SANKHYA

THE INDIAN JOURNAL OF STATISTICS
Edited by: P. C. MAHALANOBIS

Serres B, Vor. 24 FEBRUARY 1962 Parts 3 & 4

ESTIMATION BY TWO-MOMENTS METHOD FOR GENERALIZED
POWER SERIES DISTRIBUTION AND CERTAIN
APPLICATIONS
By G. P. PATIL*

Indian Slatistical Institule

SUMMARY. In this pupor, the *Two-Moments Mothod' of ocstimation of tho porametor of o
ib is p: Tho important propertios of thiz mothod of estima-
tion aro discussed. Some spocial applications aro studiod.

d powor sorios di

1. INTRODUCTION

Let 7' be an arbitrary non-null subset of non-negative integers and define the
generating funotion
S10) = S a, 0F (L)
@T
with @, > 0, 6 > 0, so that f(0) is positive, finite and differentiablo.

‘Then wo can define a random variablo X taking non-negative integral values

in T' with probabilities

. = prob {X=x}=‘}% T . (12)
and call this distribution u generalized power series distribution (gpsd). We add here
that we call the set of admissible values of the parameter ¢ of gpsd as the parameter
space O of the gpsd. Also, we refer to set T' of valnes of random variable X defined
by the gpsd, as the range 7' of tho gpsd.

The author (1059, 1081) has shown that the standard discreto distributions like
the Binomial, Poisson, Negative Binomia! and Logarithmic Series distributions ean be
obtained as special cases of the gpad by proper choice of therange " and the generating
function f(#). The method of maximum likelihoutl for estimation on the basis of
samples from gpad's which are either completo, truncatod or consored has also been
disoussed. 1In this paper, we suggest what wo call “I'wo-Moments Mothod™ for
ostimation of the parameter of the gpsd and investigate its important properties
and study certain applications.

* Now with tho MoGill Univorsity.
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32, ESTIMATION BY TWO-MOMENTS METHOD FOB A GPSD

R Consid

Range T consisting of consecutive integers with posilive p
the gpsd (1.2) with finite or infinite range T = (¢, ¢+1, ..., d) with positive pro-
babilities; that is, consider the gpsd

at”

= =2z} = -2 (20
Py = prob (X=2) = 77 @1
where z6T = (¢, ¢c+1, ..., d), d finite or infinite
f6) = £ a® a,> 0. . (22)
Zwmg
For gpsd (2.1), it is easy to see that
# = 06y +cP, o (2.3)
and My = p+6Gy +c(c—1)P, o (24)
whero Gy = T ot [ (@4 1)3g1 ]i P, . (2.6)
2me a,

Further, from (2.3) and (2.4) we have
Ml 600 _ ) when ¢ 0. 2.8
#—6Gy @9
which when solved for @ gives the identity

6= _ M= . when ¢ # 0. ..o(2T
Gy —(c—1)Gy, @

From (2.3), we have the identity

0= 1 when ¢=0. . (28)
GM

The identities (2.7) and (2.8) cen be made use of in estimating 6. One has
only to compnte

d
8 = 5 atn, i=12 - (29)
b
g s
and gy~ Tai| (‘.ia@ Imi=onj=1 o (210)

from the sample, and thon

8,—c8
= 2770 when g £ 0 we (2.0
In—(c—1)g, # ¢ )
or L= 5, when ¢ = 0, o (212)
To1
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TWO-MOMENTS METHOD FOR GENERALIZED POWER SERIES DISTRIBUTIONS
can be taken as an‘estimate for /: Because we use the first two momenﬁs for the
estimation of the single p&mmeuar we osll the eatimate ¢ as “‘twi timate’
and the thod.”

Prooeeding along the same lines as Patil (1961) one gets to terms of order

thod as ‘“t

oY) = BO)—0 = oo (Bora—ais) (2.13)
and var (¢) = [d" 20 0yg+0% 03] (2.14)
where
(i) for 0 # 0,
@ = Gy —(c—1)Gy
o = (my—m§)-+oNmy— /%) — 2clmy—pimy)
Oy = (Gal_"‘!au)—dan'.—/‘au)—(‘—1)(Gu“m_aaox)'l"’(C—1)(011_."001)
Gy = (G— O f)+(0—1)4Cp— G ) —2c—=1)(C1s—Cp Gyy)
and
(i) for ¢ = 0,
G =Gy
O = my—p!

