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SUMMARY. Transmiasion of information through channels with additive noiso is ronsidered.
Coding theorem and its converse are vatnblished for these ohnnnels wwith a cerlain notion of capaeity.
Thia capacity is explinitly computed for this clave of ubannols.

1. INTRODUOTION

The famous McMillan’s theorem regarding ergodic sounrces ean be reformu-
lated as follows. Consider the minimum number of n-length sequences which have a
total probability exceeding 1—e. If y is the measure describing the source dennte
this minimum by N, (¢, #). McMillan’s theorem states that for every ergodic source

¢ the limit lim lcig_N,;T(e._/tl exists and is always equal) to the entropy rate of the
n—00
source as defined by Shannon. The questibn nrises as to what. happens to the sequence
log N, (¢, )
n
show that except for a countable number of &'s the limit always exists and in general
depends on . We construct two functions A(e) and B(e), (0 < € < 1) which coin-

log N (€, )
B

as n—00 when the source is not necessarily ergodic but stationary. We

cide except on a countable set and hoth lim and Tim of lie between A(e)

and B(e). Further, as €50, both the functions A(c) and Ble) converge to & unique

limit H(z). The precise description of the functional H(p) is also given.

In the last section we introduce the notion of a channel with additive noise.
Here the input and output alphabets coincide with a finite abelian group A and the
noise is distributed according to an nrbitrary stationary measure on the product space
A’. When a message sequence is sent through the channel the noise gets added to
the message independently of the message. The disturbed message is received at the
output. The binary symmetric channel is & typical example. For the channel with
additive noise distributed according to o stationary measure z, we consider A (e, u),
the supremum of the length of all possible codes with probability of error less than or
equel to e (for transmission of messages during the time period 1, 2, ...,n). A code
of length N and probability of error less than or equal to ¢ is defined in the sense of
Wolfowitz (1961). Then we analyse the asymptotic behaviour of the sequence
log Mofe, p Ili,,(e, '”'). We show that the limit of this sequence exists for all ¢ except on a

countable set. We also show that the lim and lim of this sequence lie between

log a— A(¢) and log a— B(¢), where A(c) and B(e) are the funotions mentioned in the
previous paragraph and a is the number of elements in the alphabet 4. As 6— 0
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log a—A(s) and log a—B(s) converge to the same limit log a—H(p). Thus in this
case the capnoity of the channel is not desoribed by a single number but by the two
functions A(c) and B(s).

. . . log Na(e, )
The idea of studying the asymptotic properties of the sequence —

is due to Winkelbauer. He gave the desoription of the funotion

Bp) =tim Tm 8 Nale.p)
=0 n—Hc0 n

in terms of the entropies of the ergodic components of 4. It was stated by him

without proof in his lecture at the Indian Statistical Institute.

2. PRELIMINARTRS

Throughout this paper 4 will denote a finite alphabet, 4’ the space of sequences
of elements from A, T the shift transformation in A’ and g & measure which is defined
on the usual o-field of A’ and invariant under 7. We denote by [z,, 2, ..., z,] the
cylinder set in A’ of all sequences whose i-th coordinate is z; for ¢ = 1, 2,...,2. Any
n-length sequence z,, #,, ..., Z, is referred to as a u-sequence. We denote by N(¢, p)
the smallest number of u-sequences whose total probability is greater than or equal
to 1—e. This smallest set may not be unique. We choose one of them arbitrarily
and denote it by A€, u).

If we assign the discrete topology to 4 and the product topology to A’ then
A’ becomes a compact metric space. We shall now follow the notation of Oxtoby
(1852). If f(p) is & real valued function on 4’, Jet

M50 = fip) = 1) k=12
and M, ) =£/p) = lim M(f . b

in case this limit exists. A Borel subset E of A’ is said to have invariant measure one
if #{E) =1 for every invariant probability measure x. Let @ be the set of points p
for which M(f, p) exists for every fe C(4’') where C(A4’) is the space of continuous
functions on A’. Tt follows easily from Riesz's representation theorem that corres-
ponding to any point p 6 @ there exists a unique invariant probability measure x4,
suoh that

M, p)=[fd by
Let B C Q be the set; of those pointa for which 4, is ergodie. R is oalled the set of regular

points. Then we have the following representation theorem of Kryloff and Bogo-
liouboff which can be found in Oxtoby (1952).

