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Abstract

This paper presents a segmentation based lossy image compression (SLIC) algorithm. The segmentation scheme (Biswas
and Pal, Pattern Recog. Lett. 21 (2000)), entropy based and hierarchical in nature, provides sub-images of homogeneous
regions. The compression algorithm encodes a praylevel image through global approximations of sub-images by 2-d Bezier
Bernstein polynomial along with corrections, if needed, over regions in sub-images by local approximation; contours by 1-d
Bezier-Bermstein polynomial and texture, if present, by Huffman coding scheme using Hilbert scan on texture blocks. Order of
the 2-d polynomials has been computed with the help of an image quality index (1C1). The proposed compression algorithm
also examines the compression result by encoding contours through their approximation based on stretching of discrete circular
arcs. Stretching is done by affine transformation. Compression results in both the cases have been compared with JPEG results,
Attempts have been made to evaluate the quality of reconstructed images through a fidelity vector whose components are

different objective measures.
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1. Introduction

During the last two decades, various image compression
techniques have been developed. Each of these meth-
ods has its own merits and demerits, and each has its
own compression ratio. Our coding methodology is seg-
mentation based. 1t is seen that the segmentation based
techniques [1-3] is relatively easy to understand. In this
paper, we describe an image compression algorithm which
uses 2-d Bezier-Bernstein polynomial function for en-
coding gray values in segmented sub-images. We name
this algorithm sub-image based lossy image compression
{SLIC). SLIC encodes images through approximation of
segmented regions by 2-d Bezier-Bemstein polynomial,
contours by 1-d Bezier-Bemstein polynomial and texture
by Huffman coding scheme using Hilbert scan on texture
blocks. The segmentation algorithm [4] used in SLIC algo-
rithm is hierarchical in nature and very much suitable for

image compression. SLIC also examines the compression
result under a different contour encoding scheme, based on
approximation of contours by stetching discrete circular
arcs where stretching is done by affine transformation [5].
The novelty of the proposed work lies in the concept
behind the approximation of sub-images for their encod-
ing. The approximation for hierarchical segmentation [4] is
different from approximation of sub-images for their encod-
ing. The former examines the segmentation of sub-images
with the assurance that more psycho visually appealing
reconstruction can be made while the latter actually does the
approximation. The decomposition of contours into arc and
line segments at the encoding stage and their reconstruction
at the decoding stage are based on methods described in
Ref. [5.6]. However, we follow a different coding strategy
in the proposed work for dealing with real-life images. Due
to the dynamic nature of the coding scheme, arc and line
segments of different types (depending on sizes) require
different number of bits. Since, for different images, the
types of arc and line segments reasonably vary in number,
we provide an average estimate for the number of bits,
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instead of actual number of bits, for contour coding for right
judgement. Computation of actual number of bits for con-
tour coding is straightforward and is described for images
of two different spatial resolutions. Computing an estimate
for contour coding is already in use [2.7.8]. One can con-
sult, in this context, different contour coding techniques
{see Ref. [9] and other references in it) for a comparative
study. Separation and encoding of texture parts are new in
concept. We have examined the feasibility of Hilbert-scan
image for texture blocks. About the evaluation of the re-
constructed images, we have made an attempt to provide
a fidelity vector. The components of the fidelity vector are
different objective measures that examine different impor-
tant features of images. Thus, smaller the values of the
components of the fidelity vectors of two images, larger is
the resemblance between the two images.

We describe in Section 2 the details of the SLIC algo-
rithm and the expression for compression ratio. We, also,
describe in Section 2 the approximation of sub-images for
encoding and reconstruction and, texture and contour cod-
ing procedures. We explain, in details, how contowrs can
be encoded by variable length arc and line segments under
two different resolutions of images. In Section 3 we have
proposed a fidelity vector for the quantitative assessment
of reconstructed images. The components of the fidelity
vector are the indices of different objective measures. Sec-
tion 4 describes the results and discussions of the proposed
algorithm under two different contour coding schemes.
The algorithm has been tested on images using two spatial
resolutions (64 = 64 and 256 = 236). For each size, the
compression ratio and quality { PSNR) of the reconstructed
images have been computed. Finally, the reconstructed im-
ages have been compared with those of JPEG results both
qualitatively and quantitatively. The compression ratio is
found to be either superior to or comparable with those
of JPEG results. The fidelity vector, also is found to have
good discriminating ability between the original and re-
constructed images. Section 4 also, describes the effect of
the increase of spatial resolution on compression ratio and
quality through a comparative study. Finally, in Section 5
we conclude about the effectiveness of the SLIC algorithm.

