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OF HAHN-BANACH EXTENSIONS
AND THE VLASOV PROPERTY

PRADIFTA BANDYOPADHYAY AND ASHOKE K. ROY

ABSTRACT. In this work we characterize when a single
linear functional dominated by a sublinear functional ¢ on &
subspace of a real vector space his a unique extension to the
whaole space dominated by p in terms of mested sequences of
“p-balls" in s quotient space. This is then specialized to ob-
tain characterizations of the phenomenon when a single linear
furnctional on a subspace of & Banadh space has unique norm-
preserving extension to the whole space, thus localizing and
generalizing some recent work of (3ja and Paldvere. These
results are used to characterize w*-asyvmptotic norming prop-
erties in terms of mested sequences of balls in X extending
the notion of Property (V') introduced by Sullivan. A wari-
ety of examples and applications of the main results are also
presented.

1. Inmtroduction. We work with real scalars. For a Banach space
X, we denote by B(X), 5(X) and B(z,7), or Blz,r|, respectively, the
closed unit ball, the unit sphere and the open, or closed, ball of radins
r = 0around r € X. When X is just a vector space, we will denote
linear functionals on X by f, g, ete., while for a Banach space X,
elements of the dual X'* will be denoted by =*, 4%, ete.

Definition 1.1. A closed subspace ¥ of a Banach space X is said
to be a Usulspace of X if for any y* € V* there exists a unique
Hahn-Banach (iLe., norm-preserving) extension of ¢* in X'*.

X is said to be Hahn-Banach smooth if X is a U-subspace of X'**
under the canonical embedding of X in X%,
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U-subspaces were first systematically studied by Phelps in [13], who
referred to them as “subspaces with Property 7" Our terminology is
borrowed from [2].

()ja and Poldvere [11] have obtained characterizations of U-subspaces,
Hahn-Banach smoothness and some other peometric notions in terms
of nested sequences of halls.

Definition 1.2. A nested sequence of balls in a Banach space X is a
sequence { B, = B(z,,r,)} of open balls in X such that for all n = 1,
B, C B,y and v, T oc.

In Sections 2 and 3 we localize results of [11] to characterize when a
single linear functional on a subspace of a Banach space has a unigue
Hahn-Banach extension to the whole space. Indeed we do this in a
much more general set-up and, in Section 2, actually characterize when
a single linear functional f dominated by a sublinear functional p on a
subspace ¥ of a real vector space X has a unique extension f dominated
by p on the whole of X. As in [11], our characterization also is primarily
in terms of nested sequences of “p-balls,” see Definition 2.8. This
“purely linear space” result is clearly of interest inasmuch as the general
form of the Haln-Banach extension theorem wsed in applications is
most frequently in this form, see (3] or [5].

Specializing these results to Banach spaces, in Section 3, we pet
characterizations of [-subspaces and of ideals that are [U-subspaces.
In these cases our results and proofs, though mspired by [11], are
somewhat different. In particular, for localzing results of [11], we
use as a running thread of our arguments, a rather elementary and
well-known eriterion for the unigueness of the dominated extension,
Lemma 2.6. And, in addition, we have one quantitative criterion.

Since this paper was written, another paper on a similar theme by Oja
and Poldwere [12] has appeared. This paper provides some additional
characterizations to those of our Theorems 3.1 and 3.6.

In Section 4 we explore some applications of our results in different
areas—bhoth in the “purely linear space” context as well as in the
context of Banach spaces—and alko diseuss examples that fllustrate
and clarify our results. For instance, in this section, we characterize
the uniqueness of positive extension of a positive functional, use it and
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other results to show that a positive linear functional of norm 1 on
the subspace ¢, of all comverpent sequences, has a unique Habn-Banach
extension as well as a unique extension as a positive functional to £7°
the space of all bounded sequences, if and only if its restriction to o,
the space of all sequences converging to (), is already of norm 1. We also
discuss the unigueness question in an important integral representation
theorem due to Strassen [17] with diverse applications in probability
theory and related areas, where the Hahn-Banach extension procedure
with respect to a sublinear functional is crucially applied.

In Section 5 we explore another aspect of nested sequences of (norm)
halls in Banach spaces. Our starting point is the following result of
Vlasov [18] (see also 11, Theorem 2]).

Theorem 1.3. X* is strictly conver if and only if the union of
any nested sequence of balls in X s either the whole of X' or an open

half-space.

Later Sullivan [16] introduced a stronger notion which he called the
Property (V), see Definition 5.1—we will call it the Vlasov Property
to avoid confusion with Pelezynski's Property (V)—and showed that
X has the Viasov Property if and only if X is Hahn-Banach smooth
and X* is strictly convex. In [1] this was used to show that the Viasov
Property is equivalent to w*- ANP-IT'.

For the definitions of asymptotic norming properties ( ANP for short)
and their w*-versions, see Section 5. For warions peometric notions
related to w*-ANPs, refer to (1, 8, 9].

In Section 5, we obtain a simpler reformulation of the Vlasov Prop-
erty and use it to directly prove that it & equivalent to w*-ANP-IT'.
This approach leads naturally to other “Viasov-like” properties, see
Definition 5.9, and the main object of this section & to establish their
equivalence with other w*-ANPs, Theorem 5.10.

It is known that Haho-Banach smoothness & equivalent to w®-ANP-
T [8]. Apart from the fact that everything we do involves nested
sequences of balls, it is this last result that ties the results of this last
section with the rest of the paper.
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2. Main results. Let X he a real vector space. We denote by X#
the space of all linear functionals on X. Let p: X — R be a sublinear
functional.

Considering the Banach space case, it is clear that the uniqueness of
the extension does not make much sense unless the norm is preserved.
In general, too, one needs to impose such restrictions.

Definition 2.1. Let X be a vector space, p a sublinear functional
and ¥ a subspace. Let
Yy={f¢€ Y# :there exists K > 0 such that f < Kp on i

Notice that ¥} is a cone, i.e., closed under addition and multiplication

by nonnegative scalars. For f € ¥7, let

Ny (f) =sup{fly): y € V.ply) <1}.

We will simply write N(f) if there is no scope of confusion.
Lemma 2.2. For fe Y], fIY) = N(fiply) forallyeY.
Proof Let K = 0 be such that f < Kp on Y. Then, clearly,

0= N(f) < K. Ifp(y) <0, then f(y) < Kp(y) (fip(y). Andif
ply) = 0, then f(y/ply)) = N(f), and hence f(y) < N{flp(y). o

I 1A
= =

Remark 2.3. T N(f) =10, then f =0.

Definition 2.4. We say that ¥ is a p-U-subspace of X, if every
f €Y, has a unique extension f € X# with f < N(flpon X.

We may and will assume that N{f) =1 in the sequel

In the discussion of uniqueness of extension, the quotient space X/Z |
where £ =ker(f) in ¥V, comes naturally into the picture.

For any subspace Z of X, by analogy with the quotient norm, it is
natural to define p on the quotient space X/ Z by

plz+Z)=mf{p(z+z):z2€ Z}.
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But this § may assume —oo as a value. For example, on X = C[0,1],
for p( f) = sup{fiz) : z € [0,1]}, £ = {all constant functions} and
i(x) = z, the ientity function on [0,1], pli+ Z) = —o0.

However, in our context, ie, when f € ¥ and Z = ker (f) in Y, p
s a proper sublinear functional on X/Z. as plz + Z) = _iIE{;?':I = —og,
where _iIE is some extension of f dominated by p.

Observe that, in this case, fis also a welkdefined functional on Y/2.

Lemma 2.5. Let f € Y, with Ny (f) =1, Z=ker(f) in ¥ and let
w €Y be such that f(yo) = 1. Thenplw +2) =1 and Nyz(f) = 1.

Proof Observe that fly)= fly+z)<ply+z)foal ye¥, € Z,
and hence, fly) < ply + 2) for all y € ¥. In particular, plyg + Z2) = r,
say, and v = 1.

Claim. rfly) < ply) for all y € ¥.

Any y € Y is of the form y = ayy + z for some o € R and z € Z.
Then f{y) =a. Ha=10,y & Z and the claim is clearly true. If o = 0,
r = plyp + z/a) = plyfa) = ply)/o and the claim follows. And if
a < 0 then vfly) =ra <o = fly) < ply). Hence, the claim.