0y = Oy —ply
T = Gn— Gy
8. ESTIMATION BY THR TWO-MOMENTS METHOD FOR A TRUNCATED GPSD*

Consider the gpsd (2.1) truncated to
I* =(c, ¢+1, .A.,d'), d + d when d finite.

The truncated gspd oan be written as

P, = prob {X* =z} = f’(o) (3.1)

where 76 = é 60" (3.2)
ot
For this distribution it is easy to see that
u¥—0Hy = ¢ P"—(d+1)Py,, (3.3)
and My~ p*—0H,, = o(e'—1)Py—d(d+ )Py (3.4)
whers H, = i #[ (f% ]’ P, . (8.6)

% Tho work of this saotion was oarried out while tha author was at the Univeraity of Michigan
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For estimation purposes, we consider the following four mutually exclusive

and exhaustive casesx:
(ase (1): ¢ =0 and d finite
Case (2): ¢ =0 and 4 infinite
Case (3): ¢ #0 and d infinite

Case (4): ¢ %0 and d finite.
Cage (1): ¢ = 0andd finite. From (3.3) and (3.4), we have the identity

_ rzL;—_(ni+_[)/l‘ 1.6
0= Hu—dfy - (40

which wo utilize to estimato /. We have only to compute

8; =Xz, 1=12 . (37
and by = § z [(:;+l)a,+, ]/ ne i=0.1:5=1 ... (3.8)
b e
from the sample and then = S,—j_d-j:l_).S’, e (39)
Jyy—dhyy

can Lo taken as an estimato for 6. The estimate /* makes use of the (additional) in-
formation that the sample is taken from some known gpsd and truncated to the one
under consideration, The estimate ¢ of Section 2 above does not require, and hence,
does not make use of this information. The formula for the bias and variance of
* can be written down to order 1/N as:

b*) =Nl}1_i(00'u—a';,) o (3.10)
1 . .
and VA (1%) = 52 (01— 200y + OPos) o (BI1)
where
H = H, —dH,

= (i —m®)- (- 1)¥omg— %) — 2d+ 1)omg — p¥mg)
7o = (Hy—m3Hy,)—(d+ 1) Hyy— p*Hyy)— d{ Hyy —myHoy) +d(d 4 1) Hyy —p* o)
7% = (Hy—H 3+ d Hog— HE)—2d(H o — Ho Hy,).
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Case (2) and Case (3): ¢'=0. d infinite and ¢ % 0, d infinite. It can
be easily verified in these cases that

Hy =0y

and, hence. " =0
‘hus, we have the same trontment as in Section 2,

Hero also. we obsorve that if wo allow d = d—cven whon 4 is finite —and uso
gy = O formally, we aguin get H;; = G and 1* = . This observation iz «pocinlly
important in the case of the binomial distribution.

Case (4) 1 e 7 0 and J finite. 1t may be noted that tho /* estimate ix not
available in this ease. However. the 1 estimate still works. and the estimate of #

can thus be obtained by employing two-moments method.
4. AN UPPER BOURD FOR BIAS PER UNIT STANDARD ERROR FOR
TWO-MOMENTS ESTIMATES

We first establish a genernl result true for the bias of an estimate of a certain
type. Let the probability distribution, from which a sample x), x,, ..., 2, is drawn,
be a general distribution of » random variable X with a single parameter 4.

Let /; and 4, be two statistics based on the sample such that

E(h) _ Elh(@y 2, ..., %))

E(,) Bltyf,. 2y, ..., 3,)]
for all # in the parameter space of the given distribution.

Consider the estimate § = _:‘ to estimate §. To find the bias in ¢ per unit

2
standard error of s, we bave
cov (s, ) = E(sty)— E(s)E(ty) = B(t,)—E(8)E(ty) = [6—E(s)} B(t). .. (4.1)
Now Joov (s, &) < of8) alty) o (42)
where o denotes the standard error, Therefore, from (4.1) we have
Bw=0 | _|ow) [_],., 3
o5 | wey | =|ov (4
where o.v.() is the coefficient of variation of t,.  Thus, for the bias in 4 we have
b(s) :
oo | < o.v.(t,)l o (44)

In particular, when 4, is & constant, we have an unbiased estimate for 6.
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It may be noted that two-moments estimates for the parameter # of gpsd’s,
which we discussed earlier, are estimates of the actual typo of tho estimato s that we
have discussed in this seotion. Hence, the result in (4.4) also applies to them.

