Ak}is present but not all of
them simultaneously.
Some desirable properties of togetherness are:

Lemma 1: For any value of k(1 ≤ k ≤ m), togetherness value for
k-itemset lies between 0 and 1 (m is the total number of items
present in the database).
support measure for k-itemset is defined as,
support(A1,A2,…. Ak) = P(A1A2,….Ak)
 = Joint probability of occurrence of all the k data items.
So, the value of support is always bounded between 0 and 1.
Since togetherness has been used in lieu of support, it should also
exhibit the same property.

Proof :
By definition,
togetherness(Ai1, Ai2,……., Aik) = |Ci1∩Ci2∩…. ∩Cik| /
|Ci1UCi2U ………UCik |

• Since, both the numerator and the denominator are
positive integers and the numerator is a subset of the
denominator, the ratio providing the togetherness
measure can never exceed 1.

• The value of togetherness will be equal to 1 only if
there is no dissociation among the items. In other
words, in any transaction, either all the k-items are
present or all of them are absent. So, when k =1 i.e. for
any 1-itemset {Ai}, togetherness(Ai) = |Ci| / |Ci|=1.

• The value of togetherness will be 0, only if
|Ci1∩Ci2∩…. ∩Cik| = 0. In other words, there is no
transaction where all k-items are present.

So, togetherness measure is bounded between 0 and 1.

Lemma 2: Togetherness value for k-itemset gradually decreases
as k increases in 1≤ k ≤ m or togetherness for (k+1)-itemset ≤
togetherness for k-itemset.
Proof :
This property is also exhibited by the support measure.
The Lemma can be proved by induction.

• For any 2-itemset {Ai1,Ai2}, togetherness(Ai1,Ai2) =
|Ci1∩Ci2| / |Ci1UCi2| ≤ 1 [from Lemma 1].

• For any 3-itemset {Ai1,Ai2,Ai3},
(Ci1∩Ci2∩Ci3) is a subset of any of (Ci1∩Ci2), (Ci1∩Ci3)
or (Ci2∩Ci3). So,

|Ci1∩Ci2∩Ci3| ≤ min {|Ci1∩Ci2 |, |Ci1∩Ci3 |, |Ci2∩Ci3 |}

• Again, each of (Ci1UCi2), (Ci1UCi3) and (Ci2UCi3) is a
subset of (Ci1UCi2UCi3). So,

|Ci1UCi2UCi3| ≥ max {|Ci1UCi2|, |Ci1UCi3|, |Ci2UCi3|}

• So, |Ci1∩Ci2∩Ci3| / |Ci1UCi2UCi3| ≤ min{|Ci1∩Ci2| /
|Ci1UCi2|, |Ci1∩Ci3| / |Ci1UCi3|, |Ci2 ∩Ci3| / |Ci2UCi3|}.

So, togetherness for any 3-itemset ≤ togetherness for any 2-
itemset generated out of those three items.
Proceeding the same way, it can be shown that for any k-itemset,

togetherness for (k+1)-itemset ≤ togetherness for k-itemset.

2.2 Enumeration of Togetherness
The numerator of togetherness measure is same as the support
measure. For any k-itemset {A1,A2,….Ak}, it is the count of the
transactions where all the k items are present or the all 1’s cases.
The denominator of support measure is the total number of
transactions present in the dataset or |D|, as defined earlier.
However, in case of togetherness measure, enumeration of
denominator is more difficult, as it provides the count of the
transactions where any or all of the items are present. So
apparently, when support measure for any k-itemset needs only
one pass of the database, enumeration of togetherness may
require several such passes. The same observation has been made
in [3], when they provided the measure of similarity. This
enumeration process, however, may be simplified in the following
way,
From the simple set algebra it can be observed that,

D = (CiUCj……….UCk)U(CiUCj……….UCk)
c

where, D is the universal set here and,
Ci

c
 is the set complement of Ci.