It now follows that N(f) =1 < 1/r. That is, r < 1 and therefore
r=1.

It also follows that Ny (f) = 1. u]

From the proof of the analytic form of the Hahn-Banach theorem (see,
e.g.. [4, Theorem 21.1]) we get the following elementary and well-known
criterion for unigqueness of extensions, which will be used repeatedly in
the sequel.

Lemma 2.6. Let X be a vector space, p a sublinear functional and
Y a subspace. Let f € Y# such that f <ponY. Letzg 2 Y. Then

sup{ fly) —ply—zo) :y € Y} < inf{f(y) +plzo —v): y €Y}

and o lies between these two numbers if and only f there exists an
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ertension _iIE € X# of f with _iIE <pon X and _iIE{;?:ﬂ:I = 1.

In particular if f € Y. with Ny (f) =1, Z=ker (f) in¥ andyy € Y
such that flyg) = 1, then the following are equivalent:

(a) f has a unigue extension from Y to X dominated by p.

(b) sup{f(y) — ply —z0) :y € Y} = inf{fy) +p(zo—y) :y € Y}
forallzg e X\ V.

() f has a unigue ertension from Y/Z to X/Z dominated by .

(d) sup{a —ployy —zo+ Z) :a € R} = inf{a+plzg —aye + Z) -
acR} forallzge X\ Y.

Proof Equivalence of (a) and (b) as well as of (¢) and (d) follows
from the first part. And one can easily check that both the right-hand
and the left-hand expressions of (b) are equal to the corresponding
expressions of (d). o

Lemma 2.7. Let ¥ C X be a subspace and let p be a sublinear
functional on X such that p =2 0 on V. Let 2y € X\ YV be such that
d=plzg+Y) = 0. Define fon V=Y @& Rey by

fly+ory)l=a, aceR, yet.

Then

| —

Sflvl < plv) forallveV and N (f)=

=%

Consequently, there exists f € X# such that f =0 on ¥, flzg) = 1,
f<p/d on X and Ny (f) = 1/4.

Proof. To show df{v) < plv) for all v € V., we show that do <
ply + axg) for all o e R, ¢y € ¥, This is clearly true for o = (), by the
assumption on p; and for & = 0, by definition of 4. Now if a0 < 0, let
8 =—a =0 We need to check —483 < ply—8xg) or 6 = —ply/3 —xq).
Now for any 4 € ¥V, 0 < ply/3 — ) < plzg — ) + ply/3 — zo).
Thus —ply/3 — xg) < plzg — ). Taking mfimnm over 3 € Y, we pet
—ply/3 — xp) =4, as was to be shown.

It follows that Ni-(f) < 1/4. To prove the equality, ix 0 <5 < 1/
and choose 0 < = < pd. There exists yy € ¥V such that plzg — ) <
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81 +¢=). Then

g — Yo
P(5{1+sj) 2

and
Ty — 1 e R |
f 0oy _ it
a1+ =) 814 ¢) a é
Since 1 was arbitrary, this completes the proof. O

Now we come to nested sequences of p-halls.

Definition 2.8. For zy € X and v = (), define the open p-ball of
radiusg v aromnd zg by Bylzg,r)={z e X :p(zy —z) <7}

A nested sequence of p-balls is a sequence {B,, = B,(z,,r,)} of open
p-balk in X such that for alln =1, B, C B,y and r, T oc.

We adapt the proof of (18, Proposition (1.2] to obtain a necessary and
sufficient condition for p-balk to be nested.

Lemma 2.9, If0 < v < v, then Bylz.71) © Bylze,re) if and
only if plza —x1) < ra — 1.

Proof. Sufficiency & immediate from the triangle inequality.

Conversely, if p{ze — zy) < 0, then there is nothing to prove. If
plza —xy) =0, let vy =2 > 0 and put

(r —£)(z2 —Iﬂ‘

I =TI —
plzra — 1)

Then p{zy, — ) =1, — = < ry. Therefore, p{zs —x) < ry. That is,

(r1 —&)(za —3:1:')
N — ) = Ta—Ti+ < Ta.
?{ :I P( 1 P{EE = E'I::I
It follows that p{zs—x,) < rs—7 +2. And hence, plas—xy) < ra—vry.
[m]
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Lemma 2.10. Let X be a vector space and p a sublinear functional
on X, Let

Poc(T1,72) = max{p(z1),plza)} and pi(z1,22) = p{z1) + plza).
Then both po. and py arve sublinear functionals on X = X
Let Y © X be a subspace. Let
M={y—y)l:yeY}]CX x X

If {Bylyn.ra)} ts a nested sequence of p-balls in X with centers in Y,
e Byl,r) and 2 € X such that p(z) < 1, then

infpx{{yﬂ — s ln + 3:' = ilj
e T

=1

fﬁl{{yr! — I, fn + ) + L)

= in = 2.
T T.

Recall that by P ((yn — T, 90 + ) + A1), we mean inf{pac(y, — z +
Yn+z—y) iy Y} pil(lyn — 2,90 +3) + A1) is definal similarly.

Proof. Let {B,(y.7n)} be a nested sequence of p-balls in X with
centers in Y such that 0 € B,(y;.m) amd nf,p ((y, — .9, + 7) +
M) fry = 1 for some ¢ € X with p{z) < 1. Then, for alln = 1,

- Yp — qu-i_'I
dfl =P1((JT‘—‘T‘—) +&I) :'3 l.

Now Ay is a linear subspace of X »x X and p. = 0 on Ay, By
Lemma 2.7, therefore, there exists (f,, g ) € X¥ x X# such that

?..fu —.F yr: + a
" e == ]-1
f ( Tie ) * 4 ( Tre )

felt) —gely) =0 forally ey,

o) + 0(72) < Tpclon 22),

*M.T{fu:l + F\F_\;{_E_,r,,jl = mll:'{fr!{"f:l:l + _E_.I',.{:?:-zjl : P:L'{‘Thm?j = l}

(2.1) iy
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Notice that, for all n = 1,

l=d, = lmmc{jrﬂ['-:;.. —z),ply + )}

L

< Ti[p{y,.jl + max{p(—z), p(z) }].

T

Therefore,
a1k 1 " T
1 <liminfd, <limsupd, <limsupp| = | <1,

a8 plyn) < 7. And, hence, limd, = 1.

By Lemma 29, the py-balls B, = By _((tn — T, 4 + T),7s) are
nested. And

illf{_ﬁ.,g\-.:l{ﬂ..:l = f"{yf! = ‘T:l =+ _E_h.{'j_.fu + J‘II
— T 8P { fros g (1)  pac{u) < 1}

e Imeaig Ly : =)
_" d‘rl_" _d'fl -

It follows that for any m < n, inf (f., g. )0 Bw) =0, ie,

{E.EII .fﬂ{yrr! = ‘T:l +§T!{yrr! + E:' = 1_" =10

Now, following the proof of the locally convex version of the Banach-
Alaoglu theorem (see e.g., (15, Theorem 3.15]), the set

V= {h e(X x X:I# :max{px{ml,;ﬂgj,px{—ml,—;?:-zjl}
<1 = h{zx,z2) £ 1}

s w*-compact and, by (2.1), { f..9.) € V. Thus, there exdsts (f, g) €
X# x X# which is a w*-cluster point of {{f,,g.)}. Then

1
fly) =gly) = 5ply) forally€Y and Ny(f)+Nx(g) < 1.
Moreover, from (2.2) we have

flte —2) + gltpe + ) = vy for allm = 1.
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It follws that

lim mff(:#) = Iimin_fg(i'r'") = -

e e

ba| =

And, sinece

T‘"I T‘"l

Yin . Yeee 1
lim f("’—) = lim y("’—) .
TE— 00 T TE— o T

7(2) +o(%) < Nx(h)+ Nxto) <1,

we have

Consequently,

Now, for any y € V',

lif(y"_m)+g(yﬂ+$)
T T

Yn — L — Y 1.fu+$+1.f
- () o ey
Y — L —Y 1.fu+$+1.f
() ()]

Ly = e a
_m((u,u) +a1) T

T‘f t T‘f t

|
B3|

It follows that

Remark 2,11, Observe that f = g <p/2on Y and Nx(f) = Nx(g) =
1/2. But v £ f(ym — x) + g(pm + =) = 2f(pm) +g(z) — f(z) <
Ply) + glz) — flz). Therefore, g{z) — flz) = v — ple) = 0 since
e B:r{?.-‘rrhrrr!:l-

We are now ready for our main theorem.
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Theorem 2.12. Let X be a vector space, p a sublinear functional
and Y a subspace. Let f € Y,¥ with N(f) =1, Z =ker (f) in ¥ and
yo €Y be such that flyg) = 1. Let

M(Y/Z) ={y+Z,—y+2Z):yc Y} CX/Zx X/Z

Then the following arve eguivalent:
(a) f has a unigue extension j; to X# with _iIE =< p.