5. ESTIMATION BY THE TWO-MOMENT METHOD FOR SINGLY TEUNUATED
BINOMIAL DISTRIBUTION

Fisher (1938) and Haldane (1932, 1938) discussed uses of the truncated binomial
istribution. For instance, in problems of human geneties, in estimating the propor-
tion of albino children produced by couples capablo of producing albinos, sampling
has neceasarily to be restricted to families having at least one albino child. Finney
(1949) has cited some more applications. Fisher and Haldane derived the maximum
likelihood proceduro to estimate the parameter 7. Patil (1959) gave a direct method
to obtain the maximum likelihood estimate. Moore (1954) suggested o simple “‘ratio-
estimate’ based on an identity betwoen binomial probabilities. For a slightly dif-
ferent problem, where, in a sample from a complete binomial distribution, the frequen-
cies in some lowest classes are missing, Rider (1955) suggested a method of estimation,
which nses first two moments of the complete binomial and leads to a linear equation.

The probabilitv law of the binomial distribution truncated at ¢ on the left
can be written as

b*(z, m, n) = (B¥c, m, n)) YD (1—m)"* z =¢,¢+]1,...,n ... (5.1)
where B¥e,mm) = I (r{l—m-=. . (52)

The first two moments about the origin of (6.1), then, are
p* = p*(c, m, ») = nw B*c—~1, m, a—1)/B*c, 7, ) ... (8.3)
and mg = mglc, m, n) = p¥c, m, n){14-p¥c—1, 7, a—1)}. .. (5.4)

The case of truncation to the right can be dealt with in a similar way by replacing
7 by 1—7 and the truncation point ¢ by n—c.

Proceeding on lines in Section 3, one gets in this case

=T — _ mi—epr .. (65
—n  Hy—(c—1)H, (62)

where ;* and mj are defined by (5.3) and (5.4) respeotively, and Hy, and H,, reduce to

Hyy = np*—m3
Hy = n—p*
then (5.5) gives "= my—cp® .. (5.8)

(=T —nte—1)
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so that, on the basis of a random sample of size N with », as the frequency of x drawn
from (5.1), tho estimate for # oan be written as

_ §3—c8, 5
b= o ns, Sale—DF w61
where 8 = Zan,
and 8, = 2_ zin,.

It ix obvious that (5.7) is quito simple.  On the other hand, the ostimate obtrined from
(5.7) is likely to be inefficient. It is important, therefore, to investigate the loss in
cfticiency due to the use of (5.7) instead of the maximum likelihood estimate.

To find the asymptotic variance uf the two-moments estimate ¢ of 7, one gets
on some simplification

var (¢) = l%’ (oo —2n0y) .. (5.8)
whero H = (n—1)p*—n{c—1)

oy = (mg—mg?)+c¥mg— p*2) — 2efmg— p*mg)

Ogp = (n— 1) (mg—p*?)

oy = (A—1)(my—p*my) —c(mg —p*%)

where m; is the »-th theoretical moment of (5.1) about the origin. Thus,

1 . 2
W {(mg—m¥3)+{n—1)m+c} .

and

var () =

(mg—p*?)—2{(n—Dym+c)ms—p*n3)). ... (5.9)
The asymptotic efficiency of ¢ is then given by

off (£) = var (m)jvar (1) e (5.10)
where 7 is the maximum likelihood estimate of 7 with variance given by

var () = AP e (811)
Nuz
where s is the variance of (6.1).

The special cases of some importance in genetics are ¢ = 1 and 7 = 1/4, 1/2, or 3/4.
The efficiency of the Two-Moments Estimate (TM) relative to the Maximum
Likelihood (ML) in these cases is tabulated below.

