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Abstraei. In this paper we obtain a closed form expression of the expected exit
time of a Brownian motion fromequilateral tnangles. We consider first the analogous
problem for a symmetric random walk on the tiangular latice and show that it is
equivalent to the ruin problem of an appropriate three player game. A suitable scaling
of this random walk allows us to exhibit explicitly the relation between the respective
exil times. This gives us the solution of the related Poisson equation.
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1. Introduction

In this paper we obtain the expected exit time of a random walk and a Brownian motion
from an equilateral triangle. The random walk we consider is not on the regular integer
lattice, but on the tangular lattice, where the random walk takes a step in cach of the
possible six direcnons with equal probability.
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As is well known, the exil time problem for a random walk on the one-dimensional
ling, with steps of size 1 taken in unil time, can also be stated as a ruin problem, namely,
Peter and Paul play a game with capitals $a and $6 respectively and according o the
outcome of a wss of a coin, a dollar changes hands—with the game being played until
one of the two is bankrupt. If it takes unil time 1o 1oss a coin, then the distribution of the
“lime o ruin” 1s the same as the exit ime from the inerval |— a. b of a random walk
with steps of unit length staring at the origin.

We first generalize the ruin problem to three players. Let Peter, Paul and Mary play
the following game. First a pair is chosen from the three players, with each pair being
equally probable of being chosen. According to the outcome of a toss of a coin, a dollar
changes hands. Then a pair is chosen again from the three and a coin tossed w determing
who amongst the pair wins and who loses a dollar. This game of alternately choosing
a pair and tossing a coin is continued until one of the three is bankmpt. If @, b and ¢
are the respective capitals of Peter, Paul and Mary, we are interested in determining the
“lime to ruin”, assuming each toss takes a unit tme.

In Section 2 we show that the above problem is equivalent to obtaining the exit
time from an equilateral tnangle of a random walk problem on the “triangular lattice™ in
the plane. For this ruin problem (or the equivalent rndom walk), the discrete harmonic
equations yielding as a solution the expected time of bankrupiey {or the expected exit
time) may be written quite easily (see (4) below) and we know the solution to this set of
equations.

In Section 3 we look at the exit time of a two-dimensional standard Brownian motion
from an equilateral triangle. We use that an approprate time and scale change of the
random walk on the tnangular lattice approsimates i law a two-dimensional Brownian
motion, as happens in the one-dimensional case. Then we show that the laws of the exit
times also converge (Proposition 3) and that so do their expectatnons (Proposition 5). We
obtain the following result:

Theorem 1.  The expectation of the exit time from an eguifateral triangle of the standard
Brownian motion By, on the plane is given by

233 Jads A, (1)

where A iy the area of the triangle and (X, X2, 1) are the barycentric coordinates of
the starting point with respect to the vertices of the triangle.

1tis well known that the expected exit time of a Brownian motion from the tnangle,
as a function of the starting point, is the unigue solution to the Poisson equation

;AN = —1 (2)

that vanishes on the boundary of the tangle. Therefore, expression (1) provides such
a solution, which, to our knowledge, has never been found before. OF course, once this
formula is conjectured, the proof of Theorem 1 is immediate by checking that it satisfies
i 2) and the boundary condition. However, our main goal isto exhibit the relation between
the exit times of planar Brownian motion and tdangular random walks and how (1) is
derived from the latter, with the help of its relation with the gambling problem described
above.



Exit Times from Equilateral Triangles 45

In the three-dimensional analogous problem (exit time of a Brownian motion from
a letrahedron), we have not been able to obtain an explicit result as in Theorem 1 above,
although we can, m pnnciple, compute the solution of the corresponding hamonic
equations (analogous 1w (4)) for tetrahedrons with side lkengths of specified integers.
Omne might think that £4 A2 A3 h, where k1s some constant, solves the three-dimensional
Poisson equation, but this is readily seen 1o be false.

The Dirichlet problem in a tdangle for the equation A f 4+ Lf = 0 was studied by
Pinsky [6] and it can also be related w the exit time from triangles [3] and w the motion
of Brownian particles in a circle with annihilation when they collide [1].