Theorem 2.1: The set R of regular points is a Borel measurable sel of invariant
measure one. For any Borel set E (C A', p,(E) is Borel measurable on R and

ME) = { () dulp)
Jor any invariant probabilily measure u.
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Let H(pr) denote the entropy of any invariant probability meaaute p.

Lot —
H(p) = ess sup  H(p,) . (20)

H(p) = essinf H(p,) o (22)
whore the essential supremum and the essential infimum are taken relative to s and

#p denotes the ergodic measure corresponding to the regular point p.

3. ASYMPTOTIO PROPERTIKS OF THE FUNOTION N, (¢, 1)

In this section we shall prove the following theorem and two corollarics.

Theorem 3.1 : Let [A’, u] be an arbitrary stationary source,

then A(©) < lim '2&1%&) < im %h(‘”" < Ble) . (3
where A(e) = lim 7(8), . (8.2)
l
B(e) = lim %'(8), e (8.8)
ate

7(8) i3 the grealest number with the property

Hp:Hp) > 7> 8
and 7'(8) ie the smallest number with the property
Mp: Hip) < 71> 18

Corollary 3.1: For any slationary source [A’, ], ,li.mmh)gyf. (CYD)]

exista
Jor all 0 <& <1 except for a countable set.
Corollary 3.2: For any stalionary source [A’, p),

lim hm M =lm lim log N, (e, 1) _ Hip).
=30 n3c0 n =0 a—»® n

Before proceeding to the proof of Theorem 3.1 we need to establish two
lemmas.

Lemma 3.1: For any slationary source [A’, p], the limit

lim — ,17 log ulx, ... 2] = ga(2)

L 1]
exisls in measure and gx(p) = H(p,) s.e. p(p)

Proof : The existence of the limit is the famous McMillan’s theorem. In
the course of Khinchin’a proof of McMillan’s theorem (1857) it can be seen that g,(x)
can be obtained as follows. Define h,{z) as the oconditional probability of w, given
Z_y, g, ... under g (Here it is assumed that z = (...x_, %, 2y, ...)).
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Then

7a(z) = lim b2 +hy(Ta)+. (T 12) .
n—) 00 n

But by Theorem 2.8 of the author (1961),
we have hu() = hy (@) s (g,
for almost all p(x).

by (@) by (T2)+ .. +hy (T 2)

A n

Further

= H(p,) a.e. (1)
for any regular point p.

Thus gul®) = H(p,) ae. xp)

for almost all p(n). From the Kryloff-Bogoliouboff theory of regular points in a
dynamical system we have

Jo =l ne. x{).
Thus .(®) = H{p,) oe. (g)

for almost all p(p). Thus the set E = [z:g,(x)#H(x,)) has measure zero under
pg for almost all p(u). An application of Theorem 2.1 showa that

MEB) = | po(E)dp(p) = 0.
This completes the proof of Lemma 3.1,

Lemma 3.2: For any atalionary source (A', p] and any ¢ > 0

n—® n

H{;) € lim IOS_N"(eJ‘) < Tim log Nofe, 1) < ﬁ(p).
- o n
Proof : From Lemma 3.1 it is olear that
Hw) < ule) < B
with probability one. Thus if we write, for any fixed » > 0,
iz —_1". 10g #lzy .. 70) > Hp)—7] = 1=, . (34)
then §,—0 as n—00. The oomplement of the set written within braces in (8.4)

has probability 8,. Any set with probability > 1—e¢ must have a subset with pro-
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bability greater than 1—e—8, whoso elements satisfy the inequality within braces
in (3.4). Suppose this subset has N’ u-gequonces. For these soquences

ey, @y, oy ]  2TMEW,

Summing up over this subset, we get
1—e—8,  N'2-"Hw)=-n,
Thus 1—€—38, < N,(e, p)2~"w-n,

Since §,—0 as n—<o after some stage

l—e—4, > 1%6.
Thus log Nn,,(s, #) > log(ln—e)/2 +H(p)—7
which implies h_m logx\;ﬂ > H(p)—.

Since 7 is arbitrary we have

lim: log N;(E, 2) > Hp).