(b) If {Ba{yn + Z,70)} is a nested sequence of p-balls in X/Z such
that the centers {y,} C VY, 0 € B;{y; + Z.ry) and plz + Z) < 1, then

iy —x+ Zy, +x+2), 5(Y/2))
inf < 2,

il T

where dil{ye —z+ 2y + 2+ Z), (Y72
=inf{plyn —z—v+ Z)+plyn+z+y+ Z):y+ Z¥Y/Z}
() If {B;;{y,, + Z,1a)} is a nested sequence of p-balls in X/Z such

that the centers {y, } C YV, 0 € B;{m + Z.ry) and plz + Z) < 1, then
there exist y € Y and ng = 1 such that

Pling £z —9) + 2) < 1y

(d) If {By(yn. 7)) } is a nested sequence of p-balls in X such that the
centers {y.} TV, 0€ B(y,m) and p(x) < 1, then there emst y€ ¥
and ng = 1 such that

Plyng £z —y) + 2) < 1y

Proof (a) = (b). Suppose (b) doesn’t hold. Then there is a
nested sequence {Bs(y, + Z, 7))} of p-balls in X/Z with {y.} C ¥,
0e B;{y; + Z.ry) (comsequently, ply, + Z) < ry for all n = 1) and
plr+ Z) < 1, such that

dillpe — 2+ Zyn + 2+ Z), Mi(Y/Z)) _

inf
e T
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Then for all n = 1,

1
T = Edz{{% — T+ Ed.fu +z +E:|1ﬂl{1/f3:|:|
de_{{yu —x+ zﬁi.fu +x+ z:l'i ﬂf{izf'f'z:l:l\

where

doclln —z+ Z. g+ + Z), (Y /2]
=imnf{max{ply, —z—y+ Z),plyn+x+y+ Z)}: y+Z € Y/Z}.

Observe that Lemma 2.10, applied to ¥/Z as a subspace of X/Z,
produces g, h € (X/Z)* such that g = h < 5/2 on Y/Z and

1
Nxyz(g) = Nxyz(h) = 3"

But g{z) # h{z), see Remark 2.11. Since dim (Y/Z) = 1, we have that
f=2¢g=2hon ¥/Z. Thus, uniqueness fails.

(b) = (c). Suppose (¢) doesn’t hold. Then there is a nested sequence
{Bs(yn + Z,7,)} of p-halls in X/Z such that the centers {y,} C Y,
e B;{y; + Z.ry) and plz 4+ Z) < 1, such that for alln = 1,

dx{{yﬂ — + 3-.’1‘.&-: +$ + z:l'uﬂl{y.l'fz:l:l ETTI-

By Lemma 2.10 applied to X/Z,

i"fdl':{yu — EI1?.|r'|'l + +3:|-| 'ﬂl{y."llgjj Ly
L T

contradicting (b).

(¢) = (d) & clear.

(d) = (a). Let plz) < 1. For e € R, let wia) = o — play — x + Z)
and v{a) = o+ plr — ay + Z). By Lemma 2.6, given (0 < £ < 1, it
suffices to find o and o' € R such that v{a) — uia’) < &

Following [11, Theorem 1 () = (a)], let o, = n+=/(n+2)—=/2 for all

nz1l. Then( < plogw+Z) =0 < 1land 0 < plo, i — oo+ 2) =
tyt1 —ay < 1 for all n = 1. Inductively construct a sequence {y, }
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such that g, € oy + £ and 0 < plin) < Land 0 < plyprr —ye) < 1
for all n > 1. Then {B,(y.,n)} is a nested sequence of p-balls such
that the centers {y,,} C Y. Hence, by (d), thereexist y € ¥ and ng = 1
such that

Plig % (2 —y) + Z) <o,

Let ay be such that y € agyy + 2. It follows that
Plog,w £ (z —apw) + Z) < ng.
Therefore,

vlog — g, ) — wlog + g, )
=plz — (ag — o J1to + Z) +Pllag + ap, )i — 2+ £) — 2,
= plan,yo + (z —aom) + Z) +plo, o — (2 — oogo) + Z) — 20,
< Ing —2ay,, < E.

This completes the proof. O

Remark 2.13. From the proof of (d) = (a) above, it follows that it
suffices to consider nested sequences of p-balls of the type {By(y..n)}
in all the statements of Theorem 2.12.

Theorem 2.14. Let X be a vector space, p a sublinear functional
and Y a subspace. Let

M={ly—yl:yeY}] CX x X

Then the following arve eguivalent:
(a) Y is a p-L'-subspace of X.

(b) If {By(yn.Te) } is a nested sequence of p-balls in X with centers
in ¥, 0 € Byly,m) and plz) < 1, then

d e <Ls G ';ﬂ
inf 1 — 2 0 +2) I:I{E

T‘f T

1

where di((yn — 2,40 +2), A1) = inf{p1{{gn—2—4 i +2+y) : y €Y}
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(€) If {By(yn.7w)} is a nested sequence of p-balls in X with centers
inY, 0 Bylyi, i) and plx) = 1, then there extst y € Y and ng = 1
such that

Plne £ (z— 7)) <7Tny.

Proof (a) = (b) = (¢) follows similarly as in Theorem 2.12.
{e) = (a). Let f € ¥ with N(f) =1 and Z = ker (f) in ¥. We

will show that f has a unique extension to X dominated by p. Let
{Bu(1#n. s )} be a nested sequence of p-balls in X such that the centers
{n} T Y, 0€ Byln,m) and p(x) < 1. By (c), there exist y € ¥ and
ng = 1 such that
Plyne T(z—y)) <7ny.
It follows that
Pling £ (z —y) + Z) < Ty

By Theorem 2.12 (d) = (a), f has a unique extension to X dominated
by p. o

Bemark 2.15. Because of the nature of sublinear functionak, where
plz) = 0 doesn't necessarily imply p{—z) = 0, as we see by taking
plize)) = limsupz, on l.. all the above results are one-sided in
nature—e.g . we had to consider one-sided p-balls, ete. When p & a
norm or a semi-norm, these difficulties do not arise and we can dispense
with such restrictions.

3. The Banach space case. Specializing to Banach spaces, we pet
characterizations of [V-subspaces, of which condition (¢) below was first
established in [11, Theorem 1].

Theorem 3.1. Let ¥ be a subspace of a Banach space X Then the
following are eguivalent:

(a) Y is a UV-subspace of X.

(b) If { By, 70 )} is a nested sequence of balls in X with centers in
V,0e Bly,,ry) and |z|| <1, then

i"fdl{{;?: — s T + 1.fu:|1 ﬂ:l

Ly T

< 2,
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where dy refers to the distance in X &, X, and

A={{pny:ye¥Y}C X xX

(€) If {B(yn.1a)} is a nested sequence of balls in X with centers in
Y, 0e Bly.r) and ||z < 1, then there exist y € Y and ng = 1 such
that

|z —z+ g | < Tty -

Reversing our earlier approach, we now deduce the local result as a
consequence of the global one, the connection being given by (b) below.

Theorem 3.2. Let Y be a subspace of o Banach spece X, 47 € 5(Y™)
and £ = ker (y7) in Y. Then the following are equivalent:

(a) i) has a unigue Hohn-Banach extension to X*.
(b) ¥/Z is a U-subspace of X /2.

(e) If {B(yn+2Z.7,)} is a nested sequence of balls in X/Z with centers
inY/Z 0e Bl + Z,m) and |z + 2| <1, then

inde ((x—gm+Z,z+yn+ Z), Ayyz) 25

T T

2

1
e

where dy refers to the distance in X/Z @y, X/Z, and

Aviz={{y+Zy+2):ye¥Y}C X/Zx X/Z.