2. The Lattice and the Harmonic Equations

Let § be a positive integer and construct a tiangle Ay, each of whose sides is of length
8. Consider the regular triangular lattice with edges of unit length. We place the tdangle
Mogoon the lattice such that each of the vertices of Ag 15 a vertex of the laltice (sec
Figure 1).

We label the edges 1, 2 and 3. A vertex of the tmangular lattice in Ay 15 given
the coordinate (a, b, ) where a (respectively b and ¢) is the length of a shortest path
comprising of edges of the tdangular lattice from the vertex to the edge labelled 1
(respectively 2 and 35 A hitde thought shows that if {a, b, o) 15 the label of a vertex i the
triangle & thena+64c = 5. Note thatthisis justa scaled baryeentne coordinate system
with respect to the three vertices of the tnangle. Clearly, if (a, b, c)and {a", b, ) are two
neighbouring verices of the wiangular lattice in Ag, then ja —a' |+ |b—F [+ |c—c'| = 2
We perdform a random walk on this lattice. Starting from a vertex (a, b, ¢) we Lake a step
to one of the neighbounng six vertices with probability 1/6 each, steps being taken
independent of one another.

This random walk problem is indeed equivalent w the “ruin™ problem of Peter,
Paul and Mary. To see this, let the fortunes of Peter, Paul and Mary be respectively
a, band c. After a game the fortunes change 1o (a’, &', ¢') with probability 1/6 where
la—a'|+1b—=F+|c—-c|=2.

Figure 1.  The triangular lattice.
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The notion of “min”, i.e. one of Peter, Paul or Mary becoming bankrupt translates
to the random walk setting as the walk hitting the boundary of the riangle A 5.

In the cartesian (x, v)-plane, if the triangle Ay is such that one vertex coincides
with the orgin, another vertex is at the point (S, () and the third vertex is at the point
(5/2, vﬁﬂﬂ}, then the vertex {a, b, ¢) of the previous construction corresponds o the
cartesian coordinates (b +a /2, ﬁﬂf?}. Conversely, if (o, ) are the cartesian coor-
dinates of a vertex of the tdangular lattice, then the scaled barycentric coordinates are
(2/vV3B.a— (1/IB. 5 —a — (1//3)P).

Now ket ila, b, c) be the expected time o ruin of the Peter, Paul and Mary problem
when their respective fortunes o begin with are $a, $& and $c. Cleardy we have

hia, b, c) =0 whenever  minja, b, o} = (0. (3}
Moreover, for a, b, ¢ = (), an argument based on conditioning immediately yvields

hila b, ec)=14+ E'.{I:{ﬂ —Lb+l. e+ hla+l.b—1. )+ hila. b—1,c+ 1)

+hia. b+l c—1)+hia—1,bc+1)

+hia+1,b,c—1)}. ()
It may be easily seen that
Jabe
f! {ﬂ, b, C::l — m {5}

is the unique bounded solution to the above equation (4) with boundary condition (3).
The unigueness of the solution follows from the fact that the difference between two
distinet bounded solutions must be a bounded function whose value at any point equals
the average of its values at the neighbouring points; and hence, from (3), it is identically
ZCT0.
Equation (4) above may be thought of as the discrete analogue of the Poisson
equation. Indeed, let P be the averaging operator and let I be the identity operator, then
Phia. b, c) %{ﬁ{ﬂ —1l.6+ 1. e +hia+1.b—1.¢)
+hia.b—1l,c4+ 1)+ hla. b+1,0-1)
+hila—1. e+ 1)+ hla+ 1,0, c— 1)} (6)
The operator A: = P — I may be taken to be the discrete analogue of § A where A is the
Laplace operator (see, e.g. [2].

