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This paper examines mbust technigues for estimation and tests of hypotheses using the family of generalized
Kullback-Leibler (GEL) divergences. The GEL family is a new group of density hased divergences which forms
a subchiss of dispanties defined by Lindsay (1994). We show that the cormsponding mmimum divergence
estimators have a breakdown poimt of 0% under the model. The performance of the proposed estimators and
tests are imvestigated through an extensive mumerical study mvolving real-data examples and simulation results.
The results show that the proposed methods are attractive choices for highly efficient and robust methods.
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1 INTRODUCTION

We consider the general setting of inference under a pammetric class Fg = {Fy. e O},
G < B Let ¢ denote the true distribution belonging to G, the class of all distnbutions
having probability density functions (pdfs) with respect to a dommating measure. We will
assume that the model Fg 15 a subclass of G. To deal with the general case we also
assume, for discrete models, that the distributions have countable support {0, 1,2, ...}
Throughout this paper we will let the corresponding lower case letters denote the pdf™s of
the cumulative distnbution functions (CDFs), e g, the pdf’s of &, Fp and G, will be g, fi
and g, respectively.

In parametric estimation one wishes to estimate  efficiently when the model is correct and
robustly i case the true distnbution s close to but not necessanly i it. Similarly, m testing
of hypotheses it is desirable to have a procedure which has high power under the model
simultancously with high stability in terms of level and power under small departures
from the model. Beran (1977) first demonstrated that the simultancous goals of asymptotic
efficiency and mobustness can be achieved by usmg the mmimum Hellinger distance estimator
(MHDE). Other authors, such as Tamura and Boos (1986) and Simpson (1987; 1989) have
further pursued this line of research and established other desirable properties of the MHDE.
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Lindsay (1994) peneralzed the work based on Hellinger distance (HD) to a general class
of disparities generating estimators that are both robust and first order efficient. A disparity 1s
a measure of discrepancy between a nonparametric density estimator and the model density.
In this paper we develop a subclass of dispantes called the generalized Kullback-Leibler
{GKL) divergence. The inference properties of the corresponding minimum divergence
procedures 15 the subject of the current study. The emphasis 15 on guantitative investigations —
the efficiency and robustness properties of the procedures are studied through an extensive
numerical study. However, the asymptotic breakdown pomt of the estimators 1s also theo-
retically established. A sequel paper will deal with the remaining theoretical properties.

The rest of the paper 1s organized as follows: Section 2 provides a brief introduction o
minimum disparity estimation. In Section 3 we introduce the GKL family. In Section 4 we
study the influence function, the breakdown point, and the GKL tests statistics. Examples
and simulation results illustrating the performance of the procedures are given in Sections 5
and 6 respectively. Section 7 presents some concluding remarks,

2 MINIMUM DISPARITY ESTIMATION

For a mandom sample X, X5, ..., X, from distnbuton (7, let

1 — x—X;
g,.n.r}=EZw( W ) (n

i
i=]

define 8 nonparametric density estimator of g, where w is a smooth family of kernel functions
with bandwidth h,. For discrete models, we take g, to be the empirical density function,
defined as g, (x) = the proportion of x-values in the sample for x =0, 1.2 .. Let G, be
the CDF of g,. Define the Pearson residual at a point x as

gulx) — falx)

do =
P ==

(2)

We denote the Pearson residual dp by & for brevity. Let C-) be a real-valued, thrice differ-
entiable convex function on [—1, 2¢) with C(0) = 0. Following Lindsay (1994), construct
the disparity p- (between g, and f3) defined as

pelga.fo) = IC'{JM}L‘E}. (3)

where the mtegral s with respect to the dominating measure. Under the assumptions the dis-
parity pp is nonnegative and equals zero ifand only if g, = fi. Under appropriate choices of
disparities the “minimum disparity estimators”™ have attractive efficiency and robustness fea-
tures. The class of disparities melude the likelihood dispanty (LDY) and the squared Hellinger
distance, defined by LD(g,, fi) = [g.(x) log(g,/fi) and HD(g,, i) = [(g.(x)"? — fulx)'?)*
respectively. The LD is a version of the Kullback-Leibler divergence, and in the discrete
case it 1% minmmized by the maximum hkelihood estimator (MLE) of ; however, by the
Kullback-Leibler divergence we will refer to KL(g,.. i) = [filx) log( fa(x)/g.(x)).

Let V represent the gradient with respect o (. For any real valued function a(x) we will let
a'(x) and a”(x) denote its first and second denvatives with respect to x. Minimization of the
disparity p-ig,.fi) over § € @ gives the mmimum disparity estimator corresponding to
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the C(-) function; the Hellinger distance produces the MHDE. Under differentiability of the
model, the minimum dispanty estimating equation becomes

—Vpr = [A{fj}?ﬁ;[.‘t} =}, (4)

where Aid) = (4 4+ 1)7"d) — C(d). The function 4(5) 1s an mereasing function on [—1, og),
and without affecting the estimating properties of the dispanty p. it can be redefined to
satisfy A(0) =0 and 4(0) = 1. This standardized function A(4) 15 called the residual adjust-
ment function (RAF) of the dispanty. The estimating equation for the likelihood dispanty
{the likehhood equation in the discrete case) s given by

Vpe= I;Wﬁ;-[,r} o0, (5)

ie. Aid) =4 for the likelihood disparity. Under the standardiations deseribed above, the
leading term (in a Taylor series expansion) of the minimum disparty estimating function
in (4) matches that for the likelihood dispanty, indicating that establishing the asymptotic
efficiency of the mmimum disparity estimators corresponds to demonstrating that the remainder
term s “small” in the limit Since the estimating equations of the mmimum disparity
estimators — as given in Eq. (4) — are otherwise equivalent, their distinctive features are
govemed by the form of their RAF. Thus, for example, RAFs for which Aid) < § are
able to strongly downweight the effect of large outlying observations (which manifest them-
selves as large positive values of §) relative to maximum likelihood. The value 45 = 4"(0) 1s
called the curvature parameter (Lindsay, 1994) of the RAE and s a measure of how fast the
function curves away from the line 4(d) =4 at § = 0. Large negative values of 4x provide
greater downweighting effect relative to maximum likelihood estimation, while 4; = 0 ndi-
cates a form of second order efficiency of the estimator in the sense of Rao (1961;1962). For
the likelihood disparity and the Hellinger distance 4> equals 0 and — 1 /2 respectively.