Now applying De Morgan’s theorem,
D = (CiUCj……….UCk)U(Ci

c∩Cj
c………… ∩Ck

c)
Now as the two sets are disjoint,
|D| = |CiUCj……….UCk| + |Ci

c∩Cj
c………… ∩Ck

c|
So, |CiUCj……….UCk| = |D| - |Ci

c∩Cj
c………… ∩Ck

c|
Hence, the effort of enumerating the denominator of togetherness
measure turns into the process of enumerating the set
(Ci

c∩Cj
c………… ∩Ck

c). This set is actually the all-0 set, as Ci
c

denotes the set of transactions where item Ai does not occur or
simply the column entry is 0. Following the same process as the
Apriori algorithm, the all-0 set can be counted in O(|D|) time by a
single pass over the entire database, which is definitely a
substantial reduction in overall complexity. Again a careful
observation shows that counting of this all-0 set need not be done
after the counting of all-1 set (numerator of support or
togetherness measure). In fact, both enumerations can be done in
the same pass over the database. Thus the complexity of
enumerating togetherness is of the same order as support. As a
matter of fact, against each disk access, time required for the
computation of togetherness will be slightly higher than that
required for the computation of support. This small difference is
due to the main memory processing time needed for counting the
all 0 transactions (i.e. transactions where all the k items are
absent) in addition to all 1 transactions.

2.3 Aprioridis Algorithm
Classical Apriori algorithm is the most well known method to
generate frequent itemsets against a pre-specified minimum

Page 153Volume 7, Issue 2SIGKDD Explorations

support, MINSUP. Though many efficient algorithms have been
developed since Apriori was proposed, the principle of frequent
itemset generation has remained the same. In order to investigate
the possibility of finding a new measure like togetherness in lieu
of support, an Aprioridis algorithm, similar to Apriori, has been
developed. It generates frequent itemsets against a pre-specified
minimum threshold of togetherness or min_togetherness. Since
the value of togetherness is 1 for all 1-itemsts [Lemma 1], the
Aprioridis algorithm starts generating the frequent itemsets from
2-itemset onwards. As observed in [3], this approach would
ensure that some items are not discarded in the first pass itself
because of their small support, even when they exhibit strong
association later when taken with other items to form higher order
itemsets. This is verified by subsequent confidence measure in
[3].
For discovering frequent itemsets, Apriori algorithm makes
multiple passes over the entire data set. So, generation of frequent
k-itemsets needs k passes. The frequent itemsets generated in one
pass are used as the seeds for the subsequent pass. This process
continues till no frequent itemset is found for a particular value of
k. As mentioned earlier, an itemset is said to be frequent if it
exceeds the MINSUP threshold. Also, in case of standard support
metric, only presence of all k-items or all 1’s count contributes
towards the support measure.

D Total data set, given as a 1-0
matrix.

T A transaction in D.

Lk Set of frequent k-itemsets. Each
member has 3 fields; itemset, 1’s
count & togetherness value.

Ck Set of candidate k-itemsets that
are potentially frequent itemsets.
Each member has 3 fields similar
to Lk.

Lk[r] r-th itemset in any set of frequent
itemsets Lk.

O(r) 1’s count for itemset r (all items
of itemset r are present).

Z(r) 0’s count for itemset r (none of
the items of itemset r is present).

min_togetherness Pre-specified minimum value of
togetherness.