In order to prove the other inequality, consider, for any fixed 3 > 0, the
sequence of numbers

1 .
Mz —— log p(2y ... z) < H(u)+7] = 1-4,. . (3.5)
By Lemma 3.1 and (2.1) we have lim &, = 0.
n—p ®
Thus there exists a subset 4, of u-sequences satisfying the inequAlity within braces
in (3.5) whose probability exceeds 1—e for all sufficiently large n. If the inequality
within braces in (3.5) is satisfied, then
L2y .o Tp] > 2-mEG+ . (3.8)

If N’ u-sequences satiafying (3.8) are required to make up a probability greater than
1—¢ then

Noe,n) < N’ < 2Bt
Thus fim log N:.(c, p)< H_(/l)+7.

The arbitrariness of 7 implies the validity of the lemma.
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We shall now turn to the proof of Theorem 3.1. Choose any 8 > 6. Choose -
the largest 7 such that

Hlp: Hpy) > 113 8.

Let it be 7(8).
If E =[p: Hipy) > 08
then ME) > 8.
_ MBNE) #BNE")
By = "—"rm, By =212
Define P2 #E) #4(B) WEY
We assume that u(E’) > 0.
Then #=amt+(l—a)p,
where a=pB)>d0>s

If we consider the set A,(e, #) (the smallest set of wu-sequences with probability
> 1—¢)

then il p) 3 1) jae 0o
Thus Nyem> N, (1-22, m)
and 0< 11— 6;8 <1

a

An application of Lemma 3.1 shows that

lim DBV 5 () > 900)
If 4(E’) = O this inequality is trivially valid. Since & is any number > ¢ and 7(6)
increases to A(e) as 4 descends to ¢

log N, “(e,

wo have lim L NP 5 gge). . (87

For proving the other inequality choose & < e and then choose the smallest
7’ with the property
Hp: Hi) < 7] > 1-4.
Let it be 7'(8).

Let F=[p: Hlp,) <76}

a .5y = MBOF) MBOF),
oo R
Then # = buy+(1—b)ug
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where b = u(F) > 1—8. If £(B)> =5 then 4(B) > 1—a.

b
Thus N, ) < N, (1- -;—‘ bi)s
l1—e
0<1— 5 <l
Thus by Lemma 3.2 fim log Nyfe, p) N,,(e, #) < Hi) < 7'(8).

As 8 inoreases to &, 7'(8) deoreases to a limit B(e).

log Nu(e, #) (e,

Thus iim ) & Bla). . (38)

(3.7) and (3.8) complete the proof of Theorem 3.1. Corollary 3.1 is an immediate conse-
quence of the faot that in the real line there cannot be more than a countable
collection of disjoint open intervals and hence A(e) = B(e) except for a countable
set. Corollary 3.2 follows immediately from the fact that A(c) and B(e) converge to

H(p) as 6 0.
Remark : From Theorem 3.1 and Corollary 3.2 it is olear that the number

H(u) defined by (2.1) can be rightly called the effective entropy rate of the stationary
source [A’, 4). The resujt that

lim ]_E 108 N,‘(G, I") H([l)

190 n—®

is due to K. Winkelbauer. It was stated by him without proof in one of his
lectures at the Indian Statisticel Institute. It was his conjecture that

lim log_N;(eﬂ exista for every €.

n—>a

4, CHANNELS WITE ADDITIVRE NOISE

In this section we introduce the notion of a stationary channel with additive
noise, define it capacity and prove the coding theorem as well as its converse.

Let the input and output alphabets of a channel coincide with & finite abelian
group A. In a natural way the space 4’ becomes an abelian group. We denote by
+ and — the addition and inverse operation in the group 4‘. For any set B we
write

E—z=[z2:264', 2426 E).
Let 4, be an invariant measure defined on A’. Then the probability distributions
vo(F) = Y F—z) o (40)
81
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where F is any set in the ususal o-field of A’ and z is any point in A’ define a stationary
channel. The distribution at the output of this channel corresponding to any inpuf
distribution A is obtained by convoluting A with . Even if z is ergodic this channel
need not be of finite memory in the senso of Feinstein. If the group A consists
of two elements 0 and 1 only, the addition is done modulo 2 and g is the product
measure obtained by assuming probability p for one, then we get the so-called binary
symmetric ohannel. We shall call & channel whose distributions are specified by (4.1)
as a channel with additive noise and noise distribution sx.