3 THE GENERALIZED KULLBACK-LEIBLER DIVERGENCE

We mtroduce the new family of generalized Kullback-Leibler divergences (GKLs) between
two densities g(-) and f{-) indexed by a single parameter T € [0, 1] as:

.= g5 (821 L) g (82 )], 21—
{K-L:{é.‘f}—ll.[ I f[-} % + I} I.f{ ]+ T_]_ |59

which can also be written as

-i||'_'

GKL(g.f) =

I[Tq?[gfr‘f}} + Tl fix)) — plrglx) + T (x))]

Dig(x). f(x).

I
r—
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where ¢f-) 15 defined to be

s =10
() = tlogr; te (1]
The divergences for 1 = 0 and © = | are defined by the limiting cases as t — 0, and 1 — 1
respectively. Notice that D(g(x), f(x)) 15 non-negative by the convexity of -}, and the diver-
genee equals zero only when g(x) = f(x), identically. The divergences GKL,—; and GKL
are the likelihood disparity (LD) and the Kullback-Leibler divergence (KL) respectively. In
Figure 1{a), we present the RAFs of several members of the GKL family. It 1s quite obvious
how the RAF functions for large values of © strongly downweight the effect of the large
outliers. Under the notation of Section 2, we will denote by MGKLE, the minimum dispanty
estimator which mmimizes GKL.(g,, fi) over (1. The RAF A.(-) and the C.(-) function for the
GEL, divergence are miven by

1
AAd) = ~log(td + 1), (6]

i T
C.A8) = ‘1 L op(a+ 1) — _{‘; + {}Ing[rf‘i +1). (7)

A motivation for the construction of the GKL family, which produces a smooth bridge
between LD and KL may be provided as follows, It 1s casily seen that

GKL.(g.f) = ml,in{rLD{g,p} +{1 =KL p. )}

where the minimization is over the density p. The nght hand side of the above equation is
actually the solution of the hkelihood ratio testing problem which minimizes the hkelihood
disparity LD{g, p) subject to p € By = { pr KL(p.f) = ¢}, and 7 is an appropriate function
of ¢, A reversal of the wles of LD and KL generates the celebrated power divergence family
of Cressie and Read (1984).
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For better understanding the robustness of the methods based on the GKL divergence, we
also present the combined weight function w.(d,) (Park e af., 2002) for the GKL, family for
different values of t m Figure 1(b). The combined weight function w,.(d, ) represent the rela-
tive impact of the observation m the estimating equation compared t©o maximum hkelihood.
To keep the notation clear, we denote the Pearson residual 8 by dp, and define the Neyman
residual dy(x) = [galx) — falx)])/ golx). The combined residual 5, 1s defined as

delx); d=fa

(ﬁ.;-':.f} = I (ﬁw{_r}l: d = ﬁ-,a

and the combined weight function w.{d,.) is

Ald, 5
-{; }: —1=a, =0

[
A'(0); g, =0

"‘1":'{(5:':' = . . - {H}

1 —a. 0, i

= .4( ) 0=d, =<1

a, 1 —a,
Al oa); a. =1

On the positive side of the 4. axis, this amounts to looking at the weights as a function of the
Pearson residuals but m the Neyman scale. For better mobustness, it 15 desimble that the
weight functions converge to 0 as 4. — | which happens for all the members of the GKL
family considered in this figure. Notice that the graphs of the combined weight function
are defined over a bounded interval of valoes of 4. (unlike the RAF), and hence allows
the graphical investigation of the method at either end of the range.

We conclude the section with the following boundedness propertics of the divergences
which are proved m the Appendix. The boundedness results are also useful in establishing
the breakdown properties of the corresponding estimators later in Section 4.

LEMMA 1 Denote DNg, )= %[rqa{g} + Tl /) —pltg+T)].T=1—1. Then

0 =Dig.f) = DO.NHlig =)+ Dig. Ol f < g).
where (-) is the indicator function.
THEOREM 2 The GKL, divergence is bounded for 0 < v < 1. In particular

T

0 = GKL.(g.f) = 1'”5(%) +%Iug(1)-

The left equality holds when g(-) = f(-), and the right equality holds when the distributions
are singular, Le {x: f(x) = 0} N {x: gix) = 0} is a set of measure () with respect to the domi-
Rating measure.
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4 INFLUENCE FUNCTION, BREAKDOWN RESULTS, AND
DISPARITY TESTS

4.1 Influence Function and Standard Error

Consider the contaminated version of the true density g defined by goix) = (1 —e)g(x) +
4=;|]__~{.t}|, where ¢ 18 the contamination proportion and |]__~{.t} represents the indicator function

for the set containing only £ Let & and &, be the comresponding distributions. Suppose
T.(-) s the MGKLE, functional. Its influence function 1F, ; at & is defined by

OTAG)

IF. gld) = a ‘ .
L e=ib

A straightforward differentiation of the estmating Eq. (4) shows the influence function of T,
o be

-1
IF, 6(¢) = [ [A;M;muui'g — [A;{fiw-’_f;] [.4;{fﬁ[:};~:m£} - [A;uﬁhmg],

where (1 = TG, wplx) = Viogfulx), dix) = (gix) — filx))/folx), and 4.(-) 15 as m (6). As
an immediate consequence of the above result we note that if 7 15 a model pomt Fy, then
the mfluence function of the T, functional reduces to 77 (MNualE) suggesting that the
MGELE., s asymptotically fully efficient at the model.