Figure 2: Notation used in Aprioridis Algorithm

The Aprioridis algorithm follows the same method, though the
first pass is avoided. All 1-itemsets are considered to be frequent.
Moreover in each pass, for k-itemsets, both all 1’s (all k items are
present) and all 0’s (none of the k-items is present) counts are
taken. While the all 1’s count forms the numerator, all 0’s count
contributes to the denominator of the togetherness measure.
In the algorithm, all members of frequent k-itemsets Lk satisfy the
minimum threshold requirement. Each pass in the algorithm
consists of two phases. First, the candidate-set Ck is generated
from the frequent-sets Lk-1 of the previous pass using candi-gen

function. Next, the database is scanned for each member of the
candidate-set Ck to find its togetherness value and frequent k-
itemset Lk is determined using the function prune. Notations used
in the algorithm are listed in Figure-2.
The Aprioridis algorithm is given as :

Main Program: Aprioridis
L1 = {large 1-itemsets};
for (k=2; Lk-1 ≠ 0; k++) do
begin
 Ck = candi-gen (Lk-1);
 Lk = prune (Ck, D, min_togetherness);
end
Answer = Uk Lk;

Here, Answer provides the union of all the frequent itemsets
produced between 1 to k-itemsets. These are the frequent itemsets
to be considered for computation of confidence and subsequent
association rule generation.

function candi-gen(Lk-1)
begin
 Ck := Φ;
 for all Lk-1[r], Lk-1[j] in Lk-1

 with Lk-1[r] = { i1,…ik-2,ik-1}
 and Lk-1[j] = { i1,…ik-2,i’k-1} do

 /* where ik-1 ≠ i’k-1 */
 begin
 f : = Lk-1[r] U Lk-1[j] = { i1,…ik-2,ik-1,i’k-1}
 if for all item i in f , {f – i} belongs to Lk-1

 then Ck := Ck U f ;
 end
 return Ck ;
end

The candi-gen function takes as argument Lk-1, the set of all
frequent (k-1)-itemsets and returns Ck, all candidate k-itemsets.
This candi-gen function is exactly similar to the join step
executed in the Apriori algorithm. Each pair of itemsets belonging
to Lk-1 (say, Lk-1[r] and Lk-1[j]) are compared and if they match in
first (k-2) terms, then a candidate k-itemset is generated taking the
matched (k-2) terms and adding the (k-1)th. term of Lk-1[r] and
Lk-1[j]. Thus the set of candidate k-itemsets Ck is generated.

Page 154Volume 7, Issue 2SIGKDD Explorations

function prune(C, D, min_togetherness)
/* C is the set of candidate itemsets and
D is the total data set */
begin
 for all itemset c in C do
 begin
 O(c) = 0;
 Z(c) = 0;
 end
 for all c in C do
 begin
 for all t in D do
 begin
 if c is in t and it has all 1’s then
 O(c) = O(c) +1;
 else if c is in t and it has all 0’s then
 Z(c) = Z(c) + 1;
 end
 togetherness(c) = O(c) / (|D| - Z(c));
 end /* candidate set ends */
 L :=0;
 for all c in C do
 begin
 if togetherness(c) ≥ min_togetherness
 then L := L U c;
 end
 return L;
 /* L provides the frequent itemsets */
end

2.4 Performance Evaluation
To assess the performance of the Aprioridis algorithm against the
classic Apriori algorithm, experiments have been made using a set
of synthetic data. Both the algorithms have been implemented
using C language and all the experiments have been conducted on
a SUN Enterprise sever under Solaris 9.0 environment. The
transactions in the experiment mimic the retailing environment.
Number of items taken for the experiment is 120 and the number
of transactions has been increased gradually from 5000 to 20000
in steps of 5000. For the purpose of demonstrating the relative
performance, the number of 3-itemsets generated by the two
algorithms at two different threshold values are shown in Figure-
3(a) and 3(b). In both the cases the MINSUP and
min_togetherness have been made equal.