2. SLIC: sub-image based lossy image compression

In the approximate coding of digital still images, one is
mainly concerned with the compression ratio and the fi-
delity of the reconstructed images. The previous techniques
[1.2] uses mainly the local approximation of the segmented
patches by a low degree polynomial function. Some of the
implementation difficulties of the technique described in Ref,
[1] have been reported in Ref. [3]. Edenet al. [10] mentioned
about the approximation of the entive image, using separable
properties in the least square of bidimensional polynomial.
In this process, they computed the inversion of two Han-
kel matrices and did four matrix multiplications. It involved

some matrices of the same order as that of the original im-
age matrix. They claimed gain in computation time in the
separable case over that of the non-separable case. But the
feasibility of the scheme was not tested on images.

We explore in this paper, compression by globally ap-
proximating many segmented patches by a single poly-
nomial function together with local correction, if needed.
For this, all such patches should have similar gray levels.
The segmented patches to be approximated by a single
polynomial are extracted under a single threshold. Such
segmented patches can be viewed as different surface
patches of almost similar gray values and the collection of
all such patches under a single threshold is defined as a
sub-image. The segmentation scheme [4] recursively uses
an object/background thresholding algorithm based on con-
ditional entropy. Thresholding based segmentation strategy
provides an advantage over that done by split and merge
technique [11]. The latter does not provide any group of
patches or regions of similar gray levels at a time. It is,
therefore, preferable to choose a thresholding based sep-
mentation strategy for coding application. However, the
gray level distribution over some of the image surface
patches may be such that the global approximation is not
adequate for them. We call such patches, under a given
threshold, busy patches. To overcome this difficulty, under
such circumstances, a lower order (compared to that of the
global approximation) polynomial function is used for local
approximation of each of the residual surface patches in the
sub-image. Therefore, the sub-image is reconstructed using
the global swface along with the local residual surfaces for
the busy patches if they are really present. Such a hybrid
approximation scheme helps to improve the compression
ratio. Note that exactly the same kind of approximation has
been used during segmentation of an image [4]. Thus, com-
pression can use necessary information of approximation
from the segmentation of images.

Contours are coded by line and arc segments. Sometimes
very small regions are found in images in the form of a tex-
ture, and region contours are found to fuctuate very rapidly
so that a large number of knots or key pixels is required on
contours for approximation. Under such conditions, encod-
ing of contours by line and arc segments is not economical.
Such regions can be separated out in the form of blocks
from images, if they are really present. These blocks are
then suitably encoded. Fig. 1 shows the 8 bit Lena image of
size 256 x 256 and its segmentation without and with tex-
ture regions. Contour images for some hierarchical thresh-
olds are shown in Fig. 2. In Fig. 1{b), all the gray values in
thresholded regions have been replaced by the correspond-
ing threshold value. This approach is simple and straight-
forward, and displays the segmented image noticeably well,
provided the difference of gray values at respective pixel
positions between the two images is adequate to be visually
perceived. However, to perceive difference between the two
images one can use completely different values as we have
done for Fig. 1{c). Here, we have chosen zero gray values
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Fig. 1. (a) Input Lena image (b)) segmentation without textune region (¢) segmentation with texture region,
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Fig. 2. Comtours of Lena image for some hierarchical thresholds,

{completely dark) for textured regions. To get segmented
images with texture regions, we have first found out the tex-
tured regions and then the non-textured segmented regions
from the rest of the regions. Their gray values have been
replaced by respective threshold values.

To see how such a segmentation scheme helps in im-
age compression ratio, we consider the following case as
an example. Suppose in a threshold band limited sub-image
Fpglx, v) we have N, surface patches, then for the local
quadratic approximation one requires 6A, coefficients. On
the other hand, if we have the global quadratic approxima-
tion of the sub-image and local planar approximation of the
residual surface patches, the total number of coefficients is
AN, + 6. For an improvement in compression ratio of the
global-local approximation over the conventional local ap-

proximation we must have 60, = 30, +6, 1.e, Mo = 2. This
implies a positive gain in storage if the sub-image has more
than two surface patches which is usually the case.

