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ApETRACT. In this paper, we obtain some sufficient conditions for an almost
constrained subspace to be constrained (in fact, by & wnigque norm 1 projec-
tion ), which improves significantly upon all existing conditions of similar type
with significantly simpler proofs.

1. INTRODUCTION

Let X be a real Banach space. We will denote by By |[z,7] the closed ball of
radius v > 0 around = € X. We will identify any element € X with its canonical
image in X**. Unless otherwise specified, all subspaces we consider are norm closed.
Our notations are otherwise standard. Any unexplained terminology can be found
in either [4] or [{].

Recall that a subspace ¥ of X is called 1-complemented or constrained if there
is a norm 1 projection on X with range ¥,

Definition 1.1 {[7]). A Banach space X & said to have the finite-infinite intersec-
tion property (IPj ... ) if every family of closed balls in X with empty intersection
contains a finite subfamily with empty intersection.

It is well known that dual spaces and their constrained subspaces have TPy .
By w*-compactness of the dual ball and the Principle of Local Reflexivity, it can
be shown (see e.g., [7]) that X has the [Py .. if and only if any family of closed
balks centred at points of X that intersects in X** also intersects in X. With this
in mind, we define

Definition 1.2 ([I]). A sulspace Y of X is said to be an almost constrained (AC)
subspace of X if any family of closed balk centred at points of ¥ that intersects in
X also intersects in Y.

Thus, X has the IP; .. if and only if X is an AC-subspace of X**. Clearly,
any constrained subspace is an AC-subspace. In the case of 1Py .., whether the
converse is also true remains an open question (see [12} Remark 2, page 60|, also
[fl X{10)]). However, we will give an example to show that an AC-subspace need
not, in general, be constrained.
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In addition, we apply some took and techniques developed in [I] to obtain suffi-
cient conditions for an AC-subspace to be constrained, much in the spirit of [6] [7].
Our condition is in terms of functionals with “locally wique” Hahn-Banach (ie.,
norm-preserving ) extensions, which improves significantly upon all existing condi-
tions of similar type, as noted in [3][8], and has significantly simpler proof. As in
[6L[7], these conditions actually imply the existence of a unique norm 1 projection.

Definition 1.3. Let ¥ be subspace of X
{(a) For y* € Y*, HB(y*) = {z* € X* : z*|y =¢" and |z*| = |s*| }.
(b) ¥V is a Usubspace of X if for any ¢* € ¥*, HB{y*) is a singleton. X is said
to be Hahn-Banach smooth if X is a Usubspace of X*.
(¢) The duality mapping D for X is the set-valued map from S{X) to §{X*)
defined by
Diz)={z' € 8(X"):="(z] =1}; =e8(X).
(d) =z € §5(X) is a smooth point of B{X) if D({z) is a singleton.
(e) ¥ is a weakly Usubspace of X if for every ¢* € D(S({Y)), HB(y*) is a
singleton.
X is weakly Hahro-Banach smooth if X is a weakly [V-subspace of X **.

If VY is a U-subspace, or even a weakly [Usubspace of X, then it satisfies our
sufficient condition. It is shown in [B] Theorem 2] that an AC-subspace ¥ i con-
strained in X if every point of 5(Y) is a smooth point of B(X). We show that this
happens if and only if every subspace Z of V¥ is a weakly [U-subspace of X. Thus,
our condition is weaker.

It follows from our result that X is smooth if and only if every subspace of X
is a weakly U/-subspace. This parallels the classical result of Taylor-Foguel [15] ()
that X' is strictly comvex if and only if every subspace of X is a U-subspace.

2. SOME CHARACTERIZATIONS AND A COUNTEREXAMPLE
We will use the following notation:
Notation. Let ¥ be a subspace of X. For all 2z € X
P) = () Bvly: l=—ll.

=
Clearly, P(y) = {y} for all y € ¥. Also, ¥ is an AC-subspace of X if and only if
Ple)£#Dforallz e X.

