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Abstract

A Markov operator PP on a g-finite measure space (X, ¥, m)} with
invariant measure m is said to have Krengel-Lin decomposition if
I2(X) = By®L*(X,E4) where By = {f € L2(X) | ||P™(f)|| — 0} and
¥4 is the deterministic o-field of P. We consider convolution opera-
tors and we show that a measure A on a hypergroup has Krengel-Lin

decomposition if and only if the sequence {5{” # A" converges to an
idempotent or A is scattered. We verify this condition for probabilities

on Tortrat groups, on commutative hypergroups and on central hyper-
groups. We give a counter-example to show that the decomposition is
not true for measures on discrete hypergroups.
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1 Introduction and generalities

Let K be a locally compact space. Let P(K) be the space of regular Borel
probability measures on A with the weak topology that is the smallest topol-
ogy for which the functions f — u(f) from P(K) to B are continuous for any
bounded continuous function on K. For any x € K, let 4, be the probability
measure concentrated at the point x and for any p € P(K), supp(u) is the
support of g (which is smallest closed subset C' of K for which p(C') =1).

A locally compact space K with a binary operation = on the space M*(K)
of bounded measures on A is called a hypergroup if

1. #is bilinear and separately continuous from M*( K)x M*(K) — M*(K)
so that (M*(K).+.#%) is an associative algebra where + is the usual
additive operation,



2. the mapping (1, A) — p= A from P(K) x P(K) into P(K) is continuous,

3. for every x.y € K, the support of 4, # 4, is compact and the mapping
(@, y) = supp(d, * d,) from K x K to A(K), the space of compact
subsets of A with the Michael topology is continuous,

4. there exists an element e € K such that 6, * 6, = 6, * 4. = 4, for all
re Kk,

5. there exists an invelution x — & of K such that e is contained in
the support of d, # &, if and only if » = ¢ and p — i is an anti-
homomorphism of P({K).

We assume that K is a g-compact hypergroup with a right-invariant
Haar measure m. It is known that locally compact groups, commutative
hypergroups, discrete hypergroups and central hypergroups admit invariant
measures.  For any locally compact group G and any compact subgroup
M of G, the double coset space G//M with the quotient topology and the
convolution induced by the group operation in G is a hypergroup with an
invariant measure (which is induced by the Haar measure on G): see [ for
results on hypergroups.

Let L*{ K) be the space of square integrable function on K with respect
to m. For f € L*(K) and for x,y € K, let

f@xy) = [ 106 *6)(2)
For any A € M*(K) let Py be the convolution operator on L?(K') defined by
PN = [ 1 xy)ary)

for all x € K and for all f € L*(K). It is easy to see that for y and X in
M¥K), P, = P.P, and for yp € P(K), P, is a contraction and P, = P,
where P is the adjoint of P for any operator P (see [f] for more on convolution
operators, for f* X in 1.2.15 of @]1 Bil=J%A),

Remark 1 Let MW (K) be the space all non-negative measures in M®(K)
such that 0 < u(K) < 1. We would like to remark following well-known facts
regarding convolution operators on L*( K).



1. : A~ P, is a Banach algebra representation of M*( K) into the space
of bounded linear operators on L*(K).

2. p(MY(K)) and o(P(K)) are convex.

e

MW(K) is compact in the vague topology and hence M™M(K) with
vague topology is isomorphic to (o M™ (K)) with weak operator topol-
ogy. In particular, o MM (K)) is closed in the weak operator topology
and hence - being convex - also in the strong operator topology.

4. On P(K) respectively w(P(K}) the above topologies and weak topology
coincide.

A probability measure A € P(K) is called scattered if sup, g 0,5 X" (C) —
0 for all compact sets C' in K where A" is the n-th convolution power of A.
It is known that for a locally compact group G, A € P((G) is scattered if and
only if ||[PF(f)|| — 0 for all f € L*(G) (see Proposition 3.3 of [[0]). It may
be proved in a similar way that A on a hypergroup is scattered if and only if
[|IPR(f)|| = 0 for all f e L*(K).

For A,y € MUY K) and x € K, pA and xp denote g A and 8, % p.

Let Ey = {f € L3(K) | ||PMf)|| — 0}. Suppose that a probahility
measure A € P(K) is not scattered, then L*(K) # Ey. Bartoszek and Re-
howski studied all f € L*(G) for which ||PP(f)|| #+ 0 for adapted probability
measures A (adapted probability measures are those probability measures for
which the closed subgroup generated by the support is the whole group) on
certain class of groups, namely it is proved in ] that for adapted probability
measures on groups G with left and right uniform structures are equivalent,

L(G) = Ey s L* (G, 24) (1)

where ¥ is the deterministic o-field associated to the Markov operator P,
and if A is non-scattered, then (L*(G, £g), P\) is isomorphic to the bilateral
shift on I*(Z). This type of decomposition of L*(G') was first studied in
and for compact groups and abelian groups [T gives an affirmative answer.
The decomposition (1) of L*(K) is known as Krengel-Lin decomposition.
Here, we are interested in proving the afore-stated Krengel-Lin decomposition
for probabilities on general hypergroups.

