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SUMMARY

We describe a Bayesian approach to incorporate between-individual heterogeneity associated with pa-
rameters of complicated biological models. We emphasize the use of the Markov chain Monte Carlo
{(MCMC) method i this context and demonstrate the implementation and use of MCMC by analysis
of simulated overdispersed Poisson counts and by analysis of an experimental data set on preneoplas-
tic liver lesions (their number and sizes) in the presence of heterogeneity. These examples show that
MCMC-based estimates, derived from the posterior distribution with uniform priors, may agree well
with maximum likelihood estimates (if available). However, with heterogencous parameters, maximum
likelihood estimates can be difficult to obtain, involving marv integrations. In this case, the MCMC
method offers substantial computational advantages.

KEY WORDS: Markov chain Monte Carlo (MCMC); inter-individual variation; stochastic growth
model; premalignant lesions; N-nitrosomorpholine (NNM )

I. INTRODUCTION

Stochastic models  that explicitly incorporate information on the number and sizes of pre-
malignant lesions are mathematically complex but promise to yield insights into fundamental
aspects of carcinogenesis. For example, analyses of preneoplastic liver lesions in the rat using
models that utilize the information of lesion number and sizes [1-3], are useful to characterize
the role and potency of various putative tumour agents in experimental carcinogenesis.
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Most analyses of such data assume that the model parameters are homogeneous among
the animals, and therefore can be estimated without further complications by likelihood
maximization. However, based on the inter-individual varation seen in some observations,
there is also reason to believe that at least some of the parameters are heterogeneous (see
reference [1], for example ) between animals. The models incomporating this heterogeneity and,
therefore, the analyses via maximum likelihood estimation, become much more complex and
computationally challenging. The present paper suggests an altemative method of analysis via
Markov chain Monte Carlo (MCMUC) techniques in a Bayesian framework, which allows us
to incorporate heterogeneity in a straightforward way.

In order to deal with heterogeneity between individuals, we may assume a probability dis-
tribution for each of the parameters suspected to be heterogeneous. The specific values of such
parameters for one particular individual can then be seen as realizations from the correspond-
ing probability distributions, and are independent of the values of those for other individuals.
The method of maximum likelihood would proceed to consider likelihood contributions from
individual subjects by integrating over the space of these parameters with respect to their
probability distributions. This not only increases the number of pammeters from that of the
homogeneous case (the heterogeneity distribution for a positive parameter is usually assumed
to be gamma or log-normal involving two parameters), but also increases the computational
burden by having to calculate as many as # (the number of individuals) numerical integrals of
high dimension (same as the number of heterogeneous parameters) for each evaluation of the
likelihood. Often the stability of numerical integrations has to be checked carefully, involving
additional computations. Moreover, with complicated parametric modelling, the likelihood sur-
tace may have multiple modes, affecting the search for the global maximum. In view of this,
it seems worthwhile to investigate an alternative method of analysis when complex parametric
models are used.

Since MCMC methods have been shown to perform quite well in situations where hetero-
geneity or, more generally, random effects, or other complex features are involved (see, for
instance, references [4—6]), we suggest this as an alternative. We shall not focus on the math-
ematical details but try to give an understanding of the general idea in Section 2.2, For more
details, we refer to references [7-10]. An MCMC procedure gives as output a long simulated
chain of values for the set of parameters. It is obtained from a well-defined Markov process
in such a way that the values of a particular parameter along the chain can be thought of
as realizations from the corresponding marginal posterior distribution. Hence these values can
be used to estimate any moment of the posterior distribution or to obtain highest posterior
density credible intervals. Moreover, when a parametric functional is of interest rather than the
individual parameters, MCMC methods allow one to caleulate this functional for each set of
parameters in the chain, thus having a chain of values for the functional itself, which in turn
may yield posterior moment estimates or credible intervals for the functional. In situations
where the number of observations is small, as is often the case for complex cancer data, the
large sample normality of parameter estimates based on the method of maximum likelihood,
and hence the validity of the information matrix based symmetric confidence intervals, is in
doubt, a problem which does not arise when using MCMC.

For the sake of illustration, we chose to investigate the MCMC method for the analysis
of simulated Poisson tumour count data under a simplified toy model, as well as for the
analysis of real data of preneoplastic lesions in the mt. In particular, we consider an analysis
based on a parametric two-stage model for carcinogenesis [11] with one or more of the model



EXPLORING HETEROGENEITY IN TUMOUR DATA 1693

parameters being heterogeneous between the animals. The MCMC-based technique presented
here is, of course, quite general and can be used to investigate the effects of heterogeneity in
other types of data, or with different models (see for example reference [6]).