(d) If {B{yn+Z, 7.} is a nested sequence of balls in X/ Z with centers
in¥Y/Z 0 Bly +Z.r) and |z + 2| < 1, then there exist y € ¥V and
ng = 1 such that

|z — 3 % (ne + Z)|| < Tg-

(e) If {B(yn.7a)} is a nested sequence of balls in X with centers in
Y, 0 e Bly,r) and ||z < 1, then there exist y € Y and ng = 1 such
that

2 — 3= oy + Z)|| < ray-
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Remark 3.3, Reparding the condition (¢) above, if 3y € V' & such
that 4 (yo) = 1 and we write ¢, + £ = a1 + Z, then it is easy to see
that

1
3 di((z — autio + £, 7 + oo + Z), Ayyz)
Sdocl(z—yo + Z, 2+ Y0 + Z), Ayyz) € |ag| +d{z,Y/Z),

where d.. refers to the distance in X/2Z @ X/Z2.

It is therefore tempting to conjecture that the condition in {¢) could
be replaced by the simpler condition

:il:p['i"" — lag|] = d{z, Y/Z).

But this is not true, as the following example shows:

Example 3.4. Let X =2 and ¥ = {(z,0) : z € R}. Then ¥
obviously is a U-subspace. Forn = 1, let B, = B{(n,0),n + 1/2).
Then {B,} is a nested sequence of balls in X with centers in Y. Let
= (1 -1). Thenr, —|ly.] = 1/2 < d{z,.Y) = 1. Nevertheless, (e
holds. Indeed, for n = 1 and y = (1, 0),

o]
i

==y £ml = EL-1)| =1<z=r.

As observed in [11], the conditions can be strengthened if ¥ is an
ideal in X.

Definition 3.5 [7]|. A subspace ¥ # {0} of a Banach space X is said
to be an ideal in X if there exists a norm one projection P on X* with

ker(P) =Y+

We will recall the following facts from [11]. Firstly, every Banach
space X is an ideal m X** via the canonical projection on X***.
Secondly, if ¥ Is an ideal in X, then for every z* € X*, Pr* € X* iz a
Hahn-Banach extension of the restriction z* |y € ¥*. Therefore, we can
and will identify Pr* and z%|y for all ¥ € X*. This makes it possible
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to identify ¥* with the range of P and to consider the, generally non-
Hawsdort, topology o (X, Y*), which we will denote simply by 7. Then
BY) is o-dense in B(X). Thirdly, if ¥ is an ideal as well as a U-
subspace of X then the projection P & unique.

Some of the statements in the following theorem were first proved
m (11, Theorem 3]. We have, however, inclided the proofs as ours
are somewhat different and give some additional criteria, especially
statement (¢). Note that a special case of this theorem will be needed
in Section 5.

Theorem 3.6. Let Y be an ideal in o Banach space X . Then the
following are equivalent:

(a) Y is a U-subspace of X.

(b) If {B(y..n)} is a nested sequence of balls in X with centers in
Yol <= 1and |z <1, and U is a conver o-neighborhood of z, then

Ag N [Uﬁﬁz Yz —ya),m)| # 2,

T

where K = UNB(Y) and Axg = {{y.y) :y e K}
(e If{ﬁ{y,,,nj} is a nested sequence of balls in X with centers in Y,
g1l < 1 and ||z|| < 1, then for all o € [0,1],

infdu{m = 1.’.-:-.11’ + 1-fu:| =
T T

where do(z1,22) = inf {aflz) —y] + (1 — a)flz2 -yl : y € BY)}.

(d) If {B(y..n)} is a nested sequence of balls in X with centers in
Y.l <=1 and ||z]| < 1 and U is a conver a-neighborhood of z, then
for K =UnNB(Y),

1

L]

Kn [UB{:: +1.r",n:|] £ @

e

Proof. (a) = (b). We follow the reasoning of [11, Theorem 1 (a)
=+ (b)]. Suppose (b) doesn’t hold. Then there is a nested sequence
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{B(yn,n)} of balls in X with centers in Y, ||| <1 and ||z|| £ 1, such
that
LY R U Bllr —yp.xr+yu)in) =&
=l

Now consider the [ norm on the product space and separate the
convex set Ax from the open convex set U1 B((z — yo. 2 + ). 1),
That is, there exist 27, z5 € X* and v € R such that

=1l + l|z2l] =1
and
(3.1) zi(k) +za(k) £ v L xi(z +yn) +x2(z —9) — 1

for all ke K and n = 1. From (3.1) it follows that

" zilx) 4+ 3z Yee
:|__|__"r EM-F{IT—T;:I(J—)
n n n
whence,
1 e
(3.2 1 < Emsup{z] —r;](J—)
n

< bmsup zy (y;"-) + lim sup{—z3) (%)

< =iyl + =5y || < =5 + =5 < 1.

Therefore |2y ] = ||zf] and hence, by (a), 27 = Pz}, i = 1,2
Further, P{z} —z%) = (z]— %), so that ||z] —z&|| = |zily —z8|v| = 1,
by (3.2). Since z7 = Pzf, i = 1,2 amd z is in the o-closure of K,

xi(z) + z5(x) < ~, by the first inequality in (3.1). And, from the
second inequality in (3.1), it follows that

7 < &) +aile) + (2 — 25 (y) —n < zi(z) + z3(2),

as |z7 — 28| =1 and ||y, ]| < n. Thos we have a contradiction.

{(b) = (¢). Let {B(y.,n)} be a nested sequence of balls n X with
centers in Y, || < 1 and ||z < 1. By the special case of (b) with
['= X, there exist y € B(Y) and m = 1 such that

|z — v = g || < 7m2.
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Thus for any a € [0, 1], we get
alr—y+ym| +(1-a)lz—y —yu| <m
Hence, () follows.

(¢) = (a). By Remark 2.13, we can consider nested sequences of
balls of the type {B(y,,n)} in all the statements of Theorem 3.1. And,
clearly, Theorem 3.1{b) with r,, = n follows from (¢) for o = 1/2.

(b) = (d). Obvious.
(d) = (a). We adapt the proof of [11, Th{*{:-t{*m 3, (c) = (a)). If (a

doesn’t hold, there exists #* € X* such that z* = Px* 4+ 2%, ||z* ||
[Pz*| and z* # 0. Choose x € 5{X) such that *z) = 0. Choose
O<e<z¥z) Let y* =Pr*and Z =ker(y*) n Y. Find {y,} C Z
such that |3 < 4 ltesr —vel < L and ¢ (y) = n+=2/(n+2) —=/2.
Then {B(y.,n)} is a nested sequence of balk and we claim that if
U={zeX:y(z—z)>—/2} and K =U N B(Y), then

K [UB{:‘ +1.r",n:|] = @.

e

Suppose there exist ¢y € K and ng = 1 such that |z + vy, — ]| < ng.
Then

3 =

'z —y) +ng + R % <Lz z) + " {ya,) — )
= 2+ no — ¥l < 70
It follows that
r—y) < % or y(r—yl+z¥x) < %
= z*(x) < % —yilr—y) < % +§ =£.
Contradiction. |

4. Some applications and examples.

Example 4.1. Let K be a compact Hansdorff space. For f € O K,
ket p(f) = sup{ f(#) : £ € K}. p is a sublinear functional on C(K). Fix
fo & K and let

Y ={feC(K): flto) = 0} =ker (&,).
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Let A € Y, and € = Ny(A). Then Cinf{f(t) : t € K} < A(f) <
Csup{f(t): t € K} for all f € Y. It follows that A & a nonnegative
functional. Let A be an extension of A to C(K) dominated by Cp.
Then A is a nonoegative linear functional on C(K) and A(l) = C.
It follows that A is actually norm continuous on C({K) and hence is
represented by a nonnegative measure p with p(l) = C.

Note that ¥+ = R4, in C(K)*. And hence, if p, and p, are
extensions of some A € ¥F, then gy — ps = ady, for some o € R.
It follows that o = (1) — pe(l) = € — C = 0. That is, g = pa.
Therefore, ¥ is a p-Ll-subspace of C(K).