For an input image of & — 1 thresholds, we have &
sub-images. If N, Ax . A are the number of sparse
image surface patches in them, then considering variable
order global approximation of & sub-images and variable
order approximation for sparse residual surface patches, the
compression ratio for an M x M image with L gray levels
becomes,

a(Th G Th G} + B+ By
o M? log, L :

where O, § = 1L2,....k is the number of coefficients
required for the ith sub-image for variable order global

(1)
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approximation and C. is the number of coefficients for re-
gions that require residual approximation. We assign 2 num-
ber of bits for each coefficient. . is the overhead for all
patches due to such correction. [7 is the overhead due to dif-
ferent orders of approximation of sub-images and 7 is the
number of bits for contour representation of the image.

If v is the number of bits required for encoding texture
blocks, then Eq. (1) becomes

R.= A py Cut Ty Cied + A+ + vty

2
M*log, L %)

Mote that, the number of bits for gray level approximation,
in general, is

k k
;;:.IJ':I(ZC.-&*'ZC«)+|ﬂ‘.+|ﬁ+1'. {3}
d=1 dam]

If the global approximation itself is sufficient to meet the
desired error criterion so that the approximation of residual
error is not needed, then the term containing O, and hence
fi. in Eq. (2} do not contribute anything and under such
conditions, Eq. (2) reduces to

2 i CatBrrty
MElog, L :

R.= (4}
Further, when all global approximations are seen to be of
fixed order and local residual approximations also are of
fixed order, we get the total number A, of coefficients as,

MNe=Cik+ CiNi + Ne 4+ - - -+ Mi ), (3)

where C, is the number of coefficients required for global
approximation of a sub-image and C; is the number of coef-
ficients for local residual surface approximation of each of
the My, Nz .. N patches. Compression ratio K, in this case
reduces to

_ N+ vty

- Milog, L (6)

MNote that when all the regions MM ... N in oall
sub-images are locally approximated for their residual sur-
face, we do not need to store information for 7 and /..
So these two terms do not contribute anything. Kunt et al.
[1] observed small errors in data approximation when each
surface is represented by its r pixels. These r pixels on the
surface are used to recompute the coefficients. The only
possible error appears in the quantization of each pixel. We
have followed the same strategy and examined both the
cases in our work. Since each pixel can be represented by
log, L bits, Eq. (2) can be rewritten as

R bog, IiNy. + B+ +v+7y
o MZlog, L ’

(7

where N e is the total number of surface pixels. Number of
bits required for gray level approximation in this case is,

Bar =logs LNy + e + f +v. (%)

In the following we discuss about the choice of weights
in the least-square approximation for the proposed coding
scheme.

21 Approximation and cheice of weighis

The sub-images obtained through the segmentation
scheme as described in Ref. [4] have been used for com-
pression. The approximation algorithms are exactly the
same as used for segmentation but the weights are different
from unity. Details of the approximation algorithms are
given in Ref. [4]. For compression, weights are chosen
in a way described below. But before describing that, for
completeness and clear understanding, we first briefly state
the approximation problem. We have chosen the Bezier
Bernstein polynomial because owr segmentation algorithm
was basically designed for image compression, and Bezier
Bernstein polynomial provides a number of merits in com-
pression and reconstruction. The Bezier-Bemstein surface
is a tensor product swrface and is given by

g
s.qu-{”-. vh= Z Z qﬁa;t{“}‘i’;{ v

Fell]l ze=l

roq
:Z ZH,,,U_—.,‘.J{! G T N ) et
rudl zap

9}

where w, v € [0, 1] and B p= p/{ p—r e, Dog=g!{g—2z)2".
pr and g define the order of the Bezier-Bernstein surface.

To approximate an arbitrary image surface f{x, ) of
size M = M, f(x, ) should be defined in terms of a para-
metric surface (here sy with the parameters u and v both
in [0, 1]. Therefore, the function f{x v} can be thought in
terms giw, o) where u={i— 1) M =1} i=1.2,..., M oand
p=(j— 1M — 1) j=12,... .M.