In the following section we briefly describe the basics of Bayesian parameter estimation and
of MCMC methods and how heterogeneity may be introduced. In Section 3, we discuss the
application of MCMC by means of a simple toy example, comparing MCMC-based inferences
with those obtained via the method of maximum likelihood. We illustrate this also by means
of a real example of tumour data in Section 4. In Section 5 we deal with the computational
issues related to the application of MCMC, detailing the stepwise construction of the sampler,
for dealing with heterogeneity in general.

2. PRELIMINARIES

In this section we discuss parameter estimation in general and how heterogeneity between
individuals may be incomporated in a model. We also describe some basics of the MCMC
method.

2.0, Parameter estimation

Let us denote the vector of unknown parameters that we wish to estimate by #. If the data
are contained in the vector v, then it is common practice to estimate # by maximizing the
likelihood {(v|#') with respect to . The likelihood can be wrtten as

10510) =TT o(016) 8

where n is the number of (independent) animals, y; denotes the data from the ith animal
and g{ ;|0 is the contribution of the ith animal to the likelihood. In most practical cases,
there are no analytic expressions available for the maximum likelihood estimate (MLE) and
its value needs to be determined numerically.

Another way of finding parameter estimates is to use a Bayesian approach. Indeed, often
biological considerations give us some ideas, or prior beliefs, about the unknown parameter
vector {1, which can be expressed as the so-called prior density p(-) of ). For instance, a
parameter is known to be positive, or a biologically plausible range of values for a parameter
is known. In the absence of such prior information, one can choose the corresponding p(-)
to be uniform on a relatively wide interval, whereas strong ideas can result in a prior density
that is more peaked and/or defined on a narrow interval. Ideas about correlations between the
parameters can be taken into account in p(-) as well by having a joint prior density. The
main goal of data analysis in a Bayesian context is to investigate the conditional distribution
of # given v, rather than to estimate a single value for 0. This distribution is known as the
posterior distribution of the parameter vector, given v, and we shall denote it by x(-|v). We
could, for instance, consider the expectation of & under mi-| v}, which is known as the Bayes
estimate of ¢ with respect to the prior pi-). Prior and posterior distributions are related to
each other via the likelihood as

IOy p) |

where o means ‘is proporional 1o’
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Let us now assume that one or more of the parameters are suspected to vary from individual
to individual. Let 4 consist of these parameters and let & denote the probability distribution
for ¢, which is characterized by an unknown parameter vector y. Values of i, assigned to
different individuals, are considered independent realizations from this probability distribution
h. Let ; denote the realization of v for the ith individual. Write = (i #/_, ), we are interested
in estimating & ={(#.0_y).

In principle, we may obtain the MLE of ¢ by maximizing the likelihood

K0 = l;[I \ GOyl O Mol ) do (3)

with respect to (. When data arse from a biological system requiring complex models,
numerical computation of the MLEs may be prohibitive in terms of computing effort. As
mentioned above, this is the main reason we investigate the performance of MCMC methods
in a Bayesian setting.

We assume priors p(tl_, ) for 0_, and p(y) for y. For the MCMC methods, we consider
simulation of the parameter vector "= (i, ... 4. 0_y.y) from the comesponding posterior
distibution w(t" v) given by

TH: H”U-‘]I e H:'I=I 51”: il l.f"nff’—n;r]'h{l.fﬂ'i?ﬂ!?'{ﬂ—»'r]'!?’{'ﬂ
. ..|ru” H:I=I H{}’Ii l,l!m, H—# Jh{ﬂfﬂ'i’”p{ﬂ—ﬁjp{njdﬂn

o [T vl 0y )htds ) p( 8- p(i) (4
i=l1

In general, it is difficult to calculate the posterior distribution (- v) analytically. However, if
a sample out of m(-|v) is available, then a histogram of the sampled values would give us
an idea of the shape of the posterior distribution. Then, also the expectation of {any function
of) & in the homogeneous case, or (/' in the heterogeneous case, under 7w given y, can be
estimated by the mean of (this function of) the sample values. The merit of MCMC methods
is that they can generate such a sample for us.

22 Markov chain Monte Carlo

MCMC is a general method for generating a sample from a probability density known up to a
proportionality constant (see references [7-Y] for an introduction). We will see in Sections 3
and 4 that in our case the posterior distributions (] v) and (| v} are only known up to
a proportionality constant. Owver the last decade, an enormous number of papers has been
published on MCMC. For our purpose, a short description of the method with (0] v) will
suffice.

An MCMC method generates successive values of 1, denoted by ') @2 ., from an
ireducible Markov chain having m as its stationary distribution. An explicit formula for m is
not necessary, as long as it is known up to a proportionality constant. The genemted Markowv
chain serves as a, generally dependent, sample from = and based on this sample inferences
from s can be made. The first my, say, values of the chain are discarded as the chain may not
have reached stationarity by then. This sy is called the *burn-in® pedod. Information on ! can
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be obtained from the sample formed by G0ttt for some m. The general algorithm
is the so-called Metropolis—Hastings algorithm [12, 13]; the well-known Gibbs sampler is a
special case of this.

