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Abstract
We explore two proposals for finding empirical Bayes prediction intervals under a normal regression model.

The coverage probabilities and expected lengths of such intervals are studied and compared via appropriate
higher-order asympiotics.
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1. Introduction

Consider observable random wvariables Y,,..., ¥, such that given f,....f, they are independent
and ¥; is normal N(#, V), 1 < j < k. Also, the unobservable 0,,...,0; are themselves independent
and f; is normal N(zjf,4), 1 < j < k. Here V(> 0) is known, z; is a known 1xr vector (1 < j < k),
fi is an # = 1 vector of unknown parameters, and 4({ = 0) is an unknown constant.

The present article studies two popular proposals, one due to Morris (1983 ) and the other discussed
in Carlin and Louis {1996, p. 98), for obtaining empirical Bayes prediction intervals for ¢, on the
basis of the observational vector ¥ =(¥,.... ¥, Y. While the coverage probabilities of these intervals
have so far been studied numerically, we develop the higher-order asymptotics on their coverage
and expected lengths, as & — oo keeping i and » fixed. The prediction interval proposed by Morris
(1983) is considered in Section 2, where it is seen that the interval may not attain the target coverage
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probability in all cases but that a simple modification thereof can achieve this with margin of error
o(k~'). Next, in Section 3 the idea of Carlin and Louis {1996) is explored analytically to obtain an
explicit expression for another prediction interval with the same asymptotic coverage property as the
modified version of Morris® interval. In Section 4, it is seen that these two intervals, both of which
attain the target coverage probability with margin of error o(k~"), have the same expected length too
up to that order of approximation. The proofs are given in the appendix. It may be emphasized that
our implementation of Carlin and Louis™ (1996) idea in Section 3 for the normal regression model is
analytic while their discussion seems to be motivated towards numerical derivation of intervals. We
refer to Datta et al. (2000) for a related result on the choice of noninformative priors in a special
case of the setup considered here.

Let Z; be the k x r design matrix with rows z|,...,z. As in Morris (1983), we assume that
¥ =k —3 and that Z; has full column rank. The following additional assumption is needed.

Assumption. Let ¢y = k{z/(Z/Z,)"'z}. For fixed i, the sequence {cy} is bounded.

The above assumption holds quite commonly—e.g., it holds if the smallest eigenvalue of k~'Z/Z;
is bounded away from zero.

2. Mormris® interval and modification thereof

Let E=(f'.4), be the vector of unknown parameters and define

k
b=(ZiZ)'ZY, S=(-r)"Y (¥-zb), (2.1)
~ k—r-2 y

B=V(V +4), B=—— T2 (22)
p=B/(1—B), p =Bj1-B) (23)
(i p) = Hew — r)p + L2 + 1)p?  (—o0 < u < o0), (2.4)
0, =(1—B)Y,+B b, (25)
g . k—r— 2 e T

g =P (1 - B ) g e _23 (¥; — z[bY. (2.6)

With a target coverage probability of at least 1 — z, Morris (1983 ) proposed the prediction interval

HHJ- + zs; for #;, where z is the upper /2 point of a standard normal variate. The following theorem
is crucial in studying this interval.

Theorem 2.1. For any convergent nonstochastic sequence {t} of real mimbers,

P(6; — ﬁ;},fs,- < 1} = O(te) — bkttt p) + ok "),

where - ) and ®-) are the standard normal density and distribution functions, respectively.
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For Morris’ (1983) interval # £ zs;, by (2.4) and Theorem 2.1,

P:{E -z s B < 5 +z5)= 1 — o — 2k zg(2)hulz; p) + olk ). (2.7)

Interestingly, Ay(z; p) can be positive and hence the term of order O(k~") in (2.7) can be negative.
This happens, for example if ¥ =1 and Z; equals the & = 1 vector of 1's (cf. Datta et al., 2000).
Then e = 1 and by (2.4), hy(z;p) = ﬁq’[:2 + 1)p*. Thus the coverage probability of the interval

fl; &+ zs;, as it stands, can fall short of 1 — z up to the order of approximation considered in (2.7).