We choose the weighted least-square technique for esti-
mation of parameters P to be used for reconstruction of
the decoded surface. Although, the total square error for the
conventional unweighted least-square approximation may
be less than that for the weighted least square, the approxi-
mation produced by the latter may be psychovisually more
appealing than that by the former, provided weights are cho-
sen judiciously. For an image, edge points are more infor-
mative than the homogeneous regions because edges are the
distinct features of an image. Thus, edges should be given
more emphasis while approximating an image patch and
this can be done through weighted least square. Thus, the
weighted squared error can be written as

E= Z Z [ ot 0 Wap(aa, 0} — 5 it 1))
— z Z [ {ae, 0 Wg{ue,v)

Bog
_szﬁ'ur{ﬂ}fﬁ:q{l‘}!’};]{ (10)

=l ze=ll)
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where W{w, v) is the weight associated with the pixel cor-
responding to (w, v). For p = g, the swiace spgliv) is
defined on a square support. Since, Wiw,v) is the weight
associated with each pixel, it can be considered constant for
that pixel. Therefore, one need to find out the weight ma-
trix before solving equations for the weighted least square.
Omee W (w, v) is known, these equations reduce to a system
of linear equations and can be solved by any conventional
technique.

We emphasize that for order determination we use
the unweighted approximation scheme. In the weighted
least-square approximation of regions, special weights are
given to boundary pixels sothat the error, in the mean square
sense, over the boundary is less than that in the unweighted
least-square approximation. For this, we have considered
the gradients of boundary pixels as their weights. One can
also consider higher power of gradients. The gradients of
the boundary pixels, Giu,v) and hence the weights W (i, v)
in Eq. (10) can be calculated using the following equation.

Wu.)=(G: + Ga)'", (11)

where G, = (et + Loy — 2l v+ gl — Ly and &, =
gla v + 1) — 2w, v) + g, v — 1)

Image compression in owr scheme is a two stage process.
In stage 2, for encoding we approximate the sub-images
minimizing a weighted least-square error with a polynomial
of the same order as determined in stage 1 (for segmenta-
tion}. The same order is used because the order { global and
also local) of a sub-image or the nature of approximation
is not expected to change due to merging of small regions.
However, one can once again find the order of approxima-
tion before encoding. The reason is, the best fit surface does
not necessarily represent psychovisually the most appeal-
ing (informative) surface. If we try to find the optimal or-
der of the polynomial using weighted least square, then that
optimal order is expected to be more than that for the un-
weighted least square. Consequently, the compression ratio
will go down. Of course, the two orders cannot be widely
different. Thus, there is a need to compromise. We have to
find a polynomial that can approximate the surface satisfac-
torily and at the same time can preserve information which is
psychovisually important and that is exactly what has been
attempted to achieve by the proposed scheme.

2401 Polynomial order derermination

The order of the polynomial can be determined using
eitherthe classical approach or the image quality index (101)
[12]. In the classical approach. the order of the Bezier
Bernstein polynomial, in one dimension is given by [13]

M
p= 3ot (12}

where M is the maximum value of the function present in
the data set for an absolute error of approximation &, One

can search the data set and determine 4. The extension to
two dimension is straightforward. On the other hand, 101
reflects the average contrast (with respect to background)
per pixel in the image. So, ifthe original and approximated
images have nearly the same Q] then the approximated
image is expected to preserve the boundary contrast in the
average sense. We, therefore, use very small ANOF between
the input and approximated s b-images as an indicator of
the adequacy of the polynomial order. In order to determine
optimal polynomial, we increase the order of the polynomial
unless the following condition is satisfied.

|{IQ-! Yinpar — {IQ-! }d,u,ur.-).u.'.lulml'l = Ea, {13)

where £, is a small positive number.
For an M = N image, 1Q1 is calculated using

1. Z:{J E_f.: |'1"-H-'_n'|3
MN - T by

where ARy is the difference of luminance 8y at the (i, j)th
pixel and its immediate back ground luminance 8. It is seen
that | A8y | /8 isthe contrast O at the (& }th pixel according
to the concept of psycho-visual perception [14].

ol (14}

= — (15)
fi; is the homogeneity of the (i, /)th pixel and is given by

2 — | By, — B,
hy = Lir=t e"pg By —Br} (16)

where B, indicates the intensity of a background pixel in the
3 x 3 neighborhood, Nu(L 7 of (i, ). Thus, the background
of (i, j)th pixel is defined with respect to surround ing pixels
in the neighborhood without the (7, /)th pixel.