Specifically, given the current value (/! of the Markov chain, a candidate value of #, say
f*, is sampled from some proposal distdbution with density function g(-, (%), say, which
may depend on the current value of the Markov chain. The value ¢/* is then accepted with
probability

(0% g (047, 6%)

ACO*, 8y = min | 1, 27 :
( )= min L By )a(6 .00

(3)

If accepted, we set #/11 = {#*; otherwise the current value is retained, that is, 07" =64} The
usefulness of this Metropolis—Hastings algorithm is to be able to simulate a value from the pos-
terior distribution () v) when it is either known only up to a proportionality constant or dif-
ficult to directly simulate from. The proposal distribution g(f/*. 8"} and the acceptance prob-
ability A(#*, /7y define a transition probability given by p(7 0% )= g(i1* (1) w 407, (),
by which a new value #7*'} is selected given the current value #'/). Moreover, the following
‘detailed balance” property:

(6090 ) p(OUY, Uy = D] ) p{ 1, @)

ensures that the corresponding stationary distribution is the same as ()| v); see reference [13]
{and also reference [10]) for further details.

Apart from some regularity conditions that are generally met by most practical choices,
the proposal distribution can have any form. It is desirable, however, to choose the pro-
posal distribution such that candidate values can be generated quickly and that the acceptance
probability can be easily computed. Some specific examples of proposal distributions, in the
context of models that incomorate inter-individual variation, are given in Section 5.1. Note
that if the proposal distribution is symmetric in * and 7, it will not be required in the
above acceptance probability. In practice, the values of £ need not be updated as a whole;
they may also be updated componentwise. The above acceptance probability then involves the
corresponding full conditional {see Section 5.1) in place of & and the individual proposal dis-
trbution. A nice feature of the MCMC method is that it is generally quite easy to implement.
A simple adaptive strategy for MCMC is discussed in Section 5. For a detailed discussion of
MCMC methods, we refer to reference [10].

If, as is often the case, one is interested in the posterior distribution of a function ¢ )
of f under m(-|y), then the series ¢(A" 1)), . . p(*"+")) will be the focus and its sample
distrbution is an estimate of the posterior distribution of ¢(#). In particular

] :
= IIZ=I é{ﬂium.l—_-’P}—}E,—;l}.l{f}{ﬂj| as W — o0 (6)

and we can estimate the posterior expectation £ ()= [ ¢(t)m(0]y)d 8 of ¢(0) by ff-;{ﬂjm
= ﬁ 2oy (). This indicates how to estimate other moments of ¢(()) since these are

also the expectations of (different) functions of . Taking $(ty=1,, the fth component of
#, we see that the marginal posterior distribution of ), can be investigated by considering

the sample Hﬁ”"'”',... ™ Tt is customary to consider the histograms of these individual
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parameter values {or functions thereof) giving estimates of the corresponding marginal pos-
terior distdbutions and report the corresponding means or credible intervals. Note that in a
Bayesian framework, the 100(1 — p.) per cent credible interval for a parameter is defined by
the two points having p./2 and | — p./2 probability, respectively, to the left of them in the
corresponding marginal postedor distribution.

3. AN ILLUSTRATION WITH OVERDISPERSED POISSON COUNTS

Before applying the proposed MCMC simulation strategy to real data, we illustrate its use
on simulated data. We chose to use overdispersed Poisson counts where the overdispersion
is due to heterogeneity in the Poisson mean. The main interest here is to see how well
the proposed stmategy can reproduce the assumed heterogeneity, especially in situations when
sample size is moderate and when the degree of heterogeneity is comparable to the model
variance. For this purpose, we draw counts from a Poisson distribution with a mean that
is randomly distributed. More specifically, we assume that the ‘Poisson mean’ factors into
a dose-independent heterogeneous part (A) and a linear dose-response function of dose o
that is homogeneous across individuals. Therefore, the *Poisson mean” is given by A = (1 +
dxd) with A following a gamma or log-normal distribution and & being the dose-related
homogeneous parameter.

We would like to dmw inferences with regard to the distribution of A (represented by
its mean u, and its variance o3) and simultaneously estimate the slope parameter 4. In the
notation of the preceding sections we have

0 =(A, )
lﬁf;f‘i
'?;{H.'uﬂ'ij {?:l

0 = (pa, 73, 8)
6" =(Ay,....,An b, s, 03)

and we want to estimate . For the priors of the components of ' we assume independent
uniform distributions with 0<#" <D, where the components of D are large (but fixed ) positive
numbers. For the example described here we use 0 = (100, 100, 10). With this particular choice
no rejections occurred in our simulations on grounds of a proposed value of (¥ being larger
than 0.