In terms of the above notation, (4) reduces to Ah = —1; thus the analogous equation
in the conlinuous case 1s

sAn = —1 (7)
and the boundary condition (3) takes the form

uix) =0 for x on the boundary of Ag . (&)

For this Poisson problem, it is well known that the probabilistic representation of its
unigue solution u(x) is the expected exit time from any general tnangle A 5 of a Brownian
motion starting at x (see, e.g., [2]). Thus our theorem gives a closed form solution of this
problem. We have not been able o find in the literature a solution of the above Poisson
problem by purely analytic means (see Chapter 11 in [8] and Chapter 19 m [9] for a
discussion of analytic methods in the study of Poisson equations).
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3. Convergence of the Expected Exit Times

Now let § be a positive real number. With the help of the gambling model of Section 2,
we are going Lo find an explicit expression for the expected exit time from the equilateral
triangle Ay of a planar Brownian motion, thereby obtaining an explicit solution of (7)
with boundary condition (8).

To this end, we first define a sequence of approximating random walks converging
in law 1o a Brownian motion. Then we prove that therr expected exil Limes must converge
to the comresponding value for the limiting process. The sequence of mndom walks is
chosen so that the expected exit times are approximated using the gambling model.
Therefore, the limit will give us the exit time for a Brownian motion.

For a process X on the plane, denote by T(X, Ag) its exit time from A g:

T(X, Ag) := inf{t: X, & Ag).

Let {£,}, -y be asequence of independent, identically distributed random vectors taking
values (cos(kx /3), sinfkx A fork =1, .., & with equal probability. Note that £, may
be thought of as a single step of the random walk on the triangular lattice.

Fix (, §) € B* and, for each n € M, let {F" = 0} be the processes defined as
follows:

4]
r;' = {G!, JH}I + !,-"lllzl'lr” (Z’EJ -+ {f —_ L‘rJ}'EL‘H") i f‘:}}
1=l

where |- | denotes the integer part.
For the process

X":=¥, =0

are

we have

Proposition 2. The sequence of processes | XV, + = 0} converges in law to a standard
Brownian motion starting at (o, f§).

Proof.  First, notice that though the two scalar components of £ are not independent,
they are uncomelated. This 1s enough o prove that the sequence X, converges in law 1o
the standard Brownian motion on B, Indeed, the convergence of the finite-dimensional
distributions follows from the multidimensional central limit theorem by standard ar-
guments. On the other hand, tightness of the sequence X, follows from the same prop-
erty for its scalar components, which is a consequence of their convergence in law
ziven by Donsker’s Invanance Principle for E-valued random walks (see, e.g. pp. 70-71
of [4]). Od

In order o prove the convergence of the expected exit times, we show first that
T{X", Ag) converges in law o T{E, Ag) where B s the standard Brownian motion
starting from (o, ). Then we prove that {T(X", Aghl,en is a uniformly integrable
sequence of random variables. This gives us the convergence of {E[T(X", Ag) ey Lo
E[T(B, Ag)]
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The next proposition establishes the convergence of the exit times. Kushner and
Dupuis [5, p. 260] present an argument based on the law of iterated loganthms of a
one-dimensional Brownian motion o exhibit the convergence of stopping times of an
approximating Markov chain. Although their argument may be adapted in our two-
dimensional seting, we use another direct argument.

Proposition 3.  The following convergence in law holds:

T(X", Ag) = T(B, Ag).

Pwaf.  In this proof we adopt, for convenience, the following notation: A denotes the
open triangle of edge length §, 34 its boundary and 2 its closure.

Let T":= T{X", A) and T:= T{B, A) denote respectively the exil times from A
of the process X7 and the Brownian motion B defined above.

To get the stated weak convergence, it suffices 1o prove

PIT" =t} — P{T =1t} forall = 0. {100

Let P be the law of X" and let Py be the law of B, both on the set C: = C{[0. o), B
of continuous functions on [0, o¢) with values in the plane, equipped with the Borel
a-algebra. In terms of P and Py, we have

PIT" =t} = P{X) epforall s =t} = P'(A),

where A = {x € C: x(0) = (o, f) and x(s) € A forall s = r}. Analogously, P{T =
t} = PglA)
The set A may also be expressed as

A= D ﬁ{l e C: x{ll) = (@, fA) and

k=1 m=1

x(s) e Ay, foralls <t,5 € D), (11)

where D, is the set of dyadic numbers of orderm and A = &—f".}.-k{:'il.-ﬁ.}, Vi)
being the 1/k-neighbouwrhood of 94, The rght-hand side of (11) is obviously Borel
measurable because the set in curly braces is in fact a cylindrical set.