On the other hand, being equal to the mfluence function of the MLE, the influence function
of the T, estimator s potentially unbounded. Thus the robustness of the MGKLE, cannot be
described through the traditional bounded influence approach. Beran (1977) clamms that for
evaluating the mobustness of a functional with respect to a gross-crror modd, one should con-
sider the a-influence function mstead of the mfluence function, unless the former converges
to the later uniformly. Let fi .. = (1 — a)fs + 2., where 5. denotes the uniform density
on the iterval (z — g, 2+ &), & = 0 arbitrarily small, e &, 2 (0, 1), ze . Let Fy. -
denote the corresponding CDF. The s-influence function s the difference quotient
a [TuFa.-)— 1] The influence function of T, is the limit of the above difference quotient
as o — 0 (with a slight modification of Hampel’s definition to accommodate functionals
defined on the space of distnbutions having densities with respect to the Lebesgue measure).
Beran (1977) proved that the z-influence function for the minimum Hellmger distance 1s a
bounded contmuous function of = for each fixed 2; Eslinger and Woodward (1991) empin-
cally demonstrated the same for the nommal model. A similar graphical mmvestigation (not pre-
sented here) of the s-influence function of the MGKLE, show that they have a similar
boundedness property for all = (0, 1) under the normal model Smee a functional
with well behaved z-influence functions can have an unbounded mfluence function “there
s no intansic conflict between mbustness of an estmator and asymptotic efficiency™
(Beran, 1977).

4.2 Breakdown Point Analysis

The breakdown point of a statistical functional is roughly the smallest fraction of contamina-
tion i the data that may cause an arbitranly extreme value in the estimate. Here we establish
the breakdown point of the MGKLE, functional under the following set up. Let T.( () be the
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MGELE. functional at the true distribution 7. For & € (0. 1), consider the contammation
model,

H.'..m = {1 = H]U +H-Km~

where [K,} i1s a sequence of comtaminating distributions, and h,,,, g and &, are the
corresponding densities with respect to the dommatmg measure. Given a contamination
sequence (K} we will say that there is breakdown in T, for £ level contamination if
litthy oo | T, )] = o, in which case we are interested i inf{e: imy_ e [T o) = o).
W write below 1, = T.(H, ), suppressing the 1 and £ subscripts for brevity.

We develop the following conditions for the breakdown point analysis, The conditions put
appropriate structure on the model and on the contamination sequence which allows us to
determine the behavior of the divergences under extreme forms of contamination.

DEFINITION 1 A contaminating sequence of densities {k,} wilf be calfled an outlier
sequence refative to rruth g(x) and mode! folx) if:

Al [min{g(x), k(x)} — 0 as m — oo. That is, the contamination distribution becomes
asympiotically singular fo the true distribution.

A2 [ min{fa(x), ku(x)} — 0 as m — oo uniformly for |0| < ¢, for any fixed c. That is the
contamination distribution v asympiofically singufar to the specified models.
Finally we assume that

A3 [min{g(x), fa (x)} — Oasm — o0 if|l,| — oo asm — co. That is, large values of the
parameter (1 give distributions which become singular to the true distribution.

Intutively, outlier sequences represent the worst possible type of contamination sequences.
The proof of the foliowing theorem, establishing the breakdown point of the MGKLE, func-
tional under an outlier sequence, 1s given in Appendix.

THEOREM 3 Lei |k, } be any outlier sequence of densities with respect to the trive distribution
and the model (i.e. |k, | satisfies conditions Al and A2) [n addition suppose that the model
satisfies condition A3 in relation to the true distribution. If the true diswibution belongs to the
model, then, for any & < 1/2, lim sup,__ [T:(H. )| = oc where T; is the MGKLE, func-
tional. When the true distribution does not belong to the model, im sup,,_, .. [T:(H. )| = o0
whenever £* = nf{e: a(2) < aa(e)}, whae, aie)= (1 — )1 T)log(l/ )+ Cie—1),
aale) = &l 1T bogl 1 /o) + GKL.((1 — e)g. fir). Cui-) is as in (7). and 1" is the minimizer of
GKL.((1 —e)g, fi).

4.3 The Generalized Kullback-Leibler Divergence Tests

Because of the lack of mobustness of the likelihood rato tests (LRTs), alternative mbust tests
have received a lot of attention i the literature. Simpson’s (1989) Hellinger deviance test
{HDT) 15 robust under data contamination and efficient under the model. Here, we study ana-
logs of the LRT based on the GKL,. Under the parametric setup given in Section 1, let the
null hypotheses of mterest be Hy: (1 € @y and Ay 0 € @40y, where €y 1s a proper subset



318 C. PARK AND A. BASU

of @, Let the functional T, g and T, be defined as Too(G) =07 ; € Oy, and TG =0, 5
which satisfy

GKL.(g. 0 ;) = min GKL.(g. i) and GKL.(g, (. 5) = min GKL.(g. /)
] feEy, e

respectively. For a random sample of size n and a kemel density estimate g, (CDF G,),
dL“l'J{}LL‘ the estimators T, o( @) and T, ) under the null and under no restriction by
and @, respectively. Define the generalized Kullback-Leibler divergence test (GKLDT,)
statistic as

2n{GKL.(g. ;. ) — GKL.(g. f;)}.

In diserete models, the GKLDT, for all © have asymptotic »2(r) distributions under H, where
# 15 the number of independent restrictions imposed on @ by the null hypothesis (Lindsay,
1994}, Our sequel paper will theoretically establish the asymptotic null distribution of the
GELDT, statistics for continuous distributions, and here we numerically study the properties
of the disparity tests under a vanety of setings.