We briefly sketch the results proved in this article. In section 2, we
prove that a probability measure A on a hypergronp K has Krengel-Lin



decomposition if and only if (A"A") converges to an idempotent in P{K) or
A is scattered (see Theorem P.I]) and in the remaining sections we verify this
condition for Tortrat groups (see Theorem [B.1]), for commutative hypergroups
(see Theorem [L]) and for central hypergroups (see Theorem [L.3). In section
5, we give an example to show that Krengel-Lin decomposition does not hold
for certain measures on discrete hypergroups.

2 Markov operators and measures on hyper-
groups

Let (X, X, m) be a o-finite measure space. A Markov operator on (X, X, m)
is a linear contraction P: L>(X) — LX) such that P preserves the cone of
non-negative functions, P(1)=land P(f,) | Oae if f, |Dand 0 < f, < 1
in L™, The measure m is called invariant if f P(f)dm = f fdm for all f.
In that case P is also a contraction on L'(X) and therefore in all spaces
LP(X) for 1 < p < oo (see [LJ]). The convolution operators of probability
measures on hypergroups (admitting a invariant measure) are examples of
Markov operators.

The deterministic g-algebra, ¥, associated to P is defined as the g-algebra
of measurable sets A in ¥ such that for each n > 1, P*(y4) = yp, for some
measurable set B, in G. The deterministic o-algebra was introduced to study
the asymptotic behavior of the iterates of P.

We now recall the following results from [f:

Theorem F Let P he a Markov operator on a o-finite measure space
(X, X, m) with invariant measure m. Then

(i) LAX,54) = {f € LAX) | P~P*(f) = f for all n > 1} where P is
the adjoint of P on L*(X) and

(i) if f L L*X, %), then P*(f) — 0 in the weak topology.

It may be easily seen that the Krengel-Lin decomposition holds for P if
and only if we can have strong convergence in Theorem F(ii). It is known
that in general we cannot have strong convergence in Theorem F(ii) (see (L]
and references cited there). Thus, the Krengel-Lin decomposition does not
hold for any Markov operator.

We first state a Proposition for Markov operators on L*-spaces.



Proposition 2.1 Let P be a Markov operator on a o-finite measure space
(X, X, m) with an invariant measure m. Then

(i) there erists a operator Q on L*(X) such that P*P™ — @ in the strong
operator topology.

(ii) if P is a normal operator, then Q° = Q and

(iii) P"P™(f) — 0 weakly (hence strongly in view of (i)) implies that P™( f) —
0 strongly.

Proof For a Markov operator P, (i) follows from a well-known result known
as convergence of alternating sequences, here we include a proof of it. The
sequence (FP7P") is a decreasing sequence of positive contractions and hence
(P"P™) converges in the strong operator topology.

Suppose P is a normal operator, we have P"P" = (PP)" and hence
PP@Q = (). This implies that Q* = . Thus, proving (i) and that (iii) is
easy to verify.

We now deduce from Theorem F and Proposition B a necessary and
sufficient condition for a Markov operator to have Krengel-Lin decomposition:
It may be mentioned that a similar result may be found in [[3] Chapter IV,
4. Lemma 3.

Corollary 2.1 Let P be a Markov operator on a o-finite measure space
(X, X, m) with an invariant measure m. Then P has Krengel-Lin decom-
position if and only if P"P" — Q in the weak operator topology where () is
the projection onto L*( X, 4).

We now interpret the necessary and sufficient condition in Corollary 2.
for measures on hypergroups.

Theorem 2.1 Let K be a hypergroup and A be a probability measure on K.
Then A has Krengel-Lin decomposition, that is L*(K) = Ey & L*( K, Za) if
and only if either N is scattered or (N'A") converges to an idempotent in

P(K).

Proof From Corollary and Remark [, we get that A has Krengel-Lin
decomposition if and only if A"A"™ — p in the vague topology where p is
an idempotent in MW{K) such that L*(K.X,) is the space of all P, fixed

on



functions. For any idempotent p in MW (K), either p= 0 or p € P(K). 1If
AN — p = p* € P(K). then by Theorem F(i) and since A\"A"p = p. we
get that L*(K.X,) is the space of all P, fixed points. This shows that A
has Krengel-Lin decomposition if and only if either A is scattered or (A"A")
converges to an idempotent.