We recall a definition from [1].
Definition 2.1. Let ¥ be a subspace of X. We define
OY,X)={zeX:|z—y| = |y| forall y e ¥}.
(X, X*) is denoted by O(X).
The following proposition characterizes AC-subspaces.

Proposition 2.2, For a subspace ¥ of X, the following are equivalent:

(a) V is an AC-subspace of X.
(b) Forall z € X, there evists y € Y and z € OV, X)) such that z = y + =.
(¢) For every subspace 2 of X such that ¥V C Z and dim(Z/Y) =1, ¥V is

constrained in 2.
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Proof (a) = (b). Let zyp € X. By (a), there exsts yy € Plxg). This implies
lwo — vl < |zo —y| for all y € V. Or, putting ©v =y — y, ||eel] < ||z — yp + 2 for
all u € ¥. That is, zp = 2y — g & O(Y, X)) and zg = w + z0.

{b) = (c). Let Z be as in (¢). Then one can write Z = 3pan(¥ U {z}| for some
xg € X. By (b), there exists yy € ¥ and z5 € OV, X)) such that zp = 3 + 0. It
follows that 2 = ¥ ¢ Rz, But then, by definition of (Y, X), azp +y— y & a
norm 1 projection from Z onto V.

(¢) = (a). By (¢), for every r € X, there is a norm 1 projection P, from
Z,=gpan[Y U {z}| onto ¥. Clearly, P.(z) € P(z). O

Recall that a hyperplane H in X is a subspace such that H = ker(z*) for some
¥ € §(X"). Since dim({ X/H) =1, we pet
Corollary 2.3. Suppose I is a hyperplane in X. Then H s an AC-subspace if
and only if H is constrained in X

Corollary 2.4. A subspace Y is an AC-subspace of X if and only if there is a {not
necessaridy linear) map P from X onto ¥ satisfying the following propertics:

(a) P2 = P;

(b) P{Az) =AP(z) forallze X, A e ];

(¢) Ple+y)=Plz)+y forallz e X, ye ¥;

(d) |1P{z)]| = ||| for all z € X.
Proof. If P is as above, then clearly for any z € X, P{z) € P(z). Thus, ¥V is an
AC-subspace of X .

Conversely, let ¥V obe an AC-subspace of X For z: e (¥ X)) let Y. = ¥V ¢ Rz
and P. be a norm 1 projection from Y. onto V. Observe that for z;, zo € O(Y, X,
gither Y., N¥Y.,, =Y or Y., = ¥.,. By Proposition E2]h), U.copv.xy ¥ = X.
Define P : X — ¥ by P{z) = P.(z), f z € ¥.. Then P is well-defined and satisfies
all the listed properties. O

Remark 2.5. Proposition B3 a) < (c) for the case of IP; .. was noted in [IZ]
Theorem 5.9). Corollary B3] was also noted in [I). Corollary 23] for the case of
1Py . was noted in [Bl Theorem 2|. In all these cases, our proof is simpler.

Let us note that in Proposition .221h), the representation z = y+ z with y € ¥
and z & (Y, X)) need not be unigue.

Example 2.6. We now give an example to show that an AC-subspace need not,
in peneral, be constrained. We need the following result (we thank Professor
T.5.5.R.K. Rao of 18I, Bangalore, for drawing our attention to this result).
Theorem 2.7 ([I1]). There exist Banach spaces Z 2 X with dim{ Z/X) = 2
satisfying
(1) There is no projection with norm 1 from 2 onto X
(ii) For every = =0, there is a projection with norm < 1 4 £ from Z onto X.
(iii) For every ¥V with 2 2V 2 X and dim{Y/X) = 1, there is a projection
with norm 1 from ¥ onto X
By Proposition[Z2] (iii) implies that X is an AC-subspace of Z, while by (i),
there is no norm 1 projection from Z onto X.
Definition 2.8. (a) [Il] A Banach space X such that X* is isometrically isomor-

phic to L'{y) for some positive measure g is called an L-predual.
(b) A Banach space is a P-space if it is constrained in every superspace.
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Remark 2.9. (a) From the results of [Il] Chapter 3|, it follows that X is a real
Ll-predual with IP; .. if and only if X is a real Pj-space. In particular, X is
constrained in X**,

{b) It can be shown that the space X in Example[Z.6lis not constrained in X**.
Therefore, it could have been a possible counterexample to the TFy.. question
as well. But, from the construction in [11], it is clear that the space X & a real
L'-predual, but not a real P-space. Thus it lacks the [Py ...