Figure 3: Performance of Aprioridis and Apriori algorithms
with threshold = 0.23

Figure 4: Performance of Aprioridis and Apriori algorithms
with threshold = 0.19

The results shown in Figure-3 and Figure-4 are apparently trivial.
The expressions of support and togetherness have the same
numerator, i.e. |CiUCj………. UCk|. On the other hand, the
denominator of support, i.e. |D|, is greater than the denominator of
togetherness, i.e. |D| - |Ci

c∩Cj
c………… ∩Ck

c|. So, it is obvious
that for the same threshold value, more number of itemsets would
cross the threshold in case of togetherness measure than in case of
support measure. However, some important observations can still
be made from these results.
Figure-3 shows the case where in spite of strong association
among items, the support measure fails to reveal them just
because the dissociation among the items has not been considered
as a part of the process of discovering association. Incidentally,
same observation was made by [3], however they attributed it to
high confidence under low support. As a matter of fact, Figure-3
justifies the inclusion of dissociation as a parameter in the
discovery of association among items.

Page 155Volume 7, Issue 2SIGKDD Explorations

2.4.1 Efficiency in Association Rule Generation
Figure-4 shows the extent of loss of information (the possible
association among items), if a user prefers to specify the same
threshold value for min_togetherness as well as MINSUP.
Irrespective of the number of transactions, the number of 3-
itemsets chosen against togetherness measure is more than 2.7
times the same revealed by support measure. Another important
observation can again be made from this result.
The expression of togetherness in Section 2.2 shows that if for
any k-itemset the all 0’s count is 0, i.e. the case of maximum
dissociation, the value of support measure will be equal to the
value of the togetherness measure. Otherwise, for the same k-
itemset, the support value will always be less than the
togetherness value. So, an itemset that crosses the MINSUP
threshold would definitely cross the min_togetherness threshold if
both the thresholds are made equal. This becomes apparent from
Figure-4. So, it is absolutely justified if the min_togetherness
threshold is set to a higher value than the MINSUP threshold for
the same data set and the same k-itemset.
Going back to the data set shown in Figure-1, both the two
itemsets AB and CD have the support value of 0.4. If MINSUP is
0.3, both the itemsets become frequent itemsets, even when AB
has a much higher dissociation than CD. Now, if the
min_togetherness value is set to 0.5, a considerably higher value
than MINSUP, CD crosses the threshold (togetherness = 0.67),
but AB fails (togetherness = 0.44) to do so. In other words, if
togetherness measure is considered in lieu of support, the itemsets
having considerably high dissociation will not become frequent
itemsets.

Now, for the generation of a rule like X ⇒ Y, the confidence(XY)
= N(XY) / N(X) must cross the min_confidence value specified
by the user. If togetherness measure is used in lieu of support,
min_togetherness threshold will ensure that XY will have low
dissociation in order to become a frequent itemset. So, as such,
this measure would ensure that N(XY) is sufficiently close to
N(X). Once again referring back to Figure-1,

For a rule A ⇒ B, confidence(AB) = N(AB) / N(A) = 0.57,

and for a rule C ⇒ D, confidence(CD) = N(CD) / N(C) = 0.8

Now, if min_confidence is set to 0.7, rule C ⇒ D will be accepted
but not A ⇒ B. So, even when both the 2-itemsets had the same
support, the one with less dissociation could form the rule.
However, a suitable choice of min_togetherness already discarded
the itemest AB as a frequent itemset. So, instead of MINSUP, a
suitable choice of min_togetherness would discard many of the
frequent itemsets that would have high support but low
confidence because of high dissociation among the participating
items. Effectively, the rule discovery process would generate less
number of frequent itemsets that would be discarded during
testing of confidence. Thus the rule generation process would be
more efficient.

3. VARIABLE TOGETHERNESS
The classical way of frequent itemset generation considers
uniform value of MINSUP irrespective of the size of itemset.
Starting from the Apriori algorithm, other algorithms proposed
later are, no doubt, computationally more efficient but still follow
the same principle of uniform MINSUP. However, this is quite
logical to consider that if itemset AB has a certain support, the