TABLE 1. ASYMPTOTIC EFFICLENCY
OF TM FOR ¢ =1

officionoy

n =14 12 8
3 02h -875 -878
4 .87 -818 .869
13 817 186 -870
) .800 180 .886
7 .781 794 .00L
8 .768 .808 .813
[} 786 814 .028

10 .49 .B23 981

207



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Saerss B

(General  examination of the table shows that TM is fairly efficient in the cnses oited.
A closer look shows that tho efficienoy of TM in case of 7 = 1/2 and 7 = 3/4 decreases
in the boginning with n, reaches n minimum and then incroases with increasing values
of n. For m = 1/4, howover. the efticiency decreases throughout. Let us compute,
therefore, the efficioncy of TM for higher values of ». ‘The following gives the results
obtained for n = 11(1)15.

ASYMPTOTIC EFFICIENCY OF T™M
FORc¢ =1AND m:- 13

" offivioncy
1 .748
12 LTH
13 TG
14 47
16 2750

Thus. in case of # = 1/4 also, tho efticiency reaches a minimum and then increases

with incroasing ». It is interesting to noto that in all theso cases the efficiency of TM

has reached the. minimum at » = 3/7.
Following Section 3, one gets to ordor /N, the amount of bias of (TM) as

follows for ¢ =1 :

_ 1 pptmy—my _ BY .
W=y "=t~ ¥ - B12)

The table given bhelow provides the value of B(/) for m = 1/4, 1/2 and 3/4,

TABLE 2: ¥ (ANMOUNT OF BIAS TO ORDER [/N)

OF TM

n o= 1/4 142

3 —.2412 —.2717

4 —.2152 —. 1940

[ —.1806 —. 1748

6 —.1715 —.1398

7 —. 1635 —.1230 —.0080
8 —.1370 —.1063 —.0605
0 —. 187 —.0834 —.0524
|0 —. 1097 —.0748 —.0488

Table 2 shows that the amount of bias of two-monments ostimate is rather small
and one need not worry much about it, especinlly when ono knows that the maximum
likelihood estimate is also a biased one.

Illusirative example. The detailed computation procedure of evaluating the
two- ts estimate di 1 above will be illustrated with reference to K. Pearson’s
data on albinism in man. The table below gives the numpoer of familics (r,) ench of
five childron having exactly = albino ohildren in the family, (z =1, 2, 3, 4. 6).

nuaber of nlbinca in family (2) | 2 3 4 6
number of fomiliea (n;) 28 a3 10 1 1
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If m is the probability for a child to be an albino, wo may accept the trunceted
binomial model :

@ —my-

l—(T—ﬂv)T r=12..n,

for tho probability of x albinos in u family of 2. Here 2 = 5, and the problem is to
ostimate m on the basis of the data given in the table nbove.

To compute the two-moments estimato for 7, we roquire §, = Szn, = 110
and N, = Z 2%, = 248, Thon the estimute ix

! N
= 2 —1
n—1 [ S, ]
1248
= - |- — ~1|=0.3138.
1 1100 0.3138

T'o compute the varianco of ¢ wo require

= l—(';‘”v = 1.96280
—(l—m=m

my = p*|(n—1)n+41] = 440239
mg = p*((n—1m+14(n—Unf(n—2)n+2}] = 11.60815
mg == p*{(n— 1)+ 143n—Da{n—2)m4-2§ +(n—V)m. (2 —2)mr|(n—3)m+3})
= 32:06830
all evaluated by taking 0.3136 as the estimate for 7. The varianco of ¢ is estimated
from the formula

var (1) = (my—m32)+{{n— 1)+ 1)2mg— p *2) — 2(n— D)7+ 1} (m— p*mg)}

1
N{(n—=1)p%T
= 0-0012066
so that the standard error is S.I.() = 0.03474. Incidentally, the maximum likeli-

hood estimate 7 comes out to be in this eare, 7 = 0.3088 with S.E. (1;) = 0-03210.