Thus, the condition in Eq. {13) follows a psycho-visual
criterion. A low value of £, produces psycho-visually a
good quality image. Note that, for an ordinary least-square
approximation using polynomial surface, the error over
the boundary points normally is higher than that over the
interior  points. Therefore, any polynomial with order
determined relative to an error function measured over the
boundary points, is expected to provide a good approxima-
tion for the interior points.

22 Texture coding

To encode the texture blocks we, first of all, Hilbert scan
[15] each block., An Hilbert scanned image or simply an
Hilbert image corresponding to a gravlevel image, is an
1-d image with its pixels identical to those in the graylevel
image through which the Hilbert curve passes. Hilbert drew
acurve having the space filling property in #* and he found
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Fig. 3. Hilbert curve with different resolutions.

a one-to-one mapping between segments on the line and
quadrants on the square. The merit of the curve is to pass
through all points on a quadrant and always to move to the
neighboring quadrant. Hilbert curves with different resolu-
tions are shown in Fig. 3.

The efficiency of Hilbert scan has alveady been reported
in 1-d image compression [16]. In our texture compression
scheme, Hilbert scan converts each texture block into its
corresponding 1-d Hilbert image. Line segments are thenex-
tracted from these Hilbert images in a straightforward way
because texture blocks are all labeled by the threshold val-
ues. Also, since the blocks are textured in nature, we get tiny
line segments in large number. Repetition of line segments
of identical size and identical labels is very frequent. Huff-
man coding, therefore, provides good compression for them,
Since Hilbert scan is used for texture blocks, one must be
able to express the block size compatible to Hilbert image.
Therefore, the choice of the window size for extraction of
texture blocks can be made very easily. We have chosen the
block size equal to 16, Number of bits for texture coding is
the total number of bits required for all the blocks, te.. v in
Eq. (4) is given by

N
Y= E Vis
i=1

where v, is the number of bits for the ith texture block and
N 18 the total number of texture blocks.

(17}

2.3 Contour coding

Contours of segmented regions are coded using the
methodologies described in Refs. [5,6]. Biswas and Pal
uses, l-dimensional Bezier-Bernstein polynomial while
Biswas [5] uses stretched discrete circular arcs for encod-
ing contour images. In encoding contowrs of segmented
regions, they are processed once again as described below,
to remove redundancy. Regions in each of the & sub-images

{k — 1, being the number of thresholds) have their own
contours labeled respectively from 1 to & All these con-
tours need not be coded because of redundancy. We have
reduced this redundancy in two stages. In the first stage, we
remove the contours of all regions in the sub-image with
maximum boundary or contour length compared to those in
other sub-images. The reason behind this removal is that the
contours of (& — 1) sub-images uniquely define the contour
geometry for the remaining sub-image. In the second stage,
the contour map for (& — 1) sub-images is examined to get
a representation suitable for coding. Since the regions are
adjacent to each other and each region is defined by its own
boundary, we have “double contouring” in the contour map
of an image. Note that the contour of one region defines
part of other adjacent regions. In order to remove double
contouring, we consider the following contour processing
scheme, The part of a contour which is defined by con-
tour of some other regions, is deleted and the non-deleted
contour fragments are encoded. Let us now elaborate it.