3 Measures on Tortrat groups

In this section we prove the Krengel-Lin decomposition for probability mea-
sures on Tortrat groups. A locally compact group G is called Tortrat if for
any sequence of the form (x,Ar ') has an idempotent limit point in P(G)
only if A is an idempotent. Tortrat class was introduced by P. Eisele, this
class contains all SIN-groups and all distal linear groups (see [{] and [[3)).

We now prove the Krengel-Lin decomposition for certain probabilities.
We first recall that for a locally compact group G, a probability measure
A€ P(G) is called adapted if the closed subgroup generated by the support
of Ais 7 itself. The structure of non-scattered adapted probability measures
on groups is well-studied in [f]. In [. under some additional structural
conditions on G or if A is spread-out (a power of p is not singular with
respect to the Haar measure), it is proved that there exists a g € G such
that (¢7™A") converges but in view of a result in we are interested in
studying the cases for which there is a ¢ € G such that (g™ A") converges to
an idempotent.

Proposition 3.1 Let G be a non-compact locally compact group and A be an
F i I groug

adapted regular Borel probability measure on G. Suppose there erist a com-

pact normal subgroup K such that X" A" — wy. Then we have the following:

1. L¥G) = Ey® [*(G, %);

2. Yy is the o-algebra generated by {x" K | n € Z} for any x in the support
of A;

3. (L*(G.X4), P)) is isomorphic to the bilateral shift on I*(Z).

Proof Since A"A" — wy. (1) follows from Theorem 2.1,

We now claim that K is the smallest closed normal subgroup a coset of
which contains support of A. By Theorem 4.3 of ﬁ].. there exists ax € G
such that 7" A" — wg. This implies that x7'wig A = wy. Since K is normal,

]



wrr™'A = wg. This implies that A is supported on Kz, It is easy to see
that & is contained in any closed normal subgroup a coset of which contains
the support of A. This proves the claim.

Now, the rest of proof closely follows [J]. Since A is adapted, K is open
and hence by normalizing m, we may assume that wg(f) = f fdm. Now,
for any x in the support of A, we have

p;{'ﬂfrmh'} =z '](J.m n g {l‘:}

for all . and n in Z. This implies that the o-algebra generated by {a"K | n €
Z} is contained in ¥4. For f € L*(G, X4), by Theorem F(i), Pina(f) = f for
alln = 1. Hence by assumption, P, _(f) = f. This implies that f is constant
on the cosets of K. Thus, ¥, is the g-algebra generated by {&"K | n € Z}
for any x in the support of A. This proves (2) and (3) follows from equation
(i).

We now prove the Krengel-Lin decomposition for measures on Tortrat
groups.

Theorem 3.1 Let G be a non-compact Tortrat group and A be an adapted
probability in P(G). Suppose X is not scattered. Then L*(G) = E, &
LG, E,) and (LG, X,), P\) is isomorphic to the bilateral shift on *(Z).
Also, the deterministic o-algebra is generated by {g" K | n € Z} for any g in
the support of X and for some compact normal subgroup K of G.

Proof Since A is not scattered, A"A" — p € P(G). We first claim that
p* = p. Suppose G is metrizable, by Theorem 1.1 of [J. there exists a
sequence (x,) in G such that (x,A") converges. By Theorem 2.1 of [, for
all = in the support of A, 27" A" — wy for some compact subgroup H such
that #H = Hz. This implies that A"A" — wy and xH = Hzx for all ¢ in
the support of A implies that H is a normal subgroup since A is adapted.
In the general case, since A is adapted, G is g-compact and hence G can be
approximated by metrizable groups. Then by applyving standard arguments
as in Theorem 3.4 of ._ we prove that p is an idempotent. Let K be a
compact subgroup of G such that p = wg. Since A"pA™ = p and A is adapted
we get that K is normal in G. Now the result follows from Proposition 5.0

=1



4 Measures on hypergroups

In this section we consider probability measures on commutative hypergroups
and central hypergroups. Krengel-Lin decomposition for normal probability
measures on hypergroups and hence in particular, for probability measures
on commutative hypergroups may be easily deduced from Proposition

(ii).

Theorem 4.1 Let K be a hypergroup and A be a non-scattered normal prob-
ability measure on K. Then L*(K) = By & L* (K, X4). In particular Krengel-
Lin decomposition holds for all A € P(K) if K is a commutative hypergroup.

We next consider central hypergroups. Let K be a hypergroup. We shall
denote the maximal subgroup of K by

G(K)={ze K |z+%=¢}
and the center of K by
ZIK)y={zxe K |z*sy=y=*z for all ye K}.

The hypergroup K is called central if K/Z is compact where 2 = Z(K) N
G(K); we remark that K/Z is again a hypergroup. Central hypergroups arise
naturally as double coset spaces of compact subgroups of central groups and
central hypergroups have invariant Haar measures (see [ for a proof of
the existence of Haar measures on central hypergroups). We first recall the
following result on the shift compactness of factors and see 5.1.4 of [ for a
proof.