A code with error € and length N is u collection of u-sequences u,, ug, ..., uy
and sets Vy, Vy, ..., Vy of u-sequences with the properties

W p(Vi—u)> 1-¢
() Vi Vy=¢fori##j. e (4.2)

Let M,(c, y¢) be the maximal length possible for a code with error ¢ for a channel with
additive noise and noise distribution #. Then we have the following theorem.

Theorem 4.1: For a stalionary channel with additive noise und noise distri-
bution p
logya—Ble) < lim B H=l6) & 0B MG K) G 1og, s

where A(¢€) and B(e) are the funciions occurring in the statement of Theorem 3.1.
Corollary 4.1: 'Excepl for a counlable set of €'s the limit

Jim "EVL;“'-E) = logs a— A(e) = log, a— B(e)

n—ed

exists. Further

lim log a— A(s) = lim log a— B(e) = log a— H(u).
=0 —0

Remark : Corollary 4.1 justifies our calling log a—H(u) as the capacity of
the additive ohannel with noise distribution g.

Proof of Theorem 4.1: Let wu,, 0y, ..., ux, V), ..., Vy be a code with error €.
For any set £ of u-sequences let m(£) be the nunber of u-sequences in E. By pro-
perty (i) of (4.2) we have

m(Vy) > Nufe, p)- . (43)
For any 8 > 0 and all sufficiently large #, we have by Theorem 3.1 and (4.3)
m{V) > 2r4n—-a).

Bince Vs are disjoint and the total number of u-sequences is a”, we obtain
N
a" > m(\_JV‘) > N . 2na0-8),
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log N

Thus — & log a—A(e)+2. e (44)

Since (4.4) is true for any code of exror &, we get

’°3M+("/‘) & log a—A(e)+2.

Allowing n to tend to infinity and then noting the arbitrariness of 8, we get
Em IOSM—;("/‘) § loga—A(e).

For proving the other inequality in the theorem we follow Takano (1967).
Let 6 > 0 be an arbitrary number less than . Choose the set V, to be the set with
the smallest nun »f u-sequences whose probability excesds 1—¢’. In the nota-
tion given in Section 1, V, = A,(¢’, p). Let u, be the u-sequence all of whose
elements coincide with the identity of the group 4. Now choose u, such that

Vi) Pi—tg] > 16
where the prime is used to denote the complement. If no such u, exists stop. Write
Va=(Vi+u,) V1.
Choose t, suoh that
AUV 1) Ve Vi—us] > 1—e.
If no such u, exists stop. At the r-th stage u, is chosen such that
MV 4wV, Vs Vi—th] > 1.
Then we write Vo= (Vi+u)V, 4V, y... Vi
Let the process terminate after N stages. Let V = LAV‘. Then we have u-sequences
%, Uy, ... Uy 80d sets V,, V,, ..., Vy of u-sequences with the properties
(1) mVi—u) > 1—¢,
@) V.CVytu,
@ NV =4¢
@ 7=yn-= U (Futw),
(6) For sny u-sequence u{(Vy+u)V’' —u) < 1—e.
Since ¥, has probability greater than 1—¢’, we have from property (5) above,
1—¢ € yV,) = w{V,+u—u)
< M(Vy+u)V—u)+p((Vi+u) V' ~u)
< pV—u)+(l1—e).
83
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This inequality can be rewritten as

MV —u) > 6—¢. ... (4.5)
Since (4.5) is true for every u, we obtain by multiplying both sides of (4.5) by a=" and
adding over all the u-sequences

m(V)ya™ > e—¢

or wV) > a" (6—¢'). o (4.6)
Since V= L’\’J Y, and V,C Vy+u,
we have m(V) < N.m (V). L (A

We recall that V, = A,(¢’, 4). By an application of Theorem 3.1 we have, for any
8> 0 and all sufficiently large =
m(V,) 2B Lol . (4.8)
Combining (4.8), (4.7) and (4.8)
N > (5_5') . gh . 2Bl + 2]
Since M,(c, z) > N we have

log M, (e, p og (6—é6’ ,
log M€, ) > log (e—¢) +(log a— B(e')]—8.
AllDWi.Dg n—w0 and then l’—)o. we get

lim 108 Mne. 1) > log a—B(e').
=7 ™

From the definition of the function B(c) we see that it is left continuous. Since ¢
is any number less than ¢, we get by letting 6" increase to €

lim log Mfe, p) > log a—Be).

E=Y) n

Corollary 4.1 is an immediate consequence of Corollaries 3.1 and 8.2.
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