support of any of its supersets (say ABC) will be less than or, at
most, equal to the support of AB. So, starting from 1-itemset, the
support would tend to decrease as the size of the itemset
increases. So, the user specified MINSUP value should also be
decreased gradually with the increase of the itemset size. Without
this principle, the frequent itemset generation process may fail to
include many desirable higher order itemsets and consequently
may not generate many desirable higher order association rules. A
trivial solution to this problem will be to set a very low MINSUP
value so that higher order itemsets can also cross the threshold.
However, this process would unnecessarily create too many lower
order itemsets that would get discarded later by the confidence
measure.
So, it would definitely be desirable if the value of MINSUP also
decreases as the size of the itemset increases. As a matter of fact,
the MINSUP value should be so specified that it becomes a
monotonically decreasing function of itemeset size, i.e. the value
of MINSUP should decrease as the itemset size increases.
A recent effort[6] has considered the concept of variable MINSUP
constraint. Here the authors have proposed a method for
specifying variable MINSUP that gets modified as the itemsize
increases. Accordingly, the authors have defined an Adaptive
Apriori algorithm. The salient features of the process are:

a) The items are separated in different bins where the
items in one bin would have a particular MINSUP
value. Different bins may have different values of
MINSUP.

b) Next is the use of support constraint to generate
dependency chain of itremsets, so as to create schema
enumeration tree where each node, except the root, is
labeled by a bin and a range for MINSUP is also
specified.

c) Depending on the application, the system determines
the minimum support in different ways. It can be
support-based spcification, where the bins are formed
by computing the support of individual items in one
pass of the transactions and then clustering the items
based on their supports. The MINSUP of a bin may be
specified as the maximum, minimum or the average
support of that bin. Other ways may be concept-based
specification or attribute-based specification or
something else.

d) In Apriori algorithm, a candidate k-itemset is usually
generated by the combination of two (k-1)-itemsets
where both such sets are frequent. The participating (k-
1)-itemsets and the generated k-itemset have the same
MINSUP. However, it is not true in case of Adaptive
Apriori. The minimum support for the three itemsets
may be different. The authors in [6] have taken an
approach that replaces MINSUP with a new function
Pminsup, called the pushed minimum support such that
Pminsup defines a superset of the frequent itemsets and
this superset can be computed in the manner of Apriori.
The paper goes on defining the different properties of
Pminsup. It also proposes a method of specifying the
minimum support as a function of the product of k
supports. Since a support basically signifies a
probability value i.e. a value less than 1, a product of k
supports creates a very low value. So, the product is

Page 156Volume 7, Issue 2SIGKDD Explorations

multiplied by a factor γk-1. Thus the minimum support
takes the form,
MINSUP = min {γk-1(P1X P2X….X Pk), 1}
Where, any Pi represents a probability value i.e. a value
less than 1 and γ is an integer greater than 1.
Now varying the value of γ, the authors have studied the
performance of their Adaptive Apriori algorithm against
the classic Apriori algorithm using a synthetic dataset,
where γ is varied from 1 to 20 and maximum value of k
is 7.

The detail treatment of the method is given in [6]. In spite of the
fact that the method given by the authors are quite elaborate,
depending on the application, the method may ask for
considerable domain knowledge from the users, particularly for
concept-based or attribute-based specifications.
Extending the idea of using togetherness in lieu of support, this
paper proposes an environment, where, similar to variable
MINSUP in [6], a min_togetherness value may be specified by the
user. This threshold value is basically the maximum value of the
threshold applicable to the minimum itemset size, i.e. 2-itemsets,
and the min_togetherness decreases as the itemset size increases.
The method is very simple and the approach is very pragmatic.
The min_togetherness is defined as a monotonically decreasing
function of the itemset size. As a result, as the itemset size
increases, the min_togetherness decreases. Depending on the
function used, minimum value of the threshold is always
restricted to a lower bound of the original min_togetherness value
specified by the user. At the same time, the user can specify not
only the maximum value of the threshold, he/she can also specify
the required function of itemsize k. This control over the
specification of the function allows the user to restrict the lower
bound of the threshold. So, the min_togetherness here, takes the
nature,
min_togetherness = f(k). mt
where, f(k) is a monotonically decreasing function of itemset size
k and mt is the maximum value of the threshold specified by the
user and applicable to minimum itemset size.