6. KSTIMATION BY THE TWO-MOMENTS METROD FOR SINGLY TRUNCATED
POISSON DISTRIBUTION

Problems of estimation in a truncatod Poisson distribution with known
truncation points have beon disoussed by various authors, The case of truneation
on tho left hns been considered by David and Johnson (1948) who gave tho maximum
likelibood ostimate; Plackott (1953) gave n simple mnd highly elficient rativ-estimate,
and Rideyr (1053) used the first two moments. ‘Truncation on the right has been dis-
cussed by Tippett (1932), Bliss (1948), and Moore (1952). Tippett dorived the maxi-
mum likelihood solution, Bliss developed an approximation to it, and Moare suggested
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o simple rativ ostimate. For both typos of truncations, tho author (1959) has
provided neat und compact cyuations for cstimation by the method of maximum
likolihvod.  He hax also presonted numorieal tables and somo ruitable chartz to
fucilitate the solution of these equutions in certain specinl cases.  In this section,
wo study the Two-Moments Method ol estimation ax applied to singly truncated
Poisson distributions,

The probability law of the xingly truncatod Poisson distribution with trunea-
tion point on the right at 4 can be written ax

o
Pl = Iptd, ) e

R Y e (01
d s

whero pldp)y= X e~ 1| o (6.2)
Tmp x!

The first two moments aboul the origin of (6.1) enn bo written down ax
7= pMdo )y = ppld—1L, p)lp(d, 1) <. (8.3)
and my = mg(d, j1) = p*d. )V +ps(d—1. ). . (8.4)

Proceeding ns in Section 3, one gots in thix case

0=p = "e=ldtl

il (6.5)
Hll—dﬂﬂl

where * and mg are defined by (6.3) and (6.4), respoctively, and H,, and Hy, roduce to

Hy=p*
Hy=1.

Then (6.5) gives o= el e (66)
pn*—d

s0 that, on the basix of a random sumple of size N with n, ns the frequency of & drawn
from (8.1). the two-moments estimate lor g hecomes

—(d+ DS,
—dN T

(6.7)

whero S =Xren, and 8,=2Y aty,

To find the asymptotic varianco of tho two-moments estimate (TM) given
by (6.7) ono gots on simplifieation,

1

var () = o (O H o g —20y) . (88)
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whero
H = p*—d
m* = (ng—m?) - (d-F 1)mg— p*2) = 2d - 1) (mg—p*m3) ... (6.9)
Ogp = mg—p*2
and = (my—p*my)—(d+ 1) (my—p*2)

where m) is the r-th theoretical moment of (6.1} about origin.
Thus
var (1) = lV_(/l'lTlfF[('":—1n§2)+(I’+d+ D¥(mg— 1 *)—2(pt-d4- V)mg—pr*m*2))
(6.10)
The asymptotic efficiency of / is then given by
oft (1) = var (fi)/var (2) . (6.31)

where /7 is the maximum likelihood estimate of p with variance given by

»”

. . 6.12
Npg (6.12)

var () =

where s is the variance of (6.1).

The following table givos tho asymptotic officiency of £ relative to ;v for values
of d =5 with p = .25, .5(.5) 2.5, and d = 10 with p = .5(.5)3.

TABLE 3. EFFICIENCY OF TM

1 .2 .50 1.00 1.50 2.00 2.50
Case (iy d =H
oft .078 D54 O .867 .830 .R38
»® .5 1.0 1.5 2.0 2.6 3.0 3.5 4.0 4.6 5.0
Caso (ii)d = 10
off 980 .pag .860 042 .020 .807 874 865 .835 815

Thus, the asymptotic efficiency of TM is not less than 80 per cent in the above
cases, and one may therefore uso TM to estimate . in such problems.

The amount of bias, to order 1/N, of the TM comes out to be

blt) = (4 ogy—0a)[NHE = % . (8.13)

where H, o3, and o}, are defined by (8.9). The following table gives B(!) for values
of d = 6 with g = .25, .5(.5)2.5 and d = 10 with z = .5(.5)5.
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TABLE 4. N (AMOUNT OF BIAS TO ORDER I/N OF TM)

H .26 .60 1.00 1.50 2.00 2.50
Caso (i)d = 5
Bl L0620 a1 L2498 4260 .8507 9181
3 .5 1.0 1.6 2.0 2.5 3.0 3.6 4.0 4.5 5.0
Caso (ii}d = 10
By L0626 . 11ML 1705 2600 .3333 4284 .547 .8640 .8093 .9786

Examination of Table 4 shows that the amount of bias involved in TM

is rathor very small,
The probability law of the singly truncated Poisson distribntion with trunca-
tion point on the loft at ¢ can bo written as

p'(:c,p):[P'(c,p)]"e"‘lzi: = ¢l 0 .. (6.14)

D I“‘
where P, p)= Z e™* R ... (6.18)
oy !