So by Theorem 2.14, if {B,(f..7.)} & a nested sequence of p-balk in
C{K)with {f,} CY,0¢€ B,(fi,r) and p(f) < 1, then there exists
g€ ¥V such that

Plfex(f—gl<r, forsome n>=l

Let us see this directly. Observe that there is nothing to prove if
fe¥. So|fita)| = 0. Choose r, so large that |f{ts)] < r.. Let o}, be
such that |f{ty)| < v}, <r,. Now

Yim (£ (8) £ F()] = fulto) £ flto) = £f(to) < 7).

So there is a neighborhood U7 of #; such that forall # € [T, f. (81 f{t) <
v, and f{#) has the same sign as f{#).

Use Urysohn's lemma to get b € C{K) such that 0 < h < 1, h(fg)
and hjpe =1 and let g = fh. Note that g € ¥V and plg) < p(f)
Now if £ € U'", then

fult) £ (f — g)(t) = fult) < p(fa).
And if t € U, suppose f(fy) = 0. Then f(#) >0 and

fulf) + (f — g)(t) = fult) + (1 — h{£))f(E) < fult) + fE) < 7,

and
Ful8) = (f — g)(8) = fult) — F(£) +R(E)F (1) < fult) + f(E) <7),.
And if f{#y) < 0, then the arpuments are interchanped. It follows that

plfe £(f—g) = mﬂx{’-‘"f.d"iﬁ-]'} = T

i
1.

&)
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Example 4.2. On #*, p({z,)) = limsup z,, is a sublinear functional.
On the subspace ¢, the functional A{(z,)) = lim z,, is dominated by p.
It does not have unique extension to £ dominated by p.

To see this, let zp = (1,0,1.0,...,1,0,...) € £, Let y = (y.) € .
Let oo = A{y). Then, since o > o — 1,

ply—zo) =plin — Liyzyz— L. ) =0
amndd

Plro—y)=pl -y, —y2. 1 —y3,—p,... ) =1 — .
Therefore,

O=sup{Aly) —ply—z0):y€ct <mf{My)+plzo—y):yect =1

To interpret this in terms of nested sequences of p-balls (cf. Theorem
2.12 {¢)), mote that £ =ker (M) =cg. Let 2=(1,-1,1,-1,...,1,-1,...)
e let 2, € £ = g and define 3y, = o, (11,0, 1, . )+ 2 € &,
y=afl,l,....1,... 4+ 2z € ¢, where |a|] < 1, &, = 0}, vy < 1 and
o, Too. Let v, = 1+, forn = 1. Then {B;{y,, + €0, T )} 15 & nested

sequence of peballks I £ /ey and

Plyn +y— 4+ o) = max{{o, +a—1),(a, +ta+1)} =r,, fa>=i)
Plyn —y+ 4+ o) = max{{o, —a—1),(a, —a+1)} =r,, fa<i

It may also be noted that, in terms of Theorem 2.12 (b)),

i"fdl{{y" — x4+ o Yn + 2 ool Ailefen))
o Tn

=2,

Therefore, ¢ is not a p-U'-subspace of £, Moreowver, as pl(z) < || z|,
even Hahn-Banach extensions are not unigue, that is, there is no unigue
way of extending the notion of limits to £2°. Observe that to verify this
directly & computationally more complicated than the above arpument.
m]

Example 4.3. We have just observed that ¢ is not a U-space of
7. But ¢ 5 known to be a Usubspace of £ (g is Haln-Banach
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smooth]. It follows that a linear functional of norm 1 on ¢ has unigue
Hahn-Banach extension to £ if its restriction to g is already of norm 1.
Here we would like to observe that the converse is also true for positive
functionals. Recall that ¢* = I} and that s = (s, 8,...,8:,...1 € L1
acts on X = (Ty1,... ,Tp,...) € as

oo
{8,x) = sglim =z, + E EpT-

=1

We want to show that the functional s with s, = 0 and ||s]; = 1 has
wnigque Hahn-Banach extension to £ if and only if sg = 0. It clearly
suffices to prove that for any u € £

sup{{s,x) — |x—u| : x € ¢} = sp(lminfu,) + Z Sl
" =1
and
inf{{s,x) + |[x—ul : x € ¢} = sp({limsupu,) + z Bpliy .
o =1

Now forany x € cand u € #°, and for any n > 1, 7, — |x—u| < w,
and, hence, im,, r,, — ||x — u| < liminof , «,. Sioce ||s)|, = 1, we have

(8%} — [|x —ul

oo
50 lim T+ Z Fnln — "x = L'I."

=1

so(limz, —|lx — ) + ) salzn — [x —ul)

=1

solliminfa, ) + Z Byl

=1

I

And, henee,

sup{{s,x) — |x—u| : x € ¢} < sp(lminfu, )+ z Bprllys -

=1

To show equality, let = > . For notational simplicity, let A, =
liminfu, and A = limsupuw, and put A = (A + A2)/2. Choose
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N > 1such that, for all n = N+ 1, Ay — 5 < 1, < Ao + £ and

Ymeni1 Sn < min{e,gf|lul|}. Let d = sup,>piq|A — n]. Observe
that, by the last condition, d < (A — M) /2 4+ £ and, therefore,
A—dz=M —= Also |A—d| < ||ul. Define x € ¢ by

_Jun+d fl=n=N,
Ll ifn>N+1L

Then ||x —ul| = d and

sgA+ i 8,1, —d

(8%} — [|x —ulf

=1
N &
—_ 'IEI’J'[}l _d:l Ak Z Fn {mu = d:' K Z Fn {3" _d:l
=1 n=MN+1
N s
=s0A—d) + D sawnt Y su(A—d)
n=1 n=MN+1
= so(M —g) + Z Snitn —E— &
=1

= sph + zs"uﬂ — (50 + 2),

=1
and we are done.

The other identity can ako be proved similarly. |

We now note that what we observed in Example 4.2 is, in fact, a
special case of a more general phenomenon. The following simple yvet
useful result should be known, but we are wmable to cite a reference.
The clasest one we could find was [4, Corollary 21.3], where it is noted
that if ¥ = {0}, then f has a unique extension dominated by p if and
only if p is linear on X.

Proposition 4.4. Let X be a vector space and ¥ a subspace. Let p
be a sublinear functional such that p restricted to Y is linear, and let
f =ply. Then f has a unique extension dominated by p if and only if
p s linear on X .
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Proof If p is linear, the uniqueness of the extension is easily seen.

Conversely, by Lemma 2.6, if f is the unique extension of f, then for
any zg & ¥,

flzo) = sup{f(y) —ply—z0) : y € Y} = inf {f (y) + plza—y) :y € Y}.

Moreover, _iIE < p. Now since f = ply,

flzo) = mf {f(y) + plzo —y) :y € Y}
= inf {p(y) +plzo —y) : y € Y} = plzq).

This p= _iIE is linear. o

Example 4.5 (The Banach Limit). In Example 4.2 we saw that the
functional A{{z,)) = lim z,, on ¢ does not have unigque extension to £
dominated by the sublinear functional limsup z,..

However, the usnal definition of Banach limit on £ requires the
finctional to be translation invariant, see [15]. For this, one has to
consider the sublinear functional

T

. 1
plr,)) = hmsup i ; T

e

On ¢, the functional A{({z,.)) = limz,, is still dominated by p. Again
it does not have unique extension to £ dominated by p, that is, there
s no wniquely defined Banach limit on £,

This follows from Proposition 4.4. Clearly, on ¢, p coincides with
A and therefore A would have a unique extension dominated by p if
and only if p were linear on £, However, if p is linear, then for every
(zn) € £°, imsup,(1/n) 3y _,z% = iminf,(1/n) 3}, =%, that is,
lim,(1/n) %, _, 7+ exists. It is rather easy to see that this is false. For
example, let
O o O, (U, 0, I O, D, OO A, . 7, O B

N e .

o o .

2% Lerms 2 Lerms 2% perms

Let
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Then, for m = Z?LJ e S

k k—1
Z Eﬁa_z 92i+1

i= i— (2242 1) g(2%k— 1) 92k+1 |
om0l = T 392k = Trogk 1
% ' W =) 32T
2!
i=l
while for m = Z?:EI 9t — 9%k _ 1
k—1 k—1
o g2i+1
(20) g‘ g‘ (2128 1) 241
Tl T ) = 2#2_1 " = ;;{g‘zk_ 1) = H{E'-’-k— Tk
i=l

Clearly the value of 7,,,(z,) for other values of m lies between the above
values and, therefore,

plrg) = limaupa,(z) = % and  — pl—zg) = limiof o, (2g) = —%.