We now indicate a simple modification of Morris™ (1983) interval that attains a coverage proba-
bility 1 — x with margin of error o(k~"). This is given by

I=[0 —z{1 4k~ hu(zs 00500, + 2{1 + K hyglz0 )} si). (2.8)

By Eq. (A.7) in the appendix, # =8 + o(l) and hence F = p+o(l), on a set with P--probability
1 +o{k~") uniformly over compact &-sets. Hence by (2.8) and Theorem 2.1,

PAO, 1) =P — ={1 + k~'ha(z:p)} < (0 — 0 s < 2{1 + Kk~ ha(z:p)}] + o(k™")
=20(z)= 1+ ok =1=a+ok ")
In fact, by Theorem 2.1, it can similarly be seen that
Pe; > 0 +z{1 + k™ hi(z: 9 )bsil = 2/2 + o (k")
Pif0; < 0 — z{1 + k~hye(z; 7))} si] = 2/2 + o(k ).

Hence, in addition to attaining a coverage probability 1 — z with margin of error o{k—!), the interval
I is equal tailed up to the same order of approximation.

3. Another interval

We now explore analytically the idea of Carlin and Louis (1996) to get another prediction interval
for f1;. Observe that given ¥ conditionally @, is normal N((1—B)Y,+Bz/f, V(1 —B8)). Hence defining
87 = (1 — B*)Y; + B*z/b, where

B = Iﬂ-"mux(l{ ii;r sl)

is the maximum likelihood estimator (MLE) of B, one can check that this approach yields a prediction
interval for ¢, of the form

[+ EIEHPA= DL g+ P HI( =398,
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In the above, &* is the MLE of & and #'’(-) and #**)(-) are such that

Pe[(6;, — 87 Y {V(1 — B} < (&) = /2, (3.1)

Pe[(6, — 87y {V(1 — B} > £2(E)] = /2. (3.2)

The following theorem helps in the approximate determination of #'{-) and #2)(-) so that (3.1)
and (3.2) hold with margin of error o(k—!). Its proof is similar to that of Theorem 2.1 and hence
omitted. In what follows, for any real u,

(4 0) = Mew +r +4)p+ L2 + 1) (3.3)

Theorem 3.1. For any convergent nonstochastic sequence {t} of real numbers,
PA(6; — 07)/{V(1 = B} <44} = @(n) — k™ tu (1))t p) + o (k™ ").
By Theorem 3.1, with
Q)= —z{1 + k7 iz p)}, 1) =2{1 + k7 hi(z; 00},

conditions (3.1) and (32) hold with margin of error o{k—'). Hence the idea of Carlin and Louis
(1996) yields the prediction interval

=00 —z{1 + & hiz; p)OHV( = B} 6 +2{1 + kil p")YH V(1 = B}

for ¢, where p* equals B*/(1 — B*) if B* < 1, and is defined arbitrarily if B* = 1. As in Section 2,
by Theorem 3.1, this interval is equal tailed up to o{k—') in addition to attaining a coverage
probability 1 — x up to the same order of approximation.

4. Expected lengths
Let L and L* be the lengths of the intervals [ and 7*, respectively. Define

ka{ziﬂ}={£ff.¢ +1)p+ J!f:l;:-l.
Then the following theorem holds.

Theorem 4.1. (a) E:(L)=2z{V(1 — B)}'*{1 + k' Qu(z; p)} + o(k~").
(b) E:(L*) =2z{¥ (1 — B} {1 + k7' Qulz; p)} + ok~ ).

Thus the two prediction intervals [ and 7*, based respectively on modification of Morris® (1983)
proposal and analytic implementation of Carlin and Louis® {1996) idea, are at par with respect to
both coverage probability and expected length, even under higher order asymptotics retaining terms
of order O{k—").



R Basu et al [ Stistics & Probability Levvers 63 (2003) 197 -203 201
Acknowledgements

We thank a referee for very constructive suggestions. This work was supported by a grant from
the Center for Management and Development Studies, Indian Institute of Management, Calcutta.

Appendix
The following preliminaries will facilitate the presentation of the proofs. Let

=V +4Y7?, X =&"@b-Zp)s, Xo=(Yi—Zp)s, (A1)

L=k -1, X=X-kYXI-2) (A2)

By (2.1), cj.;'-"l)ﬁ is standard normal and hence the assumption made in Section 1 implies that X
is stochastically bounded. It is easy to see that so are X5, X5 and Xy; ofl (2.1).