3. SOME SUFFICIENT CONDITIONS

We now obtain sufficient conditions for an AC-subspace to be constrained. Some
preliminaries first. As in [I}, we introduce the following notation.

Definition 3.1. Let ¥ be a subspace of X. For r € X and y* € ¥*, put
Ulz,y7) inf{y*(y) + |z -yl :y € Y},
Liz,y") = sup{y*(y) —|lz—yl:yeY}

For z* € X*, we will write U(z, %) for U(z, 2*|y). Let C(z) = {z* € B{X*) :
Ulz,z*) = L{z,z* )}, forz € X, and C = Mex Clz)-

The following result is immediate from the proof of the Haln-Banach Theorem
(see, e.g., [14] Section 48]).

Lemma 3.2, LetY be a subspace of X, 20 @ ¥V and 4" € S(Y™). Then Lizg, y") <
Uzg, y*) and o lies between these two numbers if and only if there evists 2% €

HB(y*) with 2*(xq) = o

Remark 3.3. It is clear that for any z* € B{X*) and z € X, Lz, z*) < 2*(z) <
Uz, z*) and for any y* € S{¥™*), HB{y*) is singleton if and only if for all z € X,
Liz.y*)=U{z.y"*).

The next three results are from [I]. We include the proofs for the sake of com-
pleteness.

Lemma 3.4. Let ¥V be a subspace of X, For 2,20 € X, the following are equiva-
lent:

(a) z2 €[ _,, Bxlw. = — -
(b) For all z* € B(X*), U{za, 2*) < Mz, z*).

Proof. Clearly, x2 € (o Bxly,||z1 —y|] f and only i |22 —y| < |21 —y], for
ally e Y.

(a) = (b). Hforall y € ¥V, |ze — gyl < |lz1 — ¢, then for all z* € B{X*),
25y + |22 — yl| = 2%(y) + |21 — yl|. Therefore, U{za, 2%) < U{xy, 27).

(b) = (a). Suppose |z2 — | = |z1 — wl for some 3 € V. Then there
exists £ > 0 such that |z2 — w| — 2 = |z1 — wol|. Choose z* € B{X*) such that
lz1—yoll £ |z2— ol —& < 2*(z2—w0) —£/2. Thus U(zy,2%) € 2" (o) + |21 - <
*(z2) — /2 < Ulza, z*). O

Proposition 3.5. Let ¥V be a subspace of X, 2* € B{X*) and zp € X\ Y. The
following are equivalent:

(a) z* € C(zg).
(b) l|z*lv | =1 and every x} € HB(x*|y ) takes the same value at .
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(¢) |=*|v ] =1 and of {2} C S(X*) is a net such that 7|y — z*|y in the
w*-topology of Y'*, then lim, z3(xq) = 2% (zq).
(d) |lz*ly|| = 1 and of {zZ} C S(X*) is a sequence such that zt|y — =¥y in

the w¥-topology of Y'*, then lim xf (zy) = z*(zg).

Proof. (a) = (b). Let ||z¥|y| = «. Then o < ||z%|| < 1 and it suffices to show
that o« = 1. Let 7 € HB{z*|y-). Then |z}| = o and therefore, for any y € ¥,
|zt {zo — o) = allzo —y| = ||lzo — vl It follows that

ry(za)

U{xy,z").

L(zo,2™) = sup{z’(y)—alzo—yl :y €Y}
< inf{z*(y) +alz -yl :y ¥}
Since ¥ € Czg), equality holds everywhere.

Nowifa<l letD<d <dlzg,Y)and let 0 < £ < (1 —a)d. Then for all y € ¥,

(1—a)|zg —y| == Therefore, for all y £ ¥,
¥ () — lzo —yll + & < ¥* () — allzo —yl.