231 Removal of double contouring

We, first of all, consider a particular region (say, the jth
region of /th sub-image ) £y, of a fixed label / and examine
if the regions of other labels are adjacent to €. We call
the contowr of £, as primary contour and contowrs of the
adjacent regions as adjacent contours. The primary contour
is first encoded. The part of adjacent contours defined by
the primary contour is then examined and deleted. Also dif-
ferent parts of a higher labeled contour defined by its adja-
cent lower labeled contours are deleted provided the deleted
segments are all connected. Thus, the deletion is always
done by lower labeled adjacent contours. Non-deleted con-
tour fragments are then encoded. Lower labeled contours
are encoded first. The process is repeated until all contours
of different labels adjacent to a primary contour are exam-
ined for deletion and encoded. Note that the same primary
contour may be considered more than once to examine and
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encode all adjacent contours but the primary contour is to
be encoded only once. This happens if a primary contour
has more than one adjacent contours of the same label. All
other primary contours having the same label are then se-
quentially considered. The entire process is repeated for re-
gions of different labels. To explain the contour processing
scheme more clearly, we consider a (& + 1) bit status word
W, =X XiX2 . X)L It indicates the status of the primary
and adjacent contours. First bit, X, in B, always shows the
status of the primary contour. X, = 1 indicates that the pri-
mary contour is to be encoded along with adjacent contours
but X; = 0 indicates the primary contour is already encoded
and only the adjacent contours need to be examined and
encoded. The position of first non-zero bit in XX ... A
denotes the label of the primary contour. For an example,
consider B: =1, 111101101, According to the status word,
the primary contour has label 1 and adjacent contours have
labels 2, 3,4, 6, 7 and 9. Further the adjacent contours with
labels 2, 3, 4, 6, 7, 9 must have some part of their contours
defined by the primary contour. The defined part must be
deleted in each case. Since X: = 1, the primary contour must
also be encoded. Similarly, W,=0, 101100101 indicates that
primary contour has label 1. The primary contour must not
be encoded because it has the status word X, = 0. Contours
with labels 3, 4, 7 and 9 are to be examined for deletion and
encoded if required. Note that we consider, sequentially, all
the primary contours of a fixed label. As a result, when we
move on toa primary contour of label &, all the bits in W
from 2 to (k — 1} are all zeros. Therefore, if N is the num-
ber of primary contours, the number of bits Ny,. required o
preserve the region adjacency information, is given by

232 Encoding of primary and adiacent contours using
{-d Bezier—Bemstein polynomialt Approach |

Key pixels are detected on the primary contowr as well
as on the non-deleted contour fragments to serve as knots.
Key pixels are basically points of high curvature and inflex-
ion points. The key pixels on contours are such that an arc
between any two key pixels remains always confined within
a right triangle with its base as the line joining the two key
pixels. As a result, between two consecutive key pixels con-
tour fragments are decomposed either into straight line or
arc segments [6,17]. Each of the arcs is approximated by a
1-d Bezier-Bernstein polynomial and so can be viewed as a
Bezier-Bemstein arc. We consider the parametric represen-
tation of arcs because it is axis independent. Given the start-
ing point, each line segment requires one point while an arc
needs two points for their description. Since the selection
of key pixels depend on high curvature, any segment with
rapid changes of curvature will have more number of key
points (dense) than a segment with less curvature change.
Mote that line and arc segments between knots, therefore,
are of variable sizes. Obviously, the line and arc segments
between key pixels have smaller length where the key pixels

are dense. Thus, key pixels (dense and non-dense) captures
the structure of the contour and helps to maintain curvature
of the entire contour at the time of reconstruction. Now,
to encode an arc e first consider the end pixel of the arc,
MNext, we encode the difference of co-ordinates {Ax, Ay)
of the pixel on the arc at the parameter value, t = 1/2 and
the mid pixel of the base of the arc. Since an arc between
two key pixels may or may not be approximated by a sin-
gle quadratic Bezier-Bernstein polynomial, to ensure good
approximation and encoding, we restrict the minimum and
the maximum number of pixels on an arc. For a 64 = 64 im-
age these numbers are taken 12 and 30 respectively, while
for a 256 = 256 image these numbers are assumed to be 20
and 40, respectively. In other words, for a 64 =« 64 image
the length of every arc is restricted to lie between 12 and 30
while for a 256 = 256 image, the length of every arc is as-
sumed to lie between 20 and 40. To find out the number of
bits required to encode Axand Ay, we consider a few steps
from 1-d quadratic B-B polynomial. Position co-ordinates
of the point on the arc at r = 1/2 are,

xe ={1 = 1V + 2601 — Ny + L2

¥ , M1, X0
== 4+ 4= 19
g R (19}

ya={1 = tFya+ 201 = )1 + £

ade M,
4 T

Here, {xo, Vo) and (xz, v2 ) ave respectively the start and end
pixels of an are, and at these two points, tangents to the
reconstructed arc have their point of intersection at (x, yi ).
Since, we are using relative co-ordinates, (¥, Va ) is always
the origin of the running frame of axes and hence, we take
%, =0and v, =0. Therefore, Eq. {19} reduces to

v _.'l:'j +.'l:'3
R T
P L 5
Ya= 5+ 7 (20

The mid point of the base of the arc is given by (x, =
x2/2, vm = y¥2/2). The difference thus becomes,