4.4 The Penalized Disparities

Although the estimators and the tests within the GKL family provide a high degree of down-
weighting for outhiers, particularly for values of © close to 1, the structure of the divergences
mevitably leads to an mflanon of the effect of the “mliers™, points with less observations than
predicted under the model. This is clearly apparent from the form of the RAFs and weight
functions presented in Figure 1. While the more robust RAFs within this family move
away from the linear curve for likelihood as §(=4dpg) increases in positive magnitude exhibit-
mg a much flater and dampened growth leading to robustness, the same curves also move
away from the linear curve as 4 increases n negative magnitude, but in the wrong direction,
and hence magnifies the effect of mliers. Figure 1(b) mves a different representation of the
same phenomenon, where the weight functions all converge to 0 as §, — 1, but those for
larger values of t lead to an unacceptably high value of the weight in the left tail as 8, — —1.
In particular one can write the GKL, divergence in the form

. = é.{ﬂ gix) 2ix) f{r}) ( glx) _)] To - J‘ :
GEKL.(z./) = = = I ——1 ;
RE -[l:.-:r[ (f[ }) ( T i fo }'+ L T x=“f{r}

where the second term on the right s the contribution of the observations with g = 0 to the
divergence (contribution of the empty cells for the discrete case when g = g, represents the
sample relative frequencies ). This coefficient — 1/t log T= —log(1 —1)"" converges to 1 as
T — (), but becomes arbitrarily large as © — 1, showing that the divergence puts a very high
weight on the set {x: g(x) = 0} In this paper we will also consider the following “penalized™
version of the GKL, divergence, to be called the pGKL, divergence, defined as

pGKL (g. ) = [ [@ Ing(f,{—ﬂ) - (@ +@)I E(I. ﬂ + )] + Jx).
Jg=0 T [T} T T .f } Jir=l

MNotice that the weight of the set {x: g(x) = 0} has been redefined to be 1 (which is the ordi-
nary weight for the likelihood dispanty where © = 0) for all values of 1. Our simulations will
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show that for large values of t the use of the penalized divergences instead of the natural ones
can lead to a far improvement in small sample efficiency without significantly altering the
robustness  properties. Notice that the penalized divergence is also nonnegative by
Lemma 1, and the estmanon functional minimizing pGKL (g, fs) 15 Fisho consistent.
See Harns and Basu (1994) and Basu and Basu (1998) for other applications of penalized
divergences.

5 NUMERICAL RESULTS

51 Examples
S LTI Drosophila Assay

First, we consider a part of an experiment oniginally reported by WoodrmudT er al. (1984), and
analyzed by Simpson (1987). The frequencies of frequencies of danghter flies carrying a
recessive lethal mutation on the X-chromosome are considered where the male parents
have been exposed to a certain degree of a chemical. Roughly hundred daughter flies were
sampled for cach male. This particular expenment resulted m (v, /7)) = (0,23), (1, 7,
(2, 3), (91, 1) for one experimental run, where x; 15 the number of daughters carrying the
recessive lethal mutation and f; 1s the number of male parents having x; such daughters.
We will refer to this as the Dvosophila Data [ The estimators of (0 under a parametric
Powsson (1) model corresponding to £ = 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 for the Drosophila
Data 1 are presented in Table | together with the MLE (r = (). Notice that all the estimators
with © = 0, meludmg those with very small values of © are successful m completely discard-
ing the outlier (91). When this outlier s removed the MLE of the remaining data is 0,394,
much 1n the vicinity of the other MLGKE. s and pMGELE s obtained with the full data.
The second example also involves data from WoodmdT er af. (1984). The responses now are
the frequencies of daughter flies having a recessive lethal mutation on the X-chromosome where
the male parent was either exposed to a dose of chemical or to control conditions. This data set,
also analyzed by Simpson (1989, Table 5) wall be referred to as the Dvosophila Data I The
responses are modeled as Poissons with mean () (control), and (12 {exposed) respectively. For
testmg Hy: 1 = Uy agamst Hy: ) < U, a two sample signed version of the GKLDT, (or its
penalized version) is appropriate. Suppose that random samples of size n; are available from
the population with density £ (-) and let di(-) be the empineal density of ith sample, 7= 1.2,
For a disparity p(-) between two densities, define the overall dispanty for the two sample case as

1 : 3
D=D(h, )= {rmipld . fa)) + maplea. fo, )}
Hi+ RHa

|
Given the disparity test statistic f, — 2n(Dy — D), where Dy and D are evaluated at the
minimizers of D0, ) under the null and without any restrictions respectively, the signed
divergence statistic 15 given by s, =r"|*"25ign{ﬂz — ) where @ and @ are the minmmum
disparity estimators of the pammeters ) and 05 It follows from Sarkar and Basu

TABLE 1 The Estimated Pammeters Under the Poisson Model for the Drosophila Data 1.

T o 1 (L3 {15 L7 LY L RLY

GRL, 3050 0.390 0.383 0.374 0363 0345 0316
pGEL, 3.059 0.391 0387 0.382 0.378 0.373 0372
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TABLE II  The Signed Divergence Statistics (5,) and Their p-values for the Drosophila Data 1.

Al abservations Chutliers deletad
GELOT, PGELOT, GRLDT, PGELDT,
T Su p-valie S p-valiee S p-valie S p-valie
0 2505 0z 2505 000z 1094 0.13% 10499 0136
ol 0963 1.1 68 0963 168 100K 01549 L.001 0158
0.3 0.753 022 0.755 0225 0.795 0.213 0.7% 0213
0.5 LARTH R 0271 0612 0270 L6557 1.256 LUETN 0.255
0.7 0509 0206 0514 024 0.563 0.2587 0568 0.285
09 0436 0331 0446 0328 1.4497 0310 .54 0.307
0.99 0402 [ 0421 0337 468 0320 482 0.315

{1995) that the signed two sample GKLDT, 1s asymptotically equivalent to the signed
likelthood ratio test. For the full data and the reduced data (afier removing the two
large observations from the treated group) the signed divergences and the associated
pvalues using the standard normal approximation are given in Table 11 The apparently
sigmificant result for the likelihood mtio test (t=0) s due to the presence of the
two larpe outhers, as the emoval of these observations changes the conclusion of the
likelthood ratio test. The conclusion of the other tests are not affected by the presence
or absence of the outliers.