Thus, the first inequality must be strict. Contradiction!

The result now follows from Lemma[L2)

{b) = (¢). Let {zX} C S{X*) be a net such that lim, z%(y) = z*(y) for all
y € Y. It follows that any w*-cluster point of {z}} is in HB(z*|y). By (b),
therefore, lim z? (z0) = =" (z0).

(¢) = (d) iz clear.

(d) = (b). If 7 € HB({2"|y) with 2*(xg) # 27(zg), then the constant sequence

=
<

zi = z} clearly satisfies lim,, z%(y) = z*(y) for all y € ¥, but {z%(x)} cannot
comverge to ¥ (xq). O

Proposition 3.6. Let ¥V be a subspace of X. For 2* € B{X"), the following are
equivalent:
(a) z* e .
(b) |l=*ly|| =1 and HB{z*|y) = {z*}.
() |=*lv ]| =1 and of {3} C S(X*) is a net such that 3|y — z*|y in the
w¥topology of Y'*, then 23, — x¥ in the w¥topology of X*.
(d) |lz*lyv|| = 1 and if {z}} C S(X*) is such that zi|y — =%y in the w™
tapology of Y™, then 2} — =¥ in the w¥topology of X*.

Here is our first sufficient condition for an AC-subspace to be constrained.

Proposition 3.7. For a subspace ¥ of X, the following are equivalent:
(a) ¥V is an AC-subspace of X and (Y, X is a closed subspace of X.

(¢) ¥V is an AC-subspace of X and (Y, X) is a linear subspace of X.
(¢) ¥V is constrained in X and for all x € X, P(z) is a singleton.

Moreover, in this case, ¥ is constrained by a unique norm 1 projection.

Proof. (a) = (b) is trivial.

(b] = (). Since Y is an AC-subspace of X, by Proposition any r € X
can be written as r = y+ z, where y € ¥V and z € OV, X'). Since both ¥ and
(Y, X) are linear subspaces and Y N O(Y, X) = {0}, this representation is unique
and r — ¢ B a well-defined linear map. Since z € O{¥, X, this map is of norm 1.
Hence ¥ is constrained in X. Moreover, since y € P{z), Plz) is single-valued.

{¢) == (a). Let ¥ be constrained in X by a norm 1 projection P and for all
x € X, let Piz) be a singleton. Clearly, ¥V is an AC-subspace of X and for all
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e X, Piz) = {Plz)}. Itis fn-uﬁ to see that ker(P) C O(Y, X)) and since for all
r e X, ‘]3 = {P{z)}, ker(P) 2 (Y, X). Thus, O(Y,X) = ker(P) & a closed
subspace of X O

Remark 3.8. (a) Even in the case of I Py ... this observation is new. References [f]
and [7] diseuss more complicated situations when O(X), being a linear subspace of
X** antomatically implies that it is a w¥-closed subspace of X**.

(b] We do not know if (¢) can be replaced by Y is constrained by a unigue
norm 1 projection”.

(¢) It follows from the proof that

U{kﬂ' P is a norm 1 projection onto ¥} C O(¥, X).
Are these two sets equal?

The following result significantly improves [3L Lemma 2|, which was also the key
tool in [5].
Lemma 3.9. Let Y be a subspace of X, Let xy,00 € X be such that z; €
ﬂ - Bxly, ||z2 —y|]. Then for any z* € Clza), *(z1 — z2) = 0.

i

Proof. Let ry1,722 € X be such that =, € ﬂge‘:’ Bxly,||lzz — ). Then, hy
LemmalBd for all z* € B(X*),
L{za, %) £ L{zy, %) < Uz, 2") < Ulza, z").
Thus for z* € C'{z2), equality holds. By Lemma[3.2} the result follows. O
Here is our main theorem.
Theorem 3.10. Let ¥ be a subspace of X . Suppose

1) for every ry,xa € X, Clxy) NClxa) separates points of Y.