A number of simulations were carried out with different choices for g, and oy, and with
different numbers of animals. Since they consistently gave a similarly good agreement between
MLEs and MCMC-based estimates, we only report the results of one (typical) simulated data
set. For this simulation we assume four dose groups (doses 0, 0.1, 0.5 and 1.0} each with 50
animals, a unity slope parameter (= 1), puy = 40 and a0y = 4. Although no general conclusions
can be drawn, the case by case comparisons of estimates obtained using the MCMC method
with those obtained via maximum likelihood for all simulations provide an indication of how
well inferences with respect to the amount of heterogeneity predicted by these methods agree
with one another.
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Figure 1. MCMC-based analysis of overdispersed Poisson data (see text). The mean of the
gamma distributed Poisson mean u, was assumed to be 40 with a standard error of 4. The
Markov chain was run for 10000 cycles.

Following the procedure outlined above, we genemte MCMC samples from the posterior
distribution of /' by discarding the (Ay.....A,) part in the MCMC samples for #”. In the
case of the log-normal distribution, we use a multivariate normal proposal distribution for g,
ay and d. For the gamma distribution, however, as explained in Section 5, we use a multi-
variate normal proposal distribution in terms of specific combinations of the shape and scale
parameters ¢ and & of the gamma distribution and &. The respective covariance maftrices for
these two proposal distributions are determined adaptively as described in Section 5. Typical
MCMC simulations using both gamma and log-nomal distributed heterogeneity models for A
are shown in Figure | (see also Table [). We see that both models reproduce the assumed
heterogeneity in the respective data set well. However, when the assumed heterogeneity in
simulated data is weak, that is, when o, is much smaller than the Poisson error (/s ), both
methods perform equally poorly (results not shown), although the estimates usually improve
when the number of animals in the experiment is increased.

Since we use uniform priors on sufficiently large intervals for all pammeters, Bayesian
methods should give approximately the MLE at the mode of the joint posterior distribution.
However, it is difficult to estimate the above mode based on the chain of values for the
parameter vector as produced by the MCMC method. As mentioned in Section 2.2, we report
only estimates of the marginal means with corresponding credible intervals. For the particular
example described here with a gamma heterogeneity distribution, it is possible to obtain
the likelihood in closed form. The individual likelihood contributions are integrals over the
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Table I. Comparison of MLE- and MCMC-based parameter estimates (means and 95 per cent confidence
or credibility regions) for simple Poisson count data with gamma-distributed Poisson-mean with mean
40, standard deviation 4 and with slope parameter (§) 1. See text for more details. For the MCMC-based
estimation a model with gamma distributed heterogeneity and a model with log-normally distributed
heterogeneity were used. The MLEs were computed using the ‘exact’ integrations given in (8).

Parameter Max imum likelihood MCMC
Ciamma Ciamma Log-normal
Ha 40.65 (3905, 42.26) 4045 [38.78, 42.11] 4046 [39.03, 41.92]
@, 4.37 (339, 5.62) 447 [3.19, 5.56] 4.19 [2.96, 5.41]
& 0.93 (0.82, 1.05) 0.94 [0.82, 1.08) 0.92 [0.82, 1.04]

parameter A. Let v be the observed count and 4; the dose for individual /. Defining R;=(1+
d = o), the integral in (3) becomes

f gyl Oy dhlyriln) dil; = f * Pois(yi; AR, (A aub) dA,
W (1]}

e F{H + _]’;'} ] {Ej
SR+ b @i+ D)

where Poisi v; u) denotes the probability of observing v under a Poisson distribution with
mean g, W v;a.b) the density in v of a gamma distribution with shape parameter o and scale
parameter b, and T'(-) the usual gamma function. The parameters @, b and & can then be
estimated via maximum likelihood, and the mean and variance of A; are given by py =a/b
and af =a/b?, respectively.

Table I gives the MLEs and MCMC-based estimates for the mean and the standard error
of the embedded heterogeneity distribution, and the estimates of the slope parameter & for
a typical data set generated with the model and the specific values as described above. The
agreement between MLEs and MCMC-based estimates for the mean and the standard error
of the embedded heterogeneity distribution is excellent. Also, for this particular case, both
samma and log-normal models provide very similar MCMC-based estimates. Although we
cannot formally generalize these results to other situations, our simulations suggest that, given
a particular model and sufficient data generated from it, the agreement between MLEs and
MCMC-based estimates is usually remarkably good.

4. MCMC FOR THE ANALYSIS OF PRENEOPLASTIC LESIONS

We now illustrate the MCMC approach for incorporating inter-individual vadation using real
data. The data of interest are preneoplastic liver lesions, their number and sizes, in rats that
were exposed chronically to a putative liver carcinogen, N-nitrosomorpholine (NNM). The
purpose of the experiment was to obtain information about the mode of action of NNM
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and to assess the carcinogenic potency of NNM. Before we discuss specific aspects of the
analysis, we describe the experiment and discuss the model that is used for the analysis of
the data.