51.2 The Number of Cases of Perifonitis

The next example involves the incidence of peritonits on n = 390 kidney patients (Tab. 111).
A glimpse of the data sugpgests that a geometric model with § around 1,/2 may fit the data
well. The data set, provided by Profl B W. M. John, was previously analyzed by Basu and
Basu (1998). The observed frequency (£2¢) of the number of cases of peritonitis (&) is mod-
cled by the geometric distribution with success probability (. For an estimate ), the expected
frequencies are then obtained as £, = nf(1 — 8. The largest number of cases of peritonitis
is & = 12, so we merged all the expected frequencies for & = 12, To assess the goodness-of-fit
of the model, we use the log likelihood mtio statistic which is given for this data as

2 Oy
-2
R ) e
> ouie(5)

In this example the fit provided by the MLE is excellent (Tab. 1); those for the minmum
disparity estimators are also remarkably good, particulary those based on the penalized
disparities. The two marginally large observations at 10 and 12 have little impact since the
sample size 1s so large. This example shows that when the data roughly follows the model
the proposed methods are close to likelihood based ones m performance.

513 Determinations of the Parallax of the Sun

We consider Short's data (Stigler, 1977, Data Set 2) for the determmation of the parallax of
the sun, the angle subtended by the earth’s mdius, as if viewed and measured from the surface
of the sun. From this angle and available knowledge of the physical dimensions of the
carth, the mean distance from earth o sun can be easily determined. To carry out
the GKL, and pGKL, estimation, we have used the kernel density function, defined in (1),
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TABLE IV Fits of a Normal M, ) Model to Short’s Data Lsing the Maximum Likelihood (ML), Maximum
Likelihood Without Outlier (ML-CH, and Minimum GKL, and pGEL, Estimation.

T {Lf (1.3 L5 {7 RY (1. 55 MEL-03 ML
Gkl I B3LE B.3R2 8379 B3R BARR 8391 5341 BATH
& 0550 0.355 0336 0323 0.308 0.292 01552 0.846
pakL, i B.520 B3 BIRZ B3RS B389 B.392 - -
& 0554 0.362 0.M45 0335 0.326 0.322 - —

with the Epanechnikov kemel (wix) = (3/4)(1 — x%), if |x| = 1, and w(x) = (), otherwise).
Following Devroye and Gyddi (1985, pp. 107-108), the mean L crterion with the
Epanechnikoyv kemel and Gaussian f(-) leads to an optimal bandwidth of the form

ey 10 ; s
h,,:[lﬁf}'f’(}%) a5 L e

where & is the standard deviation. If the standard deviation is not specified, one can use
h, = 1.666n "7 where & = MAD = median(|X; — median(X)])/0.674.

For Short’s data, Table I'V gives the values of the maximum GKL, and pGKL, estimates of
poand o for various values of © under the normmal model, as well as MLEs for the all observa-
tions and those after deleting the biggest outlier 5.76. Removal of the large outlier 5.76
reduces the MLE of ¢ from 0,846 to 00552, All the MGKLE. s successfully downweight
the largest outlier 5.76. In addition, the strong downweighting properties of the MGKLE. s
for large values of 7 tend to discard the more moderate outliers 9.71 and 9.87. Fitted normal
densities are shown in Figure 2 along with the Epanechnikov kemel density estimate and the
normal density fit by maximum likelihood and GKL, _ ;. The superionty of the robust fit is
evident.

514 Measurements of the Passages of the Light

We next consider Newceomb’s light speed data (Stigler, 1977). The data were analyzed by
Brown and Hwang (1993}, who attempted to fit the “best approxmmating normal distnbution™

=
=
T2 —_— R
ML
=] ——- Fenel dessile
o
=
=+
]
i} ST
1 . qoF
= o i F-.
. I Y
r 1 = f by
g > i =
5 8 T &

FIGURE 2 MNomal density fits to Short’s 1 763 determinations of the parallax of the sun {Data Set 2).
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TABLE ¥ Fits of a Mormal M, 71 Model to Newcomb's Data Using the Maximum Likelibood { ML), Maximum
Likelihood Without Outlier {ML-CH, and Minimum GKL, and pGEL, Estimation.

T ! (1.3 L5 {7 RY (1. 55 MEL-03 ML
Gkl I 210 3774 24 parlc .52 i) | 2795 X2
& 524 5.0 5.18 514 5.06 4494 504 [LEiTi]
pakL, i 2775 774 774 77 X332 X2 - -
& 525 5.1 522 520 319 518 - —

to the corresponding histogram. For the Newcomb data, Table V gives the values of the
GKL. and pGKL, estimate of g and ¢ for various values of © under the normal model, as
well as MLEs for the full data (ML), and those after deleting —44, and —2, the two obvious
outhers (ML-O).

We have used the Epanechnikov kernel with bandwidth h, = 1.66 MADr™'* Notice that
these estimators exhibit strong outlier resistance properties even for quite small values of ©. A
graphic representation is provided in Figure 3, where the normal densities N{ft, &), fort =0
and 0.5 are superimposed on a histogram of the Newcomb data, together with the kernel density
estimator. With the robust estimator, the estimated normal density fits the main body of histo-
gram very well, unlike the result obtamed with the maximum likelhood estimator,

515 Telephone-line Fanlts

Welch ( 1987) considered data from an experiment to test a method of reducing faults on tele-
phone hines. This data set 1s presented and analyzed in Simpson ( 1989) using the Hellinger
distance. For the telephone-line fault data, the next table gives the values of the GKL. and
pGKL estimates of g and o for varous values of t under the normal model, as well as
MLEs for the full data (ML), and those after deleting the large outlier —988.