IfY is an AC-subspace of X, then Y is constrained in X. Moreover, the projection
s unigue and Y, X is a closed subspace of X

Proof. Since ¥ is an AC-subspace of X, P(z) £ 0 for all € X. By Lemma [L.0]
for all z € X,

(2) 'z —y) =0 forany 2" € C(z), y € P(x).

Now if y, 92 € Plz), then for any =* € Clz), 2%z — ) = z"(z — ) = 0.
Therefore, z* (31 — y2) = 0. By @), 11 = y2. That is, Pz) is ‘ilng_ifb-‘-’ﬂl'l]{-b{l. Let
P(z) = {P(x)}. Then, P satisfies all the properties listed n Corollary[Z3] So, it
only remains to show that P is additive.

Let zy,23 € X. fz* € Oz )NC(x2), then by Proposition B8 z* € Oz + 12)
and by &), 2%z, — Plzy)) = z%(z2 — P{;rg:l:l x {{3‘1 +.r-3:| Plzy 4+ xa)) =0
Therefore, z* Pz +z2)— Plz)— Plz2)) = 0. By [}, Plz1+x2) = Pz )+ Piza).

The rest of the result follows from P’mp{xﬂtumﬂﬂ O

By Theorem the condition “C' separates points of ¥ is sufficient for an
AC-subspace to be constrained by a wnique norm 1 projection. This condition is
clearly satisfied if V' is a U-subspace, or even a weakly [V subspace of X.

It is shown in [Bl Theorem 2] that an AC-subspace ¥ is constrained in X by a
unigue norm 1 projection if every point of 5(Y') is a smooth point of B{X). By the
following result, our condition is much weaker.
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Proposition 3.11. Every point of S5(Y') is a smooth point of B{ X)) if and only if
every subspace £ of ¥ois a weally U-subspace of X In particular, X is smooth if
and only if every subspace of X is a weakly U-subspace of X.

Proof. Suppose every point of 5(Y) is a smooth point of B{X). Let Z be any
subspace of Y. Suppose z* € §(2*) attains its norm at zp € 5(2). By assumption,
zp 18 a smooth point of B{X). Now, z*¥ € Dz(zy) and HB(=z*) € Dx(z). Since
D x(zp) is a singleton, so s HB(z*). Thus, Z is a weakly UV-subspace of X .
Conversely, suppose there exists yp € S(Y) such that Dy (yy) is not a singleton.
Suppose {x},z3} C Dx(y) and 2§ # z3. Let Z ={z € Y : z{(z) = #5(x)}. Then
yo € §{Z) and therefore, ||z]|z| = ||z5|z]| = 1. Thus, z* = zi|z € S{Z*) attains
its norm at yy € S{Z), but {z},z3} C HB(z*). O

Example 3.12. As noted in [, the space X = L™ gives an example of a dual
space such that there are infinitely many norm 1 projections from X** onto X.
This produces an example of a space with I Py .. that is constrained in X**, but
3 X) is not a closed subspace of X** . This also shows that our sufficient condition,
although weaker than the known ones, & still not necessary for an AC-subspace to
be constrained.

We conclnde the paper with some necessary and/or sufficient conditions for
Y, X to be a closed subspace of X. First we need a characterization of O(Y, X).
This is a slight improvement over that in [1].

Definition 3.13. We say A C B{X") is a norming set for X if ||z| = sup{z*(z) :
z*eAlforall z e X.
A subspace F of X* is called a norming subspace if B(F) & a norming set for X,

Lemma 3.14. Let Y be a subspace of X. For x € X, the following are equivalent:

(a) z e (Y, X).
(b) ker{z)|ly CY* is a norming subspace for V.

)
() 0 _, Brly. = —wll.
(d) For every z* € B(X*), L{z, z*) < 0 < LMz, z%).
(e) For everyy® € B(Y™), L{z,y*) = 0 = U(z,y").

Further, for a w¥closed subspace F C X*, Fly is a norming subspace for Y if and
only if F| COY,X), where F) = {z € X : f(z) =0 for all f € F}.