Groups of female Lewis rats (age |4 weeks) were exposed to varous doses of NNM in
their drinking water. Within each dose group animals were sacrificed at different time points.
A histological section from the liver of each animal was obtained and was examined for
ATPase deficient lesions. These lesions are considered precursor lesions for hepatocellular
carcinoma in the rat. Thus, for each animal, the data consist of the number and the sizes of
ATPase deficient (two-dimensional) transections in each liver section. We make use of the
first three dose groups only: 0 ppm, 0.1 ppm, and 1 ppm (excluding the 5, 10, 20 and 40
ppm groups ). Our analysis therefore includes only 89 animals with a total of 372 transections.
This choice is made for the sake of simplicity and allows us to ignore dose—response related
heterogeneity. Individual sizes, although recorded in terms of transection areas, were converted
into radii because the transections were mostly circular. The nature of these two-dimensional
observations poses a stereological problem which is addressed using the method described in
our eadier analysis [1].

In order to make inferences about the number and size distributions of these lesions, we
employ a stochastic model that describes the initiation and clonal expansion processes of
altered cells. We use the two-stage clonal expansion carcinogenesis model [11] which yields
mathematical expressions for the number and the size distnbution of such intermediate lesions
on the pathway to malignancy [14]. These expressions depend on three biological parameters:
the cell division rate =, the cell death rate 5, and the rate of initiation v of altered cells in a
specitic volume of nomal tissue.

In general we may assume the parameters to be piecewise constant on (0, ], that is, we
assume constant values for the parameters z, i and v on the & intervals ( ty. 7] (71, 72] . (Te—ys
7], where 3 =0 is the time of birth, and t; =¢ is the time of observation. That is, the
parameters x, § and v take values =, fi;, and v, respectively, in the jth interval. The number
and size (in terms of the number of constituent cells) distributions of non-extinct lesions are
oiven in reference [15]. We summarize them here. The number of non-extinct premalignant
clones is Poisson distributed with mean A{r), given by

k Ve x}e{{’l—ﬁlﬂ.:l—’-l—lﬂ =P IIF;
M= L log = 2 ! (%)
J=1 I_.l' I..,- —_ _Ilrj.:.

The probability p(s, 1) that at time ¢ a non-extinct lesion contains m cells (m=0) satisfies

1 &
plm.i)= A _Zlﬂ{m) (10)
¥
with A(r) as in (9) and Pr{m) given by
1 g T _ galz—gNe—o V"
P = (;_‘; )x T [ o =k (11)
L -1/ o — B eltu—fike—y-1))



1700 M. C. M. DE GUNST, A, DEWANI AND E. G. LUEBECK

with vg/2 =0. In (11) the %;’s are defined recursively by

dy = %
&= o — %{I_m —iJ-+|E{"""‘ﬁ"'”"-""” Y ikt (12}
and in (9) and (11} the Iﬁ’_}.’s are defined by
By = B
b= - (= f) ] e bl jok_1,..,1 (1)

=i+l

In contrast to the eadier analyses of WNM data [1, 2], where the time interval for the
analysis began at |4 weeks (after birth ) when NNM was first administered, we now include the
time interval from birth to start of the experiment. This refinement not only yields better data
fits, but also yields more plausible cell division rates for the intermediate cells. Also, rather
than directly estimating the cell division rate « and the cell death rate i, we estimate x together
with the ratio fi/x, which equals the asympitotic probability of extinction of an intermediate
lesion. In our experience, this reparmameterization improves the numerical convergence of MLE
searches.

In preliminary analyses, we allow each model parameter (that is, =, f/x and v) to assume
different values before and after the start of the experiment. Thus, we consider two time
intervals: (0,7] and (7,,¢f] with 7, = |4 weeks. Likelihood ratio tests reveal that only the
two estimates of & on the two time intervals differ significantly from one another while the
parameters [§/2 and v are found to be similar for the two time intervals. The cell division rate
in the liver lesions appears strongly increased in young animals up to 14 weeks of age.

The explicit inclusion of =; (the cell division rate before time 7;) and of 2 (the cell
division rate after time 7)) in our MCMC simulations is straightforward. Preliminary MCMC
mns, however, indicate that much longer Markov chains are needed before stationanty is
reached in this case. These runs also show that % and % are strongly correlated and mix
poorly in the simulation. Better mixing of highly correlated pammeters is usually achieved by
suitable reparameterizations [10]. However, for the sake of simplicity, and to keep the focus
of our illustration on the modelling of inter-individual variability, we fix the value of « in the
period before the start of experiment at the MLE found. Specifically, we assume ) = (.158
per day (fixed) and 2 =2 (unknown).

Because the lesions and their sizes can only be observed on histological sections, we
apply the Wicksell method to transform the discrete size distribution into one for circular
transection profiles. Similarly, we use the Fullman formula to transform the Poisson mean for
the number of lesions in three-dimensions to the Poisson mean for the number of transections
on two-dimensional sections. Because of this stereological problem, the likelihood function
is complicated and the MLEs are determined numercally using general purpose optimization
programs. See references [1, 3, 15] for more details.