The first two moments about origin of (6.14) can bo written down as
u* = pe, p) = pP*c—1, p)/P*c, p) ... (6.18)
and my = mg(c, p) = p*e, p)[14+p2c—1, p)]. .. (6:17)
For a slightly different problem, where in a sample from a complete Poisson

distribution, the frequencies for some lowest ““counts” are missing, Rider (1953) sug-
gested a method of estimation which uses first two moments of the complete Poisson

and leads to & linear equation.
The Two-Moments Method discussed in Seotion 3 gives the estimate for x in
this case as

S§5—¢8
f= 3771 ... (6.18
S;—(c—1)N (5.19)
N N
where 8 = ‘2 7, and Sy = I 2}
-1 =

are based on the random sample z{i = 1,2, ..., N) of size N drawn from (6.14).
To find the asymptotic variance of ¢, one gots on simplification,

() = e ) =2 — )] (610
where i, is the r-th moment of (6.14) about origin.
The asymptotic efficiency of ¢ is then given by
off (f) = var (/:)/var [6)]
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where f is the maximum likelihood estimatée of p with

2
var () = 7 ..o (6.20)

where zg is tho variance of (6.14).

The case of single truncation on the left at ¢ = I is of practical importance.
David and Johason (1952) studied the efficiency for this particular case. The fol-
lowing is tho table of eff () computed by them.

TABLE 5. EFFICIENCY OF TM FOR ¢ = 1

H -5 1.0 1.5 2.0 2.5 3.0 4.0

off. .87 .80 .75 .73 .7 71 .72

Source : David nnd Johnson (1052),
Thus, the efficienoy of TM ia not less than 70 per cent for ¢ = 1 with
u = .5(.6)4.0.
One gets to order 1/N the amount of bias of ¢ (TM) as follows :

) = (pog—o ) NH? = 151(\4) .. (6.21)
where H = pu*—(c—1)
O = my—p*? (6.22)

Oyp = (mg—p*my)—clmg—p*%).
The following table gives B(l) for x = .5(.5) 4.0.
TABLE 6. N (AMOUNT OF BIAS TO ORDER 1/N OF TM) FOR o =1

B N 1.0 1.5 2.0 2.5 8.0 3.6 1.0
—.90817

B() —.3035 —.6321 —.6373 —.8647 —.0147 —.0602 —.96OS

Nlustrative example. The detailed computation procedure of evaluating the
TM is illustrated with reference to data collected by Varley (1046) to study population
balance in the Knnpweed Gall-fly. The table below gives the number of flower-heads
(ng) each having oxactly z gall-cells (z=1,2, ...).

mumber of gall-colls in o floworhesd (1) 1. 2 3 4 6 8 7 8 90 10
number of flower heads (n,) 287 272 186 79 20 20 2 O 1 0

Assuming the truncated Poisson model

——_‘”’z =12 ..

zl(er—1)
for the probability of z gall-cells in & flower-head, the problem is to estimate u on the
baais of the given data.
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Wo have S, = 2023, .= 6027, N =888, Therefore the TM is

P S T
5 2053

T'o compute the variance of £, taking 1.9702 ns the vstimate for 1, we have

Y
et —1

= 2,2085

N =

mg = p*(14p) = 6.8417

st = mg—pi*t = 1.6078

mg = p{p*+mg)+(14-p1)pa = 22.7671
and my = plpe®ma+ 25+ my—2p( 14 p))+-(mg—pmg)(1 4 2p)
The variance of t is then estimated from the formuls,

91,6806,

var(f) = ! . [(mg—mg®)+ (12 )2 pe—2(1+p)(mg—p*m3)] = 0.003800
Np*

=0 that the standard error is S.E. (f) = 0.0600.
Incidentally. the maximum likelihood estimato comes out to be
fi = 19823 with S.E. (2) = 0.0529,
The nuthor s thankful to Professor . R. Rao and Dr J. Roy for helpful
disoussions at the Indian Statistical Institute.
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