Onee again we have used the Epancchnikov kemel with bandwidth b, = 1.66 MADr="5 .
A graphic representation is provided in Figure 4, where the normal densities N (i, &), for
t=10, 0.5 are supenmposed on a histogram of the telephone-lme faults data, together

w0
A —
= —_— L.
------- ML=
=== Kaornal donsily
&
-+
=
a
{;\.\.
&
‘/r‘
=] P ol
= - 0 T R
I T T 1
=0 2L Lk & A0

FIGURE 3  MNormal density fits for Mewcomb data.
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FIGURE 4 MNormal density fits for the telephone-line fmlt data

with the kernel density estimate. Once again the robustness of the proposed estimators is
clear from Table VI and Figure 4.

For the telephone fault data we also computed the dispanty test statistics for testing the
hypothesis Hy: = 0 against Hy: g = 0 under the normal model with ¢ unspecified. The
likelthood ratio test (the one sided ¢ test n this case) produces p-values of 0.3292 and
0.0038 for the above data with and without the outhier respectively — the large outlier reverses
the conclusion and forees the acceptance of Hy. The p-values for the corresponding signed
divergences of the GKLDT s (with = eritical values) are presented in Table VIL Clearly these
p-values are only minimally affected by the outlier, and the presence of the latter does not
change the conclusion. Use of the eritical values of the 1(13) distribution mereases the
p-values slightly, but does not change the conelusions.

5.2 Simulation Results

To keep a clear focus, we restrict the simulations to a Powsson model. In the first study, the
data are generated from the Poisson distnbution with mean 5, and modeled as the Poissoni ()
distribution. Here, as well as in the rest of the paper, three sample sizes n = 20, 50, 100 are
considered. In Table V11, we have presented the bias and the mean square errors of the esti-
mators of ¢ obtained by minimizing the GKL, and pGKL. for several values of © for pure
Powsson data as well as contaminated Powsson data (discussed later) with 3000 replications.
It is clear that the small sample efficiency at the model is a decreasing function of 7. The
penalized versions provide mmproved efficiency for larger values of © under the model,

TABLE V1 Fits of a Mormal My, 571 to the Telephone-line Fault Data Using the Maximum Likelihood (ML,
Maximum Likelihood Withowt Outlier (ML-0Y, and Minimum GKL: and pGEL, Estimation.

T (! i3 {5 L7 .o .99 ML~} ML
GkL, [t 1179 1178 117.7 1175 I 1163 11792 3893

& 1436 1425 141.1 1392 1358 130.5 12761 31023
plkL, I LD 1182 118.3 1184 1184 1183 -

& 14359 143.6 143.2 1428 142.2 141.8 -
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TABLE VIl The p-values for the Test of Hy: p=0 Against H;: jo= 0 with & Unspecified.

T (! {3 (L5 or (Lo LRT
All observations GELIDT, 00050 0.00350 (L0048 0.0044 0.0038 032492
plkKLDT, 00047 00042 (.00346 00028 0.0017
Chutlier deleted GELDT, 00 E 000540 0.0051 (.0044 0.0045 0.0038
plKLDT, 0046 00043 0.0038 0.0031 0.0021

particularly for smaller sample sizes. At sample stee n = 100, the efficiency of the pGKL,
estimator is over 93% compared to the MLE.

MNext, data are gencerated from the 0.9Poisson(S)+ 0.1Poisson(15) mixture, and the
assumed model 15 Poisson( ). Once agam the estimates of (1, and their mean square errors
around the target value of f = 5 are computed. The results, presented in Table VI, show
that the more robust estimators (corresponding to larger values of ©) now start doing better.
The penalized estimators are close to or better in performance than the ordinary versions in
most cases, showing that ther robustness has not been compromised by the effect of the
penalty.

Mext, we generated data from Poisson distributions with 10 the mnge (3.5, 6.5), and
determined the power of each of the tests for the null Hy: f = 5 aganst the two sided alter-
mative based on both the chi-square ertical values and empircally determmed entical values.
The results for the nominal level 7 = 003 are presented in Figure 5 for a few values of © and
are based on sample size 50 with 1000 replications. The thick dashed line represents the

TABLE VIIl Estimated Biases and Mean Square Errors of the Estimators Under Consideration. 5000 Random
Samples were Drman from Poissond5) and 0. 1Poisson(5) + 0.9 Poisson( 15) with Sample Size n= 20, 50, 100.

Foissanf 5l (L1 Faisson{5) + (L9Foisson{ 15)
AL, pGKEL, GEL, pGEL,
T Biax MAE Biax MEE Biax MEE Bias MSE
Sample size n= 20
[} 00074 024493 0.0079 0.2493 1LO03E 1.7522 1.003% 1.7522
[IN] —(.0268 0.2550 —0.0193 0.2542 0.2304 0.4950 02517 0.5035
0.3 —.0693 0.2688 —0.0424 0.2631 11IES 0.4195 0.1563 0.4319
0.5 - 1089 0.2876 —0.0552 0.2710 0.0478 04042 01187 0.4148
0.7 —0.1562 0.3176 —0.0627 0.2787 —0.0202 0.4126 000984 04107
[IR!] —(1.2360 03004 —0.0658 0.2872 —0.1178 0.4672 0.08EL 0.4144
0,99 —(1.3498 {15501 —A.06RST 0.2 16 —0.2450 L6150 00861 0.4187
Sample size n= 5
Ll 00020 0. 1005 00020 0. 1003 109 1.3133 1009 1.3133
[IN ] —0.0174 0.1023 —0.0130 0. 1022 0.2839 0.2547 02902 0.2584
0.3 —0.0423 0. 1061 —0.0266 1. 1048 0.1749 0. 1882 0.1933 01942
0.5 —(.0662 LIS —0.0350 0.1075 0.1193 . 1691 0.1532 0.1761
0.7 —(.0959 0.1205 —.0409 0. 1106 00716 0. 1628 0.1279 . 1686
0.9 —1. 14490 0.1438 —.0452 01146 00083 01712 0. 1050 1. 166R9
099 —0.2361 0. 2046 —.04467 01171 —.0758 0.2180 01015 01681
Sample size n =100
0 00002 00503 00002 0.0503 100G 1.1591 1.6l 1.1591
.1 —0.0120 0.0507 —0.0093 (.0507 03286 0. 1986 03300 0. 1999
0.3 —{1.0285 00520 {0191 005 16 02241 0.1326 0.2307 0. 1458
.5 —0H s .11541 —0.0258 0.0526 0.1759 01119 0. 1878 01145
0.7 — 065 00577 —0.0311 0.0539 0. 1402 .101E 0,159 0.1043
0.4 —0.1010 0.0675 0356 0.0557 01021 (0.00ER 01382 0.(0E5