To begin with, we assume that all parameters are homogeneous. Table 11 lists the maxi-
mum likelihood estimates and corresponding MCMC-based estimates of the marginal posterior
means for the above model. The agreement between the MLE- and MCMC-based estimates
again is excellent. Next, we allow v to be heterogeneous assuming a gamma or log-normal
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Table II. Comparison of maximum likelihood and MCMC-based estimates (means and 95 per cent
confidence or credibility regions) assuming homogeneity.

Parameter MLE MCMC (10000 cycles)
® 0.046 (0,033, 0.061) 0.048 [0.036, 0.068]
Ja 0.844 (0800, 0.8835) 0.840 [0.800, 0.895)
v 0.769 (0614, D95T) 0,787 [0.630, 1.040]

Table III. Comparison of maximum likelihood and MCMC-based estimates (means and 95 per cent
confidence or credibility regions) assuming heterogeneity in the rate of initiation v. MLE-based estimates
were only obtained for gamma distributed v. See text for details.

Parameter MLE {gamma) MCMC (gamima) MCMC (log-normal)
] 0.043 (0,034, 0.054) 0.044 [0.023, 0.072] 0.048 [0.037, 0.072]
fifa 083 (0,79, 0.87) 0.82 [0.70, 0.940] 0.85 [0.81, 0.89)
1, 0.70 (049, 0.99) 0.68 [0.335, 1.12] 1.03 [0.59, 1.88]
7, 0.94 (064, 1.36) 1.01 [0.50, 1.76] 3.57 [1.18, 10.68]

distibution for the v values of different individuals, as in Section 3. We then compare es-
timates of the parmmeters using maximum likelihood via exact integrations of the individual
likelihood contributions (see (8)) with corresponding MCMC-based estimates (see Table I11).
Since closed form solutions for the integrals are not available for log-normal distibutions of
v, maximum likelihood estimation is difficult in that case. Howewver, note that MCMC sim-
ulations can easily be carried out. Figure 2 shows the obtained MCMC (posterior) samples
for the case where v has a log-nomal distribution. The simulation was run for 20000 cycles.
For simplicity we display only every 10th MCMC cycle. During the adaptive phase (see
Section 5.2) the samples are marked by dots.

Finally, we consider the case when all parameters =, [i/x and v are associated with hetero-
geneity. Comparsons of multiple MCMC runs suggest that much longer chains are needed
than for the univariate case to obtain reliable estimates of marginal quantiles, especially for
the quantiles in the tail region of the (marginal) postedor distributions. We generated two
MCMC simulations, each with 100000 cycles. Both simulations yield very similar results.
The estimated coefficient of variation (based on the MCMC samples) for the pammeters v, x
and [i/x are, respectively, 1.53, 0.23 and 0.02. This indicates that the heterogeneity associated
with v is the strongest, while the pamameter # is only moderately heterogeneous and i/« does
not appear to be significantly associated with inter-individual variability.

We have made no attempt to maximize the likelihood for this case by integrating numeri-
cally (say, via three-dimensional Gauss-quadrmture ) the individual likelihood contributions. An
attempt to do so may require lengthy computations. For example, using just 20 Gauss mesh
points in each dimension to numerically integrate the individual likelihood contributions, and
over 100 function calls for the optimization procedure, more than 100 x 207 = 800000 likeli-
hood evaluations would be required to estimate the MLEs. However, frequently many more
function calls are needed to check for other modes and to assess the stability of the MLEs
found. Furthermore, the numerical integrations may not readily yield stable results and may
require additional searches for an optimal placement of integration mesh points. Also, fixing
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Figure 2. MCMC (posterior) samples for the NNM data assuming the rate of initiation v to be
log-nommally distributed. Also shown (dotted) are samples obtained during the adaptive phase.

the integration ranges in advance is problematic because the location of the MLEs is usually
not known in advance. This problem can, at least in principle, be solved by use of an adaptive
integration scheme.

In contrast, MCMC simulations have the advantage that they can be continued indefinitely,
oiven the values of the current cycle and the random seed(s) of the sampler, while numeri-
cal integrations that do not have sufficient accuracy are usually discarded. Thus, the MCMC
method provides a useful alternative to MLE based methods for exploring heterogeneity in
complex models, especially in situations when integrations are complicated or when the inte-
orals have to be evaluated numerically.

5. APPLICATION OF MCMC

Here we describe the geneml construction of an MCMC sampler designed to generate samples
from posterior distributions with complicated likelihood functions. This sampler makes use of
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the Metropolis—Hastings algorithm [7-10, 12, 13] to sample from the full conditionals. When
these full conditionals are completely specified, samples can be drawn directly via Gibbs
sampling, which is computationally simpler than the Metropolis—Hastings algorithm.