3.1 Variable Aprioridis Algorithm

Main Program: Aprioridis
L1 = {large 1-itemsets};
for (k=2; Lk-1 ≠ 0; k++) do
begin
 Ck = candi-gen (Lk-1);
 min_togetherness = vth(mt,k);
 Lk = prune (Ck, D, min_togetherness);
end
Answer = Uk Lk;

The Variable_Aprioridis algorithm, shown above, is almost
similar to the one given in section 2.3. Same candi-gen and
prune functions are used. Only a user specified function vth has

been defined that controls the variation and the lower bound of
the maximum threshold mt, once again supplied by the user.

3.2 Performance under Variable Threshold
Using the same synthetic data set, experiments have been
performed to study the relative performance of the Aprioridis
algorithm under fixed and variable thresholds. Here, the vth
function is so used that the maximum threshold specified is
bounded between mt and 0.5mt. As shown in the proof of
Lemma-1 in section 2.1, in case of togetherness measure, all 1-
itemsets are considered to be frequent. So, the minimum size of
the itemset considered for pruning is 2. So, the min_togetherness
threshold will be equal to mt for 2-itemsets. Now, as the itemset
size k increases and tends to infinity, min_togetherness value
tends to 0.5mt.

function vth(mt,k)
 begin
 min_togetherness = (k / (2*(k-1))) * mt
 return min_togetherness;
 end

The function vth used for the performance study is very simple.
Since,

 Lt k / (2 (k-1)) =1/2
k →∞

the value of min_togetherness remains bounded between mt and
0.5mt. Changing the monotonically decreasing function vth, a
user can define any lower bound within which the user specified
min_togetherness value should be bounded irrespective of the
value of the itemsize k.

Figure 5: Performance of Fixed and Variable Aprioridis
Algorithms for 3-itemsets.

Figure-5 shows the performance of the Aprioridis algorithm under
fixed and variable min_togetherness. The study has used the same
synthetic data set against which the results are shown in Figure-3
and Figure-4. To compare the results with that shown in Figure-4,
this study has considered number of transactions as 20000 and a
MINSUP or maximum value of min_togetherness as 0.19. In
Figure-5, the number of frequent 3-itemsets generated under
Variable_Aprioridis is compared against those generated under

Page 157Volume 7, Issue 2SIGKDD Explorations

Apriori and Aprioridis (with fixed min_togetherness). From
Figure-5 it is apparent that variation in min_togetherness with
itemset size definitely captures more number of frequent itemsets.

Figure 6: Performance of Fixed and Variable Aprioridis
Algorithms for 4-itemsets.

Figure-6 shows more interesting results. With the same threshold,
same number of items and same number of transactions, the
number of frequent 4-itemsets generated under
Variable_Aprioridis is compared against those generated under
Apriori and Aprioridis (with fixed min_togetherness). It has been
found that while both Apriori and Aprioridis (with fixed
min_togetherness), failed to generate any frequent itemset of size
4, variation in min_togetherness could generate a good number of
potential associations.
Thus, the study of using variable min_togetherness instead of a
fixed value has shown that this approach has the potential of
generating many extra higher order frequent itemsets that are
rejected in the fixed threshold approach. Consequently this
approach would also provide more number of interesting
associations among items. It is also important to note, that in this
simple approach, a user can define the maximum value of the
threshold and its lower bound. In addition, with the change of the
itemset size k, a user can also control the rate of change of
threshold by choosing an appropriate function of k. These
functions are also very simple. For example, instead of using vth
as,

(k / (2*(k-1))) * mt
if the function is changed to

(k / (2*(k-1)2)) * mt
the min_togetherness will still be bound between mt and 0.5mt
but here, the rate of change of threshold will be much faster than
the previous function. Hence a very simple and pragmatic method
has been established for implementing variable min_togetherness
for generating frequent itemesets.