Lemma. (i) Ex(X)) =0, (i) E:(X3) = o(k™"), (iii) E:(X]) = ca, (iv) EX7) =1, (v) ELX]) =
24 o(1), (vi) Ex(XiXy) =0, (vii) Ex(XaXy) =0, (viii) Ex(X2X7) =0, (ix) E:(XiX2X3) = o(1), (x)
EXZX) =2+ o(l).

Proof. The proofs of parts (i)—(v) are either obvious or straightforward. To prove the remaining
parts, define

U=(Ui... U =0 (Y =Zf)  wi=ZdZZ) 'z
and let M be the orthogonal projector on the orthocomplement of the column space of Z;. Then
t(M)=k —r,  Mw =0 (A3)
and by (2.2), (A.1) and (A.2)
Xi=k'""wilU, Xa=U, X=k"{(k-r)"'UMU-1)}. (A.4)

By (A.2) and (A.4), each of X|X;, X2X; and X>X] is an odd polynomial in U/. Hence parts (vi)
—(viii) follow noting that the elements of {7 are independently standard normal, a fact that is also
used in the rest of the proof whenever necessary.

Next, by (A.2) and (A.4)

E{ X\ XaXy) = KEL(w{UYU{(k —r) ' U'MU — 1}] + o(1). (A.5)
Write wy; for the ith element of w; and m; for the ith column of M. Then by (A3),
EA{(wU)ULU'MU Y} = wy to(M )+ 2wim; = wy(k —r).

Since E:{(w;U)U;} =wy, part (ix) is now evident from (A.5).



202 R Basu et al [ Stistics & Probability Levvers 63 (2003) 197 -203

Finally, in order to prove (x), note that by (A.2) and (A4)
E{X7X])=kE[U{(k — r)"'U'MU — 1]+ o(1). (A6)

Now, M is idempotent with (i,i)th element 1 — z(Z]Z; )~ 'z(=1 — k~'¢;). Hence after some
algebraic manipulation,

EAUNU'MU) =k —r +2(1 — k™ 'ey),
E{UNU'MUY}=(k—rP + 2k —r)+ 4k —r +2)1 —k'cy).

Using the above in (A.6) and recalling the assumption on the boundedness of {ey }, part (x) of
the lemma follows. [

We are now in a position to present the proofs. All stochastic expansions considered below are
on a set with P.-probability 1 + o(k=') (uniformly over compact C-sets). In particular, s* >V on
this set, so that by (2.2), (A.1) and (A.2),

B = ‘:%;2{1 + k72X B = B(1 — k72X ) + ok, (AT)

Proof of Theorem 2.1. Given Y, conditionally f; is normal N{{(1 — B)Y, + Bz/fi, (1 — B)). Hence
PA(0, — 0)si < 1} = E-{&(T)}, (A.8)
where
T= {0, + 15 — (1 — BY, — BB} /{V(1 - B)}'2. (A.9)
Recalling the definitions of B, & and p, by (2.5), (2.6), (A.1) and (A7), after some algebra,

8, —(1— B)Y;— Bzlf= OB{k™ "X + XoXa) — k'K ) + o(k7), (A.10)

si={V(1=B)}'?[1 + 3 k~"2pXy + zk7{(r + 2X)p — 3p°X{ ) +o(k™"). (AIT)
By (A.9)-A.11),

T=t+k g +k'g: +0(k™"), (A.12)
where

o =1 apXa + p' P+ XaXa), b

¢ =100 +2XD)p— L PP X7} — p' XX, (A.14)

By (A.12),

D(T) = D(t) + k™ PPt )gr + k™' (1N gz — §1eg]) + o(k™"). (A.15)
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Using the lemma, from (A.13) and (A.14),
Edg))=ok™'?), Eig:)=3t{(r +2)p — 3 9’} +0(1), (A16)

Edgi) = 36" + (ciu+2)p +o(1). (A1T)
If one substitutes (A.15) in (A.8) and then employs (A.16) and (A.17) then the result follows. O
Proof of Theorem 4.1. By (2.3), (28) and (A7), the length L of the interval [ satisfies L =
2={1 + k= hy(z; p)}si + o(k~!). Hence by (A.11),

L=2:{V(1 = BY}'2[1 + Lk Rpxy + k= {(Lr + X2)p — Lo2XZ + hy(z p)}] + olk™).
Part (a) now follows using (2.4) and the lemma. The proof of (b) is similar. [
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