Apain, to interpret this in terms of nested sequences of p-balls, note
that, as before, 2 = ker (A) = ¢p. Let zp be as above, let 2z, € ¢ and
define y,, = o (1,1, ... L. )+ e, y=a(l,1,... . 1,... )+ 2z E¢,
where ae, = 0, oy < 1 and o, T oo, Let vy, = o+ 1/2 for n = 1. Then
{B;{y,, + g, )} B a nested sequence of p-balk in £/c;. Then, as
above, for m = 226+ _ 1,

k k—1
(o +or— 1) Z P oD Z v i
i= g=I
"'I'frl{yrl +1.f—$ﬂ:| - ! 2k !
> 2
i=ll
22k+1 1
= (ky + o — —+,
3{22k+1 =2 1:|
22k+1 +1

Tt —y+To) = ap —ax + m‘
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while, for m =22% — 1,

22k+1 =7
Tl + 4 — T =0y 0+ ———,
!{..lr ) f]:l 3{22*_ P ]-:|
22k+1 S

Tt — ¥+ To) =ap —a — 32 1)

It follvws that

= 1 2
Plye +y—zo +op) = mu.x{u,, + o — r—i.,n" + o+ E}

=y L S S UL S By M
[ - T - T =
" i 4 - 4 5= jes M O~ i

1 2
Pl —y+zo +op) = mu.x{u,, — o+ r—i.,n" — 0 — E}
1

il

=ty — 0+ i e . ifﬂi—g-

It may also be noted that, in this case,

dy (¥ — 2o + €0, 40 + 2o + c0), A (/)
Tfl

=2, foralln.

Example 4.6 (Uniqueness of extensions of positive linear function-
als). Let ¥ © X be a subspace of an ordered linear space (X, =), Say
that ¥ is cofinal in X if piven any z € z, there exists y € ¥ such that
z < y (this is assured if X has an order unit € € Y). Then any f € Y#,
f = 0 has an extension f € X#, jE =0, see [6]. Briefly, this is seen as
follows: define

o(z) = {f(y) 1z < gy e Y]

Then g is finite-valued, sublinear and fy) = gly) for all y € ¥. Extend
f to f: such that _iIE < gq. Then jF =0(iffx =0, then —x < 0, 50
j;{—:r:l < g{—z) < f(0) =0, thus _iIE{;r:I = 0). On the other hand, let F
be an extension of f with F = 0. For z € X, there exsts y € ¥ such
that # <y Thus F(z) < Fly) = f(y) and, hence, F(z) < g(z). Thuos
an extension of a positive functional is positive if and only if it is an
extension dominated by g.
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In this ease our theorem takes the following form:

Theorem 4.7. Let X be an ordered vector space and Y o cofinal
subspace. Let f € Y# be positive. Let

gz)=mf{fly):z<yycY}

Then the following are eguivalent:
(a) f has a unigue positive extension _iIE to X#,
(b g is linear.
(€) If { By(yn,r )} is a nested sequence of g-balls in X such that the

centers {y.} TV, 0 € By(yy,m) and g(x) < 1, then there emst y€ ¥
and g = 1 such that

q{yﬂtl = {E T y:':' < Treg -

()Y is ag-U-subspace of X.

Proof. (a) < (b). This follows from Proposition 4.4.

(a) = (c). It clearly suffices to show that, for 2 = ker (f) C V),
glr+Z)=qg(zx)forallz e X 2.

By definition of §, iz + 2) < g{z). Now for any z €
there exists y € ¥ auch that 24 2z < y and fly) < qlz +
x < y— z. Therefore, g{z) < fly—z2) = fly) < glz+
hence, glx) < glz + 2.

() < (d) follows from Theorem 2.14. u]

Remark 4.8. It can be easily verified that B (y.7) = {z € X :
flw) — v < —qg(—=z)}. In particular, if g is linear, the g-balls are
actually half-spaces.

From the proof of [6, Theorem 2.6.3] (which is often called the Krein-
Rutman theorem), one can see that the conditions for unique extension
of f a8 a continuwous positive functional are the same as in the linear
space situation.
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Example 4.9. Returning to Example 4.3, observe that s =
(50,815 -« s 8p,y-..) € I} with 5, = 0 acts as a positive functional on
¢ By Proposition 4.4, it has a unique extension as a positive func-
tional if and only if g(x) = inf{{(s,y) : x < y,¥ € ¢} is linear on £,
Observe that for any u € £, g{u) < ||ul. Thus, from definition and
Example 4.3, it follows that if |s]|; = 1, then for any u € £,

_q{—uj < .H"]{]ill':l."inf?!."j + z Fpllp = ﬂllp{{s, x} - "x - L'I." R n}
<sup{{s,x) —g{x—u):xc}
< inf{{s,x)+glu—x):x €}
< inf{{s,x) + |x—ul :x € ¢}

= sp{limsupw, ) + Z Spliy = glul

=1

Thus, if g & linear, then —g{—u) = g{u) and therefore s = (0.
Conversely, if 55 =0, then from the above inequalities,

sup{{s,x) —qg(x—u):xec} =inf{{s,x) + glu—x) :x €},

and this clearly implies that the uniqueness of the extension dominated
by g

Combining Example 4.3 with this, we conclude that the condition
sy = [} is necessary and sufficient for s to have a unique Habn-Banach
extension as well as a unique extension as a positive functional to £7.
|

Example 4.10 {Uniqueness in Strassen’s theorem). We now deal
with the uniqueness question in the theorem of Strassen mentioned in
the introduction. This theorem has applications in results about the
existence of probability measures with given marginals, about dilation
of measures, etc., see (10, 14, 17] for details.

Let X be a Banach space and 5§ the collection of all sublinear
functionals on X. Let (2, £) be a measurable space.
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Definition 4.11. A mapping g : w ~= g, from Q@ to § is

(i) weakly measurable if the realvalued function w -~ g.(z) is
measurable for every z € X;

(i) bounded if there exists K = 0 such that |g.(z)| < K|=z| for
every © € X and w £ (0.

If g is bounded by K = 0, it follows easily that |g.(z) — qu(y)| =
K|z — y| and, hence, q,, & continnous on X.

Theorem 4.12 [17]. Let X be a separable Banach space and (€1, E, p)
be a complete probability space. Let p o w ~= p, be a bounded weakly
measurahle mapping from £ into 5. Denote by s the sublinear function

s(z) = -L Polz)dp(w), e X

Forz* e X7, the following are equivalent:
(a) x* is dominated by 5 on X;

(b there exists a bounded weakly measurable mapping w -~ g,. from
0 to X* such that g, is dominated p-almost everywhere by p,. and

x*(z) = Lgu,{mjdﬁ{m], for every x € X.

Clearly, (b) = (a). Briefly the converse is proved as follows (see [10]
for the details): identify X with the constant functions in L'{u, X).
For any f € LY. X)), the map w ~ p,.(f(w)) is obviowsly integrable
and, therefore, we can extend the sublinear functional 5 from X to

LY p, X)) by defining
5(f) =L;ﬁu.~{f{w])d#{“ﬂh feLtp X).

Extend r* to F on L', X) such that F < §. By the representation
of LY p, X)*. there exists a bounded weakly measurable map w ~ g,
from £ to X* such that

Fifi= /;_!gu_.{f{m:l:ldﬁ{w:l, for every f e L'(p, X).
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Further, it can be shown that g, is dominated p-almost everywhere by
i

We are interested in exploring the question of when z* has a unique
Hahn-Banach extension to L', X) dominated by 5.

Definition 4.13. Letn = 1, and let {€, Q3,... ,,} be a partition
of £, Let o = p(Q,) and p; = (1) pln,. Let

s,0r) =f Ptz dp(w), =& X,

By Theorem 4.12 then, there exists 7 € X* dominated by 5; on X.
We will call the representation p = Y7 | oy, an n-decomposition of
p and the corresponding representation z* = 3, oz}, the nduced
decomposition of =%,

Theorem 4.14. The following are equivalent:

(a) =* has a unigue Haohn-Banach extension to LY p, X)) dominated
by 5.