5.1 Full conditionals

Application of the Metropolis—Hastings algorithm requires specification (up to a constant mul-
tiplier) of the full conditionals of individual parameters or a block of parameters to be sampled
simultaneously. The full conditional for a parameter is given (like a posterior distribution) by
the conditional distribution of the parameter given the data v and the rest of the parameters.
The full conditionals are usually available only up to the normalizing constant. In this case the
Metropolis—Hastings algorithm can be used. It involves sampling from a suitable ‘proposal’
distrbution and then accepting or rejecting the sampled value with certain probability. See
references [7—10] for more details.

To be specific, let #=(#,.....00;) denote the parameter vector with I{ /1) being the like-
lihood and p(t!) the pror distribution for . Then, the joint posterior distribution is given by
mi v} oo Hv|@)p(). To begin with, assume that all parameters are homogeneous and that
the prior distributions for the ¢ 's are independent (that is, p{))= ]'[f=I plte ). Then, the
full conditional for #; is given by

el e | 3 g ) ox H(p[) pa( B )

fork=1,....K, where t!_, as usual, denotes the vector (! without ;. While ! can be updated
componentwise using the full conditionals, we sometimes prefer to update the components of
as a block in which case the corresponding full conditional is mif)| v). This is done using a
multivariate normal as the proposal distribution. A detailed description of the construction of
such a proposal distribution is given in Section 5.2.

Next, we assume i, consisting of some of the t;'s, to be associated with heterogeneity. For
simplicity, let v be scalar containing only one of the (;"s. We will consider two commonly
used distributions for heterogeneity. First, let ¢ be gamma distibuted with shape parameter a
and scale parameter b. Thus, for the ith subject, ¢ is a realization from this distribution. The
second distribution for o is log-normal with parameters g and a°. Thus, log ), is normally
distributed with expectation u and variance o in this case. As in Section 3, let g( vt 0_,)
denote the likelihood contribution for subject { with observation y;. Note that #_, is the vector
of parameters that does not contain v. The full conditional for i is then given by

(s v, 0 s W_ioa, by oc p(s a byg vl 0 w)

for the gamma distribution and

i lﬁ"d’i.}JsH—»'rs Wi, oo ) oo ps g, o gl vil s, H—»'r:l

for the log-normal distribution where _; is the vector (... oo, ot ), (e b)
is the density of the gamma distribution and p(i; o) is the density for the log-normal
distribution. MNote that these full conditionals depend on neither tv_; nor the priors of (0_,.a, b)

(or (0_y. ).
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Generating samples from these full conditionals is difficult because the likelihood contri-
bution g is not of a simple form. However, as mentioned before, the Metropolis—Hastings
algodthm can be used for this purpose. Caleulation of the Metropolis acceptance probabilities
is usually simplified when the assumed heterogeneity distributions are used as proposals. In
practice, the t’s may be updated as a block.

With uniform prior for #_y, the corresponding full conditional can be seen to be

MOy v ) oc T g vl 0-y)
=1

where #, using the notation of Section 2.1, is either (a.h) for the gamma heterogeneity
distribution or (g o) for the log-normal. For the sampling of t_,, we also need to employ
the Metropolis—Hastings algorithm. Here too we use a multivariate normal distribution as the
proposal (see Section 52).

For computational convenience we reparameterize the gamma distribution in terms of the
inverse mean ¢ =h/a and the shape parameter . The gamma density is then given by

‘;"4: lll!;h aac)= al’™ I{H JIH: I"‘f"f J'u_ : fia EXP‘: _li'ra'lﬂ'.':l

The full conditional for ¢ (assuming a uniform prior for ¢) can now be obtained as
ae]y, O W oo Wis @) =7 (e;mr ET, i{mf;,-;)
i=l1

where the rght-hand side is, as before, the gamma density with shape parameter (na + 1)
and scale parameter 3, (a; ). Hence, successive values of ¢ can be sampled directly using
Gibbs sampling.

For the shape parameter «, the full conditional is given by

mlalv 0y, oot 0 ) HI vl aac)

Therefore, we need to use the Metropolis—Hastings algorithm for sampling . We use a
uniform distribution for the proposal.

For the log-normal distribution, we sample the parameters u and ¢ = 1 /o®. Again, assuming
that these two parameters have uniform priors, we get the full conditional for p as

:m:.pi.}"* H—#"”‘lllh*' = !lll!'ralﬁ‘;:,}: ‘f} (P: ii Iﬂg{!ﬁﬂ ,:I.l'll'n* Uz;n)

where ¢(-; j1g, o5) denotes the normal density function with mean p, and variance 7. Similarly,
the full conditional for £ is

a( Sl oyt ) =7 (.;“:n..-"z + 1, i{lng{n,ﬂ-r,-]l — U }3;’2)
=1

Thus, with this parameterization, and with uniform priors, both the parameters for the log-
normal distibution can be sampled by Gibbs sampling.