0.9 —L.1655 (L0903 —0.0374 0.0567 00616 01134 0.12494 0.0970
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FIGURE 5 Estimated powers for the tests under considemtion testing fb: ) = 5 versus fy: 0 # 5 with level
= 0.05. 100 random samp les were drown from Poissond ) with sample size # = 3. (a) GKL, based on chi-square
critical value: (h) GKL, based on empincal ctical values; (o) pGEL, based on chi-square entical value: (d) pGEL,
hased om empirical cntical values.

likelthood ratio test for each case. Notice that, particularly for the penalized divergences, the
tests are very close to the hikelihood mtio tests, and the nominal levels are very close to the
true levels (when vsing chi-square critical values). This s particulardy encouraging smee m
actual practice when one wants to use these tests determining empirical entical values for
cach individual case is obviously not practical.

We next looked at the powers of the methods under contamination. Data are now generated
from 0.9Poisson( 1) + 0. 1Poisson(15) mixture. The results for the power caleulation (both
with chi-square entical values and empirical entical values determined from the pure data)
for the same null hypothesis and for the nominal level 7 = 005 are presented m Figure 6
and are based on sample size 50 with 1000 replications. For comparison purposes the
power curve of the likelihood ratio test for the no contamination case is presented with
the other graphs as the thick solid line. While the power curve of the likelthood mtio test
under contamination shows a dramatic shift with substantial loss of power at several
cases, the other curves are largely unchanged in comparison, demonstrating the relative
stability of these test statistics under contamination.

This suggests that the use of robust tests based on the GKL, family can provide attractive
alternatives o the hkelihood ratio test, and have very good power under pure data and good
stability in level and power when the model is diffused with noise.
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FIGURE & Estimated powers for the tests under consideration testing Ho: 0 = 5 vemsus Hy: 0 5 with level
7= 005 1000 mndom samples were dmwn from (.9Poisson{{l) 4 0. 1 Poisson{15) with sample size n= 50.
{a) GKL; based on chi-square eritical valie; (b) GEL, based on empincal eritical values; (¢) pGEL, based on
chi-square critical value; {d) pGEL; based on empincal critical values.

5.3 Bias Plots for Contaminated Distributions

In order to investigate more obusmess properties of the proposed methods, we have also
looked at the global minimum of the GKL divergence when the assumed model is
Powsson but the true distnbubion 1s a contaminated version of a Pomsson density. The bias
plots of the true functionals are studied as functions of z, the mean of the contaminating dis-
tribution (which 1s also taken to be a Poisson), as well as functions of ¢, the contammating
proportion.

Let Porsson{ M) represent a Poisson distnbation with mean M. For the Poisson model, let
TiF) be the GKL functional (dropping the t subscrpt for brevity) representing the popu-
lation mean. In our first study we have computed “g-influence function™

IF, %[T{[l — g)Poisson( 5) + sPoisson(z)} — T{Poisson{3)}]

%[T{[l — &)Poisson(5) + ePaisson(z)} — 5]. 4
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FIGURE 7 Influence function and s-influence functions.

MNotice that one gets the ordinary influence function when one takes the limit of the difference
quotient {a standardized version of the bias) on the right hand side of (9) as & — 0. In our
spectfic case we have chosen © = 013, allowed = to vary from 5 to 30, and used four different
values of & The results are given in Figure 7. Notice that in each case the s-mfluence function
has a redescending nature, unlike the actual influence function, which is unbounded
{see See. 4.1) and shown on the same figure as the solid black line. The above behavior
of the GKL 15 similar to that of the Hellinger distance, where the s-influence function
twrns out to be a bounded contmuous function even when the influence function s
unbounded ( Beran, 1977).

As asecond example we looked at the effect of inereasing the contammating proportion on
the minmmum GKL functional 7). Once agam we have computed the functional correspond-
mg to T = (1.5 at the contaminated distribution (1 — £)Poisson( 3) + ePoisson(z), but now = 1s
kept fived and £ 15 allowed to vary. The value of the functional corresponding to two different
seenanos (z = 15 and 20) are plotted in Figures 8(a) and (c). In either case, the relative sta-
bility of the functional for values of & = 0.5 is clear. Around & = 0.5 there s a jump in the
functional to a value close to the true value of the functional at the contaminating component.
MNotice that for & < 0.5, the functional becomes more stable under contammation as the con-
taminating component 15 further removed from the true one. The solid black line representing
the change m the maximum likelihood functional provides the basis for comparison.
Figures 8(b) and (d) provide a blown-up comer of the plot of the functionals close to the
value & = (1.

6 CONCLUMNG REMARKS

We have numerically demonstrated that mference procedures based on the minimized
GKL, divergence can provide attractive alternatives to classical mference procedures
in many situations. The procedure leads to 50% estimation breakdown under outlier
sequences, and is fairly competitive in performance in relation with the optimal methods.
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FIGURE § Biss plot for the MGKLE, with & = {1 — £)Poissomi 5) + »Poisson(z).

A penabized version generally produces better efficiency results for large values of 1,
apparently without compromising their robustmess properties. The asymptotic optimality of
the methods are direct consequences of Lindsay (1994) m discrete models. The correspond-
mg theoretical properties under continuous models will be dealt with by the authors mna
sequel paper.