4. CONCLUSION
Traditionally, support is used as the standard measure to generate
the frequent itemsets for possible discovery of association rules.
New and efficient algorithms have been developed for this

purpose but support remained the default measure for frequent
itemset generation. This paper has observed that the classical
support measure considers association among items ignoring the
presence of dissociation among them. As a result two itemsets of
same degree and same support but different degree of dissociation
are treated the same way in rule generation. This paper has tried
to provide a pragmatic approach towards frequent itemset
generation by including dissociation in the measure of association
and proposed a new measure called togetherness. The desirable
properties of togetherness have been established so that it can be
accepted as a new and more pragmatic measure in lieu of support.
Extending the classic Apriori algorithm, a new algorithm
Aprioridis has been proposed. Performance analysis has shown
that the new algorithm with togetherness measure really finds
more desirable set of frequent itemsets than with the support
measure when tested on the same data set.
The second part of the paper deals with the case of variable
threshold. A recent work[6] has established the need of providing
variable threshold instead of a fixed one for the generation of
frequent itemsets. To be more precise, the threshold that accepts a
candidate itemset as the frequent one should decrease as the
itemset size increases. The earlier work has provided an elaborate
process to generate the variable minimum support. Extending the
principle, this paper provides a method for generating a variable
minimum togetherness. The proposed method is not only very
simple and pragmatic, but also it provides lots of control in the
hand of the user. The user can provide the maximum value of the
threshold, min_togetherness, and the lower bound of the threshold
irrespective of the increase in the itemset size. The user can also
control the rate of change of threshold value with the increase in
itemset size by appropriately choosing a monotonically
decreasing function of itemset size. Here also, performance
analysis has shown how the frequent itemset generation improves
from Apriori to Aprioridis (with fixed threshold) and then
ultimately to Variable_Aprioridis algorithm.
The future work is supposed to take two paths. First approach is
to develop computationally more efficient algorithms for frequent
itemset generation with togetherness as the measure. Secondly,
attempt will be made to extend this concept to sequential pattern
mining and quantitative rule mining.

5. ACKNOWLEDGMENTS
Authors are indebted to Prof. Bimal K. Roy of Indian Statistical
Institute for many useful and stimulating technical discussion on
the topic of this paper.

6. REFERENCES
[1] Agrawal R., Imielinski T. and Swami A. Mining association
rules between sets of items in large databases, in Proceedings of
ACM SIGMOD’93 (Washington D.C, May 1993), 207-216.
[2] Agrawal R. and Srikant R. Fast Algorithms for Mining
Association Rules, in Proceedings of 20th VLDB Conference
(Santiago, Chile, 1994), 487-499.
[3] Cohen E., Datar M., Fujiwara S., Gionis A., Indyk P.,
Motwani R., Ullman J.D. and Yang C. Finding Interesting
Associations without Support Pruning, in Proceedings IEEE
ICDE-2000, 489-500.

Page 158Volume 7, Issue 2SIGKDD Explorations

[4] Pal S., Discovery of Association Rule against Dissociation,
M.Tech. Dissertation Report, Indian Statistical Institute, July
2005.
[5] Park J.S., Chen M.S. and Yu P.S. An effective Hash-Based
Algorithm for Mining Association Rules, in Proceedings of ACM
SIGMOD’95 (San Jose 1995), 175-186.

[6] Wang K., He Y. and Han J. Pushing Support Constraints Into
Association Rules Mining, IEEE Transactions on Knowledge and
Data Engineering, 15, 3 (May-June 2003), 642- 657.
[7] Zaki M., Parthasarathy S. and Ogihara M. Parallel Algorithms
for Discovery of Association Rules, Data Mining and Knowledge
Discovery, Kluwar, 1, 4 (December 1997), 343-373.

Page 159Volume 7, Issue 2SIGKDD Explorations