(h) For each 2-decomposition of p = oqfiy + i, the induced
decomposition of ¥ = e} + ozl is wnique with @7 dominated by
&

{¢) For everyn = 1 and each n-decomposition of p =%, oyp, the
inducal decomposition of * = 3| oux} is unique with =7 dominatel
by s;.

(d) For every n = 1, each n-decomposition of p = %,
exch choice of 1, 2a0,... .7, € X,

sup {3'*{3') —ims;{m —m)ix € X}

_ oy and, for

= inf{ﬂi"{:?::l 4o i:“i-“i{-?:e —z):T€ X}‘

Proof. (a) = (b). Suppose z¥ = a9 + ooy, o € X7 and o < 5.
By Theorem 4.12,

i f ol s
7.
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Put (w) if "
gulwe) b awr e iy,
i Al
He) {g-z{w:l if we (s

Then

flw) dpy + oo f

hlw) dps =f Felwr) dp
s LY

T =my; + oy = ft:f
(151

By uniqueness, g(w) = hiw), a.e., and hence, 2} = 3.

{B) = (c). Given any n-decomposition of p = 3.7, oup,, the
EXPTEssIon

l Te
p=appy + (1 — o) [ z rt,-p.,-]

Lo G

s 8 2-decomposition of g and therefore, in the induced decomposition
¢ 5 G e
r* =%, oux], =} is inique; similarly for all other zis

(¢) = (d). Define a sublinear functional P on X by

Plry,2a,. .., Ty) = Zrt,-s,-{:r:,-:l = Z oy L Pol i) iyt

i=1

= g fﬂ ple)di

Let F = {(z,z,...,z) : £ € X} C X" and define A on F by
Mz z,...,2) = z%(z). Obserwe that, since 2* < son X, A < P
on F. By Lemma 26, for any x4, 70,... .2, € X,

sup {3‘“{3‘] —imsi{m —m)ix € X}
= iﬂf{fﬁ*{mj + iﬂisi{zi —T):T € X}~

And, if the inequality above is strict, the extension of A to X is not
unique. Let L be an extension of A, Then there exist g7, 45.... .4, €
X* such that Lz, 22,... ,x.) = 3., ¥/ {x:). Moreover, since L < P,

y < oysg. Further, z*(z) = Az, z,... ,z) = >, yi(z). Therefore,
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*

¥ = Y, ey /o) & an induced decomposition of * and, clearly,
different extensions of A gives rise to different mduced decompositions.

(d) = (a). Let f =%, z:Xn, € L'y, X) be a simple function,
where {Qy,0s,...,1,} is a partition of €}. Let p; and n; be as hefore.
Then p =%, au; is an n-decomposition of p and, by (d),

sup {;1:*{;1"] — z msilr—m) iz € X}

=1

It follows that
sup{z®(z)—S{z— fl:z e X} =mf {z"(z) +5(f—z) : z € X},

i.e., the extension of * to the space of simple functions dominated by
5 is unique.

To show that the extension of * to L'{p, X)) dominated by 5 is
unigque, we wse Theorem 2.12.

Let {Bs(z,.7.)} be a nested sequence of S-balls in L'(p, X') such
that the centers {z,} C {z € X : z*(z) = 0}, 0 € Bg(z1,m) and
fe LY p, X)) such that S f) < 1.

Fix £ = 0. Let K > 0 be such that |p,.(z)| < K| z| for every z € X.
Choose a simple function f; € LYu, X) such that|| f — fi] < /K.
It follows that S{f;) = S{fi — ) +5(f) < 1+ And, hence,
S{(fi/{1+2)) < 1. By the unigueness of extension to simple functions
and Theorem 2.12 (d) applied to the nested sequence {Bg(z,./(1 +
g, (rn —£)/(14+2))} of S-balks, there exist z € X and ny = 1 such that
for £ = kerz* C X,

s z'rn: f'l Tig — €
5 — 4+ —z Z) .
(l+£ (l+s T)"’ ) 1+e

S(en, £(i— (1 +e)z)+ Z) <7y, —&.
It follows that

Therefore,

S(zn, £(f— (14+8)2) + Z) < Ty
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And this completes the proof. O

One special case of Theorem 4.14 that is of particular importance is
when X = C(K) for some compact convex set K in a locally comvex
Hausdorff topological vector space. In this case, for a suitably defined
sublinear functional on X, we obtain [14, Theorem 3.2] as a corollary.

5. The Vlasov Property. We begin by recalling the definition.

Definition 5.1 [16]. A Banach space X is said to have the Vlasov
Property, if there do not exist a nested sequence of balk {B,,}, and z*
and ) € S(X*) such that, for some constant e,

(b)) e forallbe LB,
yr(b) = forallbe B,, n<k,

and dist {co(y5, 45,...).2%) > 0.

Observe that since the balk {B,} are nested, the above conditions
ATE SATIE A8

(5.1) (b)) > e forall beuB,,
(5.2) Yol = forallbe B,

and we will use this form in the sequel.

Since the definition 1s rather difficult to handle, it is desirable to hawe
a more workable form.

Proposition 5.2. A4 Banach space X has the Viasov Property if and
anly if for every nested sequence {B,} of balls and z*°,y% € S(X*), if
(5.1 and (5.2) are satisfied for some ¢ € R, then o — 2% weakly.

Proof From the contrapositive of the definition, it is clear that X
hias the Viasov Property if and only if for every nested sequence { B, }
of balls and z*, 3} € S{X+), if there exists ¢ € R such that (5.1) and
(5.2) are satisfied, then =* € o (y], ¥4, ... ).

The sufficiency is thus immediate. And, once we observe that any
subsequence {y; | of {y)} ako satisfies all the given conditions, and
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hence allows us to conclude »* € Sy, ¥n,,. .. ), necessity also
follows. o

We also recall the definitions and results about the ANPs.

Definition 5.3. (a) A subset & of B{ X*) is called a4 norming set for
X if |z = sup{z*(z): z* € &} for all z € X.

(b) A sequence {z,} in S{X) is said to be asymptotically normed
by & if, for any £ > 0, there exist an ¥ € & and N = 1 such that
(ry)>l—cforalln>N.

{¢) For k = L IL, II' or II1, a sequence {x,} in X is said to hawe the
property & if

L {z,} is convergent.

1. {z,} has a convergent subsequence.

II'. {z,} is weakly convergent.

II. {z,} has a weakly convergent subsequence.

(d) For k=1, II, II' or III, X is said to have the asymptotic norming
property & with respect to ®, $-ANP-x. if every sequence in 5( X)) that
s asymptotically normed by & has property s.

(e) For v = 1, 11, IT" or II1, X i said to have the w*-ANP-x, if X*
has B{X)-ANP-x.

Remark 5.4. The original definition of $-ANP-III was different. The
equivalence with the one above was established in [8, Theorem 2.3].

The ®&-ANP-IT" and w*-ANP-II' were introduced and studied in [1]

We recall the following result from [8, Theorem 3.1] and [1, Theorem
3.1).

Theorem 5.5. A Banach space X

(a) has w*-ANP-1 if and only if X* is strictly conver and (S{ X*), w*) =
(SCX*) - 1D-

(b) has w*-ANP-1I if and only if (S{X*),w®) = (5(X*), ] -]|).

(¢) has w* -ANP-1T" if and only if X* is strictly conver and (S{X*), w*)
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=(5X*),w).

(d) has w*-ANP-III if and only if (S(X"),w") = (S(X").w) if and
only if X is Hahn-Banach smooth.

We need the following.

Lemma 5.6. Given z), ¥ € §(X") such that 27, — 2 in the w"-
topology, 8, >0 and {z,} C B(X), there exist a sequence {y;, = =}, }
and an increasing sequence {F,} of finite subsets of B(X) satisfying

{i:I L = -F‘rn Oy E pt1-

(i) Fu(l — &, )-norms span{z*,yi,y5, ... .45}, ie., for any y* €
span {z*. 47,45, ... ,¥n}, Le., for any y* € span{z®, i, u3,... .y},
suply* () : 2 € Pu} 2 (1— ) ly" .

(iii) fyi(z) —z™(z)| < & forallz € Fi, n = k.