By Proposition 2 we have the weak convergence of { P'}, 1o Py, which is equivalent
LG

PYE) — PriE) for all Borel sets E with  Pg(d E) = 0.

Hence, inorder to show (10) it suffices o prove that A is a continuity set with respect
to Pg, ie. Pg(dA) = 0. To this end observe first that C is a complete separable metric
space under the metric o, defined by

=

1
dix, ;=) —clly—xl A1),

k=1~

where || ||, denotes the supremum norm on the compact mterval [0 5]
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Now we establish that A is an open seb Indeed, fix x in A and let &y be such that
x(s) € A_y foralls < rdyadic. Setk = [r]+1andtakes = 1/ 2" &y If dix. y) < &,
then

1
v —xll, = lv—xllg =2%= —,
y =l <1 T

e ¥is) € Ao forall s = ¢ dyadic, and therefore y € A,
The closure of A is

A=xel: x(0) = (o, ) and x(s) £ A foralls =1}

and 1ts boundary s
dA=A—A
={x €C: x(0) = (. f). xis) € Aforalls < ¢
and x(s") £ d A for some 5" < ¢},

Decomposing d4 as the disjoint union of its three edge segments ry, r» and 3, we obtain

3
Pgpiid) = EFH{.T eC: x(0) = (@, B).x(s) e Aforalls < ¢
i=l1

and x(s") € r; for some 5" < 1},

Moreover, if H, denotes the closed half-plane determined by r; and containing the
triangle Ay, then the following inclusion holds:
[x €C: x{0) = (@, B). x(s) € Aforall s < rand x(s") € r; for some s’ <1}
Clrel: x()=(o f), xis) e H, foralls = ¢
and x (s") € r; forsome s™ < ¢},

Hence, it suffices to show that the sets of the form

relC:xily=(e. fleH, —r, xis)e H,, foralls =1t

and x(s") € r for some 3" = ¢},

where H, is the half-plane determined by the line r and the starting point, have measure
zerm under Pg.

By the rotational invarance property of Brownian motion, we can assume that r has
the form v = m for some positive constant m and that the Brownian motion starts at the
origin, i.e. x(0) = (0, 0). If we denote x(s) =: {x'(s), x?(s)) the two components of the
planar process, then we want 1o show that

Pglx eC: x(0) = (0,0), sy =m, foralls =t

and x*(s") = m for some 5" < t}

vanishes. However, this is the probability that the maximum of a one-dimensional Brow-
nian motion in the interval [0, ¢ takes the value m, which is zero, becanse the law of this
maximum is absolutely continuous. This proves the proposition. O
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Lemma 4. The sequence |T{X", &)}y en 5 uniformily integrable.

Pmaf.  Using the same notations we introduced in the proof of Proposition 3, let T": =
T{X", Aghand T:= T( B, Ag) denote respectively the exit times from A g of the process
X7 and the Brownian motion B, starting at (e, #).

1t is well known that for the Wiener process Ve = 0, 3§ = 0 such that

P{T =g} = 4,
for all starting points (o, #),

From this and using Proposition 3, it follows that ¥e = (0, 3§ = 0 such that for large
enough n,

P{T" =g} = §,
for all starting points (o, 8).

Taking £ = 1 and the corresponding 4, and applying ileratively the Markov property
for the time homogeneous Markov process X', we have that, for each integer k,

PIT" >k} = P{T" = 1} = (1 = &)~

Therefore, for each integer M,

f T"dP < Y (k+DP{T" >k} <) (k+ (1 -8,
(7= M} k=M k=M
which converges 10 zero as M 1ends to oo, O

As discussed eadier, this yields
Proposition 5. lim, .. E[T(X" Ag)] = E[T( 8, Ag)].