Proposition 4.1 Let K be a metrizable hypergroup. Let (pa). (M) and (1)
be sequences of probability measures on K. Suppose jt, = 1A, for alln =1
and (p1,) is relatively compact. Then there exists a sequence (x,) in K such
that (x,An) is relatively compact.

The following result may be compared with Theorem 3.1 of [i].
Proposition 4.2 Let K be a metrizable hypergroup and A € P(K). Suppose

A is not scattered. Then there erists a sequence (x,) in K such that (1, A")
is relatively compact.



Proof By Proposition B, PyPy — P in the strong operator topology.
Since PP(f) #» 0 for some f € L*(K), P(f) # 0. By Remark [I] there exists
a p € M"(K) such that P, = P and hence there exists a p € M"Y K) such
that A"pA™ = p for all n > 1. Replacing p by p/p( K). we may assume that
there exists a p € P(K) such that A"pA™ = p for all n > 1. By Proposition
there exists a sequence (1) in K such that (x,A") is relatively compact.

We now prove the Krengel-Lin decomposition for measures on central
hypergroups.

Theorem 4.2 Let K be a metrizable central hypergroup and A € P(K) be
non-scattered. Then there exists an idempotent p such that A"X* — p in

P(K) and LA K) = Ey & L*(K, £4).

Proof Suppose Aisnot scattered. By Proposition [l and since K is central
hypergroup, there exists a sequence (g,,) in £ such that (g,A") is relatively
compact. Then (A"A") is relatively compact. In view of Proposition B.) (i)
and Remark [[] there exists a p € P(K) such that A"A" — p.

Let p, = g ' Ag, and v = py -+ p, foralln > 1 and k < n where
gy = e. Then (1) is relatively compact. Arguing as in [{]. we may prove
that there exists a subsequence n(i) such that lim :f::m = i € P(K) for
all ¥ > 1 and lim Unti) = Ve Also, vy is an idempotent in P(K). Now,
for n = 1, AN*"'g, 19, 6n = A"g,. This implies that (g, g,) is relatively
compact. Now for n > 1 and k < n, we have v = J{”_j"yw_,',y;_l ky;] g, and
DRUR = A=kxn—k foralln > 1and forall k < n. Thus, &0, = p for all k > 1.
Thus, p = v which is an idempotent. This shows that (A"A") converges to
an idempotent. This proves the result.

5 Example

It is known that there exists a measure A on certain locally compact groups
such that X is supported on a coset of a compact normal subgroup but (A" A")
does not converge to an idempotent and hence A does not have Krengel-Lin
decomposition (see [{] or [{) .

We now construct a discrete hypergroup and a measure A such that
(A™ % A") does not converge to an idempotent. It may remarked that in
Il] Bartoszek proved that probability measures on discrete groups admit
Krengel-Lin decomposition but our examples show that shifted convolution
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powers on discrete hypergroups as compared to on discrete groups need not
have similar behavior. Let A be an locally compact abelian group and « be
an automorphism of A such that

l. afg) meforall ge A,
2. there exists a compact open subgroup L of A and a(L) C L and
3. there exists a x € A with 2% ¢ L and a(x) € L.

Let yp = 3(d, + d.)wr. Let G be the semidirect product of Z and A
where the Z action is given by . Define A by A = (1.u). Let g = (L.¢e).
Then A"g™ = por(p)---0™ Y pu). It is easy to see that pa(p) = p. Thus,
Atg~™ = pfor all n > 1. Thus, A"\* — p where p = (30 + }5,. + }151..  Jwg.
Suppose p is an idempotent. then either 22 or 2% is in L. This implies that
2% € L which is a contradiction. Thus, p is not an idempotent. It is easy to
see that A is L-biinvariant. Let K be the hypergroup of L-double cosets in
G. Then K is a discrete hypergroup and A may be viewed as a probability
measure on K. Thus, we have a discrete hypergroup K and a A € P(K)
such that (A"A") does not converge to an idempotent.

We now provide a A, x, L and « satisfying the above conditions. Fix a
prime integer p, let @@, be the field of p-adic numbers and | - | be the p-adic
absolute value. Now take A = @, x with |z|=p*, L={9€ @, | |g| < 1}
and o is defined by a(g) = p*g for all g € Q. Then |a™(g)| = p~™"|g| — 0
for all g € G. Also, |6x| = p® but |e(x)| = 1, that is condition 3 is satisfied
and it is easy to check condition 2. Using this idea one may construct many

such examples.

Acknowledgement [ would like to thank the referee of a previous version
for fruitful suggestions in formulating Proposition B.1] and for many other
useful comments.
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