We conclude with a brief discussion on the possible selection of © in a practical situation
on the basis of our numerical studies. Although not entirely comprehensive, our studies
appear to suggest the following featres for the dispanty:

{a) For pure data, the estimator corresponding to © =0 (which actually represents the
maximum likelihood estimator) performs the best, and the performance of the estimators
become relatively poor as the value of © increases;
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{b) there is little difference between the ordinary and penalized estimators for relatively
smaller values of t, but there appears to be a substantial mmprovement i the attained
mean square error due to the penalty for values of 1 close to 1;

{c) under contamination, the performance of the maximum likelibood estimator (7 =0) s
senously distorted, but the estimators are faidy robust for all other values of

{d) for the contaminated examples, the best performer vares over the sample size.

We hope that the above observations can provide some guideline to practitioners for
choosing the value of © in particular problems depending on specific needs. A universal
recommendation suttable for all situations appears impossible at the moment. However,
based on the above observations we make the followmng compromise recommendations:
(1) wherever the expenimenter 15 not sure about the quality of the data, the minpmum GKL
estimator corresponding to © = (1.5 may be used; the penalty, which appears to make this par-
ticular chowe function slightly better at the model and slightly worse under contamination
can be used at the experimenters discretion; (1) however, whenever the expenmenter is fairdy
certain about the purity of the data, we recommend the choice of a very small value of © (but
not T =, since it can lead to disaster if the expermenter has erred in hisher judgment);
1) when the experimenter has a strong reason to believe that the data may contain a fair
amount of contamination, we recommend the use of a very large value of 1 together with
the penalty.
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APPENDIX

Proaf of Lemma 1 Smee i) is strictly convex on (0, 1), we have Dig, f) = 0 with the
equality only when g = . For fixed fand g € (0, /) look at DNg, ) as a function of g.

| oo

Dig.f) = k}g( £ )ﬂ{}, Ve € (0.1).

e+ I

=]
r-]
Al —

Sice -, ) 1s stictly decreasing for g € (0, /) and right-contmuous at g =0, we have
Dig, )= D0, f) for g € (0, ) with the equality only when g = 0. Similarly, Dig. ) =
Dig. 0) for € (0,g). m

FProof of Theorem 2 1t follows from Lemma 1 that
[DIE{I}~f'{-T]] = [ D{0, f{x) + I Ngix), 0
i dg=f W=

1 1 1 1
< [0, + [ Dt 0 = Lo (3) + Lo )-

It is easily shown that the equality holds only when the two densities have disjoint support
almost everywhere. |

Proof of Theorem 3 Let fl, be the minimizer of GKL, (k. . f#). Given a level of con-
tamination & suppose, if possible, breakdown occurs, that 1s there exists a sequence (K, | such
that |1, ] — oo where 0, = To(H. ). Define 4, = {x: glx) = max{f.(x), G_(x))}

GK L: {h.' it ~_|f.;i'n. } = [D{ h.'.. J.lr{-T:L _f.;i'n.{-r}}

o [ D{h.'..m{-rLﬁi'n.{-T” + [ -D:ha.'.nr{-rl~f-;?n.{-rl}~
JA,, Mz

From Al [‘n by lx) — 0, and from A3, .[a.l.f'li'm{'ﬂ — (as m — oo, Simularly from Al and
A3, I'i gix) — 0 as m — oo, Thus under g(-), the set 45, converges to a set of zero pro-
hability, while under k,(-) and fi (), the set 4, converges to a set of zero probability.
Thus on Ay, DA . ix), fo,(x)) — D01 —e)eix), 0) as m — oo and

j D) fi () — j
A,

FrE]

ol —z]g{_r},'[}}‘ — 0

by dominated convergence theorem and Lemma 1. Notice that .I;;,nD[{l —e)gix), 0) =
I[D[{l —&)gix), 0 = (1 —ed /T logll /7). Similady we have

— ().

j D wx). fo(x)) — I.Dl:li-m{x}ufé}'.‘-{x}}
&£ /
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Notice that [ Dk, (x). fo_(x)) = C.(z — 1) by Jensen’s mequality. It follows that

1
lim inf GKL (A, . fo,) = Coe — 1)+ (1 —?}—l{]f:_( )
=G
W will denote the right hand side of the above mequality by ay ().

We will have a contradiction to our assumption of the existence of a sequence {k,} for
which breakdown oceurs if we can show that there exists a constant value (1 in the parameter
space such that

lim sup GKL . (he . fir ) < a1 (2) (10)

Ar— S0

as then the {1, } sequence above could not minimize GKL . for every m. We will show that this
is true for all & < 1,2 under the model where (% is the minimizer of [ D((1 — &)g(x), fulx)).
Using analogous techniques, assumptions Al, A2, and Lemma 1 we obtain, for any fixed (1,

lim GKL.(f. . fa) =

ar— G

( ) e [D{{l — &gl x). falx))

rill o

> - I[]f:_( ) mf [D[{l — £)glx). falxh). (11}

with equality for = ", Let aa(2) = (1/Dlog(l /1) + [ D{(1 — )g(x). fr (x)). Notice from
{11) that among all fixed 0 the divergence GKL.(A, . fi) 15 minimized in the limit by (7,

If g(-) = f5,(-). that 1s the true distnbution belongs to the model, [ DN(1 — &), (x). fo.(x) =
C.(—&) which is also the lower bound (over 0 € @) for [D((1 — £l (x). fa(x)). Thus in this
case (F =, and from (11},

lim GKL.(h .. f)= Ilm GKL( . f3) = i (1) + (L —&). (12)
T

=30

As a result asymptotically there 15 no breakdown for £ level contammation when
asle) = ap(g), where as(g) is the right hand sides of Eq. (12). Note that a¢(2) and asiz) are
strictly decreasing and inereasing respectively m g, and a(1/2) = a3 1/2), so that asympto-
tically there is no breakdown and lim sup,, . [T H, )| = oo for e = 1 /2.

More generally when g(-) 1 not in the model, asymptotically there 1s no breakdown for
£ = &*, where £* is given by &* = inf{e: a(g) = aa(2)}. [ |
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