To find the limit of the sequence of expected exil times, in the following lemma we
rewrite it in terms of a scaled version Z" of ¥* given by

Z" = /nf2Y". 12)

In this scaled version the steps will be of unit size. This will allow us o use the properties
relative 1o the random walk or the ruin problem described earlier.

Lemma 6. The following equalities hold:

1 1
T(X", Ag) = —T(Y", Ag) = ~T(Z", & ). (13)
n n et
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Proof.  We have from the definition of Z" (see (12) and (9)),

(Fizna ool

.
Tizea o = v /2, f) + z : & +)"$'-""Z""'l\-“ﬁ.-.”+'
n i

i=1

forsome i € [0, 1|. Therefore, for the process ¥ defined as ¥ butstarting at /n/2{e, f),
wie have
T2 A )l
f;!uﬂ..-; - :|=.,.fnl.-’2{a, B +4/2/n E E+Mirea —a+l
L - AL

ol

which is a point in the segment that joins Zy and Z5 5. . .
£ 8 ey

whose distance 1o Z;

is /2 /n times the length of that segment. Hence, ]:’;flrﬂ s — lies on the boundary of
SR YT

the equilateral triangle of edge length § which is the translation of A g by the vectlor

(1 — & 2/n)'n/ 2, 8) (see Figure 2). Moreover, it is clear that ¥, is in the interior of

the above tdangle forall 1 = T{Z", &\ﬂ[ ) Therefore, by a translation of this tnangle

back to the ongin, we oblain

T(¥Y", Ag) =T(Z", ﬂJ— ).

nf28
Now, by the definition of X", it is clear that

1
T{X" Ag) = —T(Y", Ag),
R

and the equalities (13) are proved. O

Figure 2. The random walks 2 and ¥, Here 5, = .,..-"IIJ:'.I"_;S.
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In the two-dimensional case we are beating, we know the solution o the harmon
equations (4). This allows us to compute explicitly the expected exit times from tiangles
of integer size of the random walks performed by unit steps and staning from a vertex
of the triangular latice. Then we deduce from them the value of E[T (B, Ag) ]

Proposition 7.  The limit of the expected exit times from Sg of the approximating
random walks X" i

V3pla - wf}@g; —o— (V3P )

where (o, ) is the starting point.

Pmof. Recallthat T(Z", A~ )isthe exittime from the tiangle A —_ of arandom
walk with unit steps starting at /n/ 2w, 4).

Clearly, the set

Mee, f) € Agry/n /2, ) is a vertex of the triangular lattice

for infinitely many n's}
is dense in & . The continuity of the expected exit time with respect to the starting point
allows us Lo restrict ourselves o (e, f) belonging o the above dense sel.

Fix n and consider the exil ume T(Z", &q";l-_"-"-'} starting at the vertex N.fn,.-’f{a, i
of the lattice. To view this as a ruin problem we have to consider triangles with edges of
integer length. So we ke m = Lﬁ.f::,-’_j.‘ij + 1 and look at the exit times T{Z", &)
and T{Z", A0 These can be interpreted as the times o ruin of the three player game
explained in Section 2, with initial fortunes given by, fork =m — 1 m,

day =

Jn /2 J
bkz.,fm(a—‘%ﬁ),

g =k— ._fn,rz (a + %ﬂ) .

Using formula (3) we find immediately that, fork =m — 1, m,

ﬁ) k— /e —WD(1/VDB

E[T(Z", a.kn—w’_ﬁ(u—— :

NE)
On the other hand, applying Lemma 6,
IT{Z" M) =T(X", A
n PR ’ ‘~""l" ’

Then, using the inclusion & 1yt J"_ C Mg C ﬂ Jﬂ,_—’ and taking limits, we obtain

lim E[T(X",Ag)] = ""rm“ —ilfﬁm;{a‘—a — (V3B -
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It can easily bechecked that e, ) given by the expression ( 14) solves the Poisson
problem (7) with boundary conditon (8). Expressing (14) in baryeentne coordinates,
and using Proposition 3, we immediately obtain Theorem 1.
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