Moreover, if 3.8, < 1, there exists {u,} C X such that {B, =

Bluy, n)} is a nested sequence of balls with (5.1) and (5.2) satisfied for
c=—2

Proof. The sequences {y),} and {F,,} satisfying (i)-(iii) obtained by
an inductive construction essentially as in the proof of (8, Lemma 2.1].
We will define u,, = 3, v; for a suitable choice of 1, with ||v,| < 1.
By (i), find v}, € F, such that z*(v}) > 1 —4,. If |¢}| < 1, put
v, = vh. Ifvl] =1, find 0 < A, < 1 such that z*{A0)) = 1 — 4,
and put v, = A,v/. Note that though v, peed not belong to Fy,

(Bl T

s (v ) —z* ()| = Ayt (vh)—z*(v])| < Mede < 8, Le., (i) s satisfied.
The balls {B,,} are then clearly nested. Moreover, for any n = 1,

T

infz"(B,) =" (z ?:,-) —n= i[m“{ﬂ:j] -1 =- i & = -2

i=1

and

infys(B,) = Z[y:{i:,-] —1]= Z{[y:{w,-:l — 2 (w)] + [=*(w) = 1)}
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Theorem 5.7. X has the Viesov Property if and only if X has the
w - ANP-II",

Proof. We first note that if {3} satisfies (5.2), it is asymptotically
normed by B{X). Indeed, let B, = Bz, r.). We may assume,
without loss of generality, that 0 € By, If we now put 3, = x,. /7.,
it follows that |y,.] < 1. Then (5.2) and the fact that {B,} is nested
mmplies that 3} () = 1 + ¢/ for all # = k. Since v, — o0, we are
done. o

Since X has the w*-ANP-II", {y;} is weakly convergent. If 3 — ¢*
weakly, it follows that y* € S(X*) and

(b =e forallbeuB,.

Since X* is strictly convex, by Theorem 1.3 this implies that z* = ¢,
eyt — =" weakly. The sufficiency thus follows from Proposition 5.2.

For the converse, we use Theorem 5.5 (¢), i.e., we show that X* is
strictly comvex and (S(X*), w*) = (5(X "), w).

To show X* & strictly convex, we again use Theorem 1.3. Suppose
{B.} is a nested sequence of balls such that B = UB,, is neither whale

of X nor a half-space. Since B i a proper open convex subset of X
there exist % € S§(X*) and o € R such that

a=infr*(B) > —occ and BC{r:z*(z)>a}=H.

Since B # H | there exist z € H and ¢* € 5{ X*) such that infy*(5) >
y*(z) = 3, say. Then z* # y*. Otherwise,

B=y"(z)=22) a=ifz"(B) = mfy"(B) > 3.

Putting ¥}, = 3", we see that (5.1) and (5.2) are satisfied with any
¢ < min(w, 3), but {y} cannot converge weakly to z*.

Now, if (S(X*),uw*) # (5(X*),w), there exist a net {z;} and z* in
S(X*), z* € X*™ and £ > 0 such that ), — z* in the w*-topdogy
and |[z**(zk — z*)| = £ for all a.

Choose a sequence {4, } such that §, >0 for all n and Z:;! &, < 1.
By Lemma 5.6, there is a sequence {y° = ;?::‘."} with o, =< o4 and
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a nested sequence {B,} of halls such that (5.1) and (5.2) are satisfied
with ¢ = —2. But clearly ¢}, cannot converge to r* weakly. O

Replacing the weak topology by the norm topology in the above
theorem, we immediately obtain

Corollary 5.8. X has w*-ANP-I if and only if for every nested
sequence {B,} of balls and x*, 4% € 5({X*) if there evists ¢ € R such
that (5.1) and (5.2) are satisfied, then ¢ — =% in norm.

From the proof of Proposition 5.2, it is clear that the analog of the
above properties for 11 or 111 doesn’t give us anything new. Indeed, the
strict convexity of X * remains. S0 we need some modification.

Definition 5.9. A Banach space X has property V-x, & = [, 11 II
ar IT1, if for every nested sequence {5, } of balls and {y;} C S(X*) if
(5.2) = satisfied for some ¢ € R, then {y } has property «.

And here 15 the main theorem of this section.

Theorem 5.10. For a Banach space X and & = [ 1L 1T or 101, X
has w* -ANP-x if and only if X has V-x.

Proof. For necessity it suffices to note, as before, that if {y:‘,} satisfies
(5.2), it is asymptotically normed by B{X).

As in 8], we will prove the converse in three steps.

Step 1. v = I1L

By Theorem 5.5 (d) it suffices to show that X is a U-subspace of
X** Bince X iz always an ideal in X**, if X is not a U-=subspace
of X**, by Theorem 3.6 there exists a nested sequence {B{z,.n)} of
balls in X** with centers in X, ||z1]| < 1 and ||z3*] = 1, and a convex
w*-neighborhood U of z5*, such that for K = Un B(X),

Kn [U B(zi + z,.,nj] ~ @
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Now, separate the comvex set K from the open convex set U, > Blzf* +
2u,mn). That is, there exist z** € S{X***) and + € R such that

(5.3) supz™*(K) <~ < z"x)" +x.) —n

for all n = 1. Let 2* = z***|x. As in the proof of (a) = (b) in

Theorem 3.6, we conclude from (5.3) that |z*] = 1 and
(5.4 *En) —n >y — ¥ (i) =¢, say.
Moreover, since z3* & in the w*-closure of K| it also follows from (5.3)
that
iz ) =27 (zg") + 27 (@) —
or
(5.5)

(2™ —2)zg") 20 — 2" (zn) 20 — [z 21— |z > 0.

By Goldstein's theorem, choose a net {z3} C S({X*) such that
I — '™ in w-topology on B(X***). Tt follows that % — z* in
w*-topology on B(X "), but by (5.5),

lim({z} —z*){zy*) = (2™ — ") (zy") = 1 — ||z = O

Let = = (1 — ||z1]]) /2. Without loss of generality, we may assume

(=5

»—z*){zg*) = e for all a.

Note that =, /n € B(X). Let 4, = 1/m. Then, by the first part
of Lemma 5.6, there exist a sequence {y = z), | and an increasing
sequence {F,} of finite subsets of B(X) satisfying

(i) zpfn € By, 0y < oty

(ii) F(l — 1/n)-norms 3pan {z*, ¥y, 95, ... .¥n }-
(iii) fyi(z) —2*(2)| < 1/k forallz € Fi, n = k.
Now, by (iii) and (5.4),

yilze) —n =nlyi{z./n) = 1] =niiz./mn)—1/n—1] >c—1.
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That is, (5.2) is satisfied.

By (iii), ¥} (z) — z*(2) for all z € U, F,, which, by (ii), & a norming
set for span {z*, ¥ ;n = 1}. Thus any weakly convergent subsequence
of {y5} must converge to r*, which is impossible.

Step 2. For & = 11, we combined the arguments of Theorem 5.7 and
Step L

IF(S(X*),w*) # (S(X*), -], there exist a net {z;} and z* m S(X*
and £ = (0 such that ¥, — z* in the w*-topology and |zf, — z*| =
for all .

I3
(3

As before, choose a sequence {4,} such that 4, > 0 for all n and
Yo 8, < 1. Since ||z*|| = 1, there exists {z,} C §(X) such that
$¥{$r|:| =1 _'lirl-

By Lemma 5.6, there exist a sequence {y; =z} } and an increasing
sequence {F,} of finite subsets of B(X) satisfying

{i:I L = -F‘rn Oy E pt1-

{ii) Fu(1 — 8,)-norms span {z*, y;, ¥3,... .15}

(iil) fyi(z) —z®(z)| < forall z € By, n = K,
and a nested sequence {B,} of balls such that (5.2) is satisfied with

"

o= —3.

Therefore, by V-II, {y5} has a convergent subsequence. But, again,
# in Step I, any convergent subsequence of {y"} must converge to x*,
which is impossible.

Step 3. By Theorem 5.5 it now suffices to show that X has V-IT'
implies X* is strictly convex.

Proceed as in the proof of Theorem 5.7 to obtain a nested sequence
{8} of balls, z*,¢* € S(X*) and ¢ € R such that z* # y*,
(UB,) > ¢ and y*(UB,) > c. Putting

i { x*  ifn iz odd
Y = % . .
y"  ifn is even

we see that (5.2) is satisfied, but {y’} cannot converge weakly. O
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Remark 511, From the proof, it follows that it suffices to define
Property V-« for nested sequences of balls of the type {B(z,,n)}.
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