EXPLORING HETEROGENEITY IN TUMOUR DATA 1703

32 MCMC steps

Generally, one can sample successive values of (... . . 0_y.1) using the full conditionals
of Section 5.1 and some initial values that may be arbitrary. We, however, follow a specific
strategy as described below. Our strategy is a modification of the *adaptive kemel switching
approach to achieve MCMUC acceleration proposed by Gelfand and Sahu [16]. The idea is
first to camry out a few pilot runs that will provide an estimate of the correlations between the
successively sampled parameter values. As a modification, we consider estimating correlations
between the successive increments as explained later. These estimates can be used to define a
multivariate normal distribution as the proposal distibution for t_,. This approach attempts
o improve ‘mixing’ by anticipating the comrelations among parameters as the Markov chain
progresses.

In order to initiate the process, we first assume homogeneity in the whole of 0 = (yct_,). If
the maximum likelihood estimate of ¢ can be determined, it can be used as an initial estimate
for the MCMC. Otherwise, one can start with an arbitrary estimate. We then carry out the
following steps.

I. Pilor yun 1. Using the full conditionals for the homogeneous case (as given in the
beginning of Section 5.1 ) and uniform priors for the components of &, sample m; values
of 6. Use the Metropolis—Hastings algorithm for this purpose with a multivariate normal
distribution (with the current value as the mean and the negative Hessian matrix evaluated
at the initial value as the covariance matrix) as the proposal.

2. Compute the sample covarnance matrix of the successive increments of these mr values
of . Denote it by ;.

3. Pilor run 2. Sample m, values of ¢ as in step 1 above, but with the covariance matrix
for the proposal distribution replaced by sX,, where s is a suitable scale factor ranging
berween 2 and 3. As in step 2 above, compute the sample covariance matrix of the
successive increments of these s values of 8. Denote it by ..

4. Fingl MCMC run. The heterogeneity parameters are brought in at this stage. As the
initial values of (f.... 4. 0_y.) for the final mun, take ; (for all i=1.....n) equal
to the last (myth) value of ¥ in step 3 above, for 6_, take its last value, and some
arbitrary wvalue for y. Now carry on the MCMC sampling using the full conditionals
of Section 5.1. For sampling ¢/_,, the proposal distribution is multivariate normal with
its current value as the mean and s times the comesponding submatrix of ¥, as the
covariance matrix.

A few comments are in order. The sample covariance matrix, as in steps 2 and 3, is based
on the successive increments since they are likely to be less autocorrelated and, at least at the
initial stage, have similar distributions. Excessive rejection in the Metropolis—Hastings algo-
rthm can be avoided by reducing the scale s in step 3. Recommended acceptance rates range
between 30 and 70 per cent [10]. The lengths of the two pilot runs (m and ma, respectively)
depend on the particular problem. Our experience with the cancer data analysed here suggest
that at least several hundred cycles are needed. Moreover, convergence of the chain may
improve when additional pilot mns are generated. The final run (step 4) may be monitored
using diagnostic tools, such as the Guessit program [17], in order to determine a sufficient
number of cycles for computing expectations under the posteror. We also recommend the
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seneration of several independent MCMC simulations to better gauge the effects of *burn-in’
and to better assess the convergence of the chains.

6. CONCLUDING REMARKS

Because the biological pamameters in our models are positive and in general bounded from
above by physiological limits, one may often have some information on their prior distri-
butions. However, in the absence of any such knowledge. we find it natural to work with
uniform prior distributions (see Sections 3-5).

The MCMC technique, as an alternative to maximum likelihood estimation, has a computa-
tional advantage, specially when dealing with between-individual heterogeneity ( see Sections 3
and 4). The MCMC approach to incorporate heterogeneity, although described for tumour data
in particular, is also applicable to other types of data and different models for analysing them
(see reference [6], for example). The MCMC method can also deal with within-individual
heterogeneity, which will make the maximum likelihood calculation almost intractable. For
example, in our tumour data problem of Section 4, there may be variation in the mte param-
eters for different tumours within a tissue depending on their location.

Although we suggest a rather generic strategy for the implementation of the MCMC method
{see Section 5.2), one can work with different ones that are more suitable for the problem of
interest. However, our implementation works well for a variety of models and data sources,
and usually leads to rapid convergence and well *mixed” Madcov chains.

The MCMC method also allows one to work with incomplete data (common in biological
problems ) through the *data augmentation” technique. The idea is to sample the *missing” part
of the data as well in addition to the different parameters in each MCMC cycle. In the context
of our problem in Section 4, the number and size distributions of the preneoplastic lesions
in three dimensions forms the missing part. By sampling these data also (from the corre-
sponding full conditionals), one can work with a simpler likelihood avoiding the stereological
complications (see reference [1]).
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