Proof Let F C X* be a w¥-closed subspace such that F) C (¥, X). Then
F = [(X/F* and therefore, it suffices to show that ||y = |y + FL|| = diy, FL).

Clearly, |yl = d{y, FL). Also, since F| COY, X)), forany y € ¥V and z € F) |
ly + 2l = llyll. Thus, dy, F1) = |y

Specializing to F = ker(z), we get (a) = (b).

(b) = (a). Since ker(z)|y norms Y, ||y = ¢l || = diy, Bz) for all y € Y.
Hence ||z —y|| = infyeg |y — Az|| = |y|| for all y € ¥. Thus, z € (Y, X,

Now suppose F' C X* iz a w¥-clsed subspace such that Fly is a norming
subspace for V. lf z € F), then F C ker(x) and therefore, = € (Y, X'). That is,
F, COY,X).

(a) = () and (d) = (e) are immediate from definition, while (¢) = (d) follows
from Lemma[T]
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(&) = (a). For every y* € B{Y*), 0 < Uz, y*) implies for all ¢* € B{Y™") and
1 o

0<y*y)+tlz—ol = v(-v)=<|z—vyl|

Since this is true for all y* € B{Y*), ||ly| < |z —y| for all y € ¥V. That is,
ze Y, X). O

Let A" = {F : F is a w*-closed subspace of X* and Fly is a norming subspace
for Y} and N = A, Similar to [i], we observe

Proposition 3.15. Let ¥V be a subspace of X. O(Y. X)) is a closed subspace of X
if and only if N|v is a norming subspace for Y. In particular, this happens if Cly
is a norming set for ¥,

Proof. By Lemma[l.1d] F € A if and only if F| € O(Y, X). Thus if N|y norms ¥,
then N € A and hence, Ny, € O(Y, X). On the other hand, if z € 0¥, X), then
ker(z) € A, and hence, N C ker(z). That &, z € N,. Therefore, O{Y, X)) = N,
and ¥, X') i a closed subspace of X.

Conversely, if O(Y, X is a closed subspace of X and M = O(Y, X))+, then M, =
(Y, X) and therefore, M € M. Moreover, forevery Fe N, F, CO(Y, X) = M|,
and hence, M C F. This shows N = M and N e A\

Now, if Cly & a norming set for ¥V, then as above, ) CO(Y, X

Conversely ket = € (Y, X). Let 2* € . By Lemmas [L.2] and [L14 there exists
z* € HB({z*|y ) such that z*{z) = 0. Since z* € C, HB(z*|y) = {z*}, and we have
z*(x) = 0. Thus, € =Y, X). O

Definition 3.16. (a) [I6] Let ¥ be a subspace of X. Let
A(Y) = {z* € B(X") : 2’|y is an extreme point of B(Y™")}.

YV is a weakly separating subspace of X if V' separates points of A(Y).
(b) [0 A subspace ¥ C X is said to be an M-ideal if there exists a subspace
N C X* such that X* =YL @, N.

Proposition 3.17. In each of the following cases, (Y, X is a closed subspace of
X, a fortiori, if ¥ is an AC-subspace, then ¥ is constrained by a wnigue norm 1
projection.
(a) ¥ is a weakly separating subspace of X .
(b) YV is an M-ideal in X .
() ¥ is a subspace of X = C(K) containing the constants and separating
points of K.

Proof. (a) A careful examination of the proof of [If] Lemma 1] actually shows that
AlY) C . Tt is easy to see that A(Y) is a norming set for V. The result follows
from Proposition [I.15]

{(b) [l Theorem 1.1.12] observes that an M-ideal is a U'-subspace.

{(¢) As observed in [I6], such a ¥ is weakly separating. O

Remark 3.18. (a) In [If, it & shown that for a weakly separating subspace in
(K, if there is a norm 1 projection, it must be upique. Clearly, our conclusion is
SETONEET.

(b) In [IJ], it & shown that an M-ideal with the TP is an M-summand. An
argument similar to [2} Proposition 2.8] shows that an M-ideal ¥ in X with the
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1Py . is an AC-=subspace of X. Thus, Proposition[LITlb) improves the result in
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