Ax =X0— Xm

oz X1 ¥ By i
T T
Ay = Vo= Vm
B . B
= + - ¥Ym.
5. &

Since an arc between any two key pixels remains always
confined within a right triangle with its base as the line join-
ing the two key pixels, the point of intersection of tangents
at two ends of the arc also remains within this right triangle.
Therefore, x;, can take on its position anywhere between 0
and xz, and y; between 0 and y2 with respect to the running
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axes of co-ordinates. Thus, we get three different cases as
given below.

Case I: x; =0
X2 X2 a y
Ax = T Xpp= — e gince x, = x3/2.
Case II: x; =x2
X Xa X2
Arx=—+= —x,==.
IR Rt F |
Case Ul x) =xx
X x
Ax = ; + L xm=10.

Thus, we see that | Ax| has its maximum equal to x:/4 while
its minimum equals zero. For odd xx, we take [x2/2] or
[x2/2 | depending on whether x; is greater or less than xx so
that their difference remains small. Same is the case for ;.
Therefore, the number of bits required to encode Ax and Ay
can be dynamically decided based on xz and y: respectively
{end pixel of the arc). For a 64 = 64 image, the maximum
number of pixels on an arc, we have assumed, is 30. Hence,
its base is always less than 30. So the end pixel can always
be encoded by 5 bits. Therefore, Ax < 30/4 which is 7.5,
Similarly, A v < 7.5, In the discrete case, we consider Ax =
#and Ay = 8 Thus, we get the following bit requirements
for an arc in
64« 64 image 256 x 256 image
identity (line or arc): 1 bit.
Xt 5 bits; xat b bits;

Vb 3 bits; Va6 bits;

quadrant information: 2 bits; quadrant information: 2 bits;
At log, [x:/4] bits; A log, [x2/4] bits;

Ay log, [ y2/4)] bits; Ay log, [ v2/4]: bits

sign for Ax: 1 bit; sign for Ax: 1 bit;

sign for Aoy 1 bit; sign for Ay 1 bit

identity (line or arc): 1 bit.

Mote that the number of bits used to encode of Ax and
Ay varies with the number of pixels on arcs. Thus, for a
256 » 256 image, we need 25 bits for an arc of length 33
to 40 pixels and 23 bits for an arc of length less than or
equal to 32, Number of types of arcs of 33 to 40 pixels is
40-33+1=RBandof20to32 pixels s 32— 20+1=13. Total
number ofbits for these types of arcs is B+ 254+ 134 23=400
and the total number of pixels on these types of arcs is
4473+ 13426 =030, Assuming arcs of all possible lengths
are equally probable, the average bit per contour pixel on
arc in a 256 = 256 image is 499630 = 0.79 bits/pixel.

For a 64 « 64 image, an arc of length 17 to 30 pixels needs
21 bits while 19 bits are needed for o arc of length less than
or equal to 16. This gives an average of 0.97 bits/contour
pixel on arc. Number of types of arcs less than or equal to 16
is 16— 12+ 1 =35 and that greater than 161530 — 17+ 1=14,

For a line segment, we set the minimum and maximum
number of pixels to 4 and 8. respectively for both 64 x 64

and 256 x 256 images. Chosen length for a line segment
is small enough to maintain high accuracy of the curvature
of contour lines. Here, we encode straightaway the absolute
difference (x;, yy) between the start and end points of the
line segment. Thus, we need the following bits for images
of two different sizes.
64 = 04 image 256 » 256 image

identity (line or arc): 1 bit.  identity (line or arc): 1 bit.
Xyt 3 hits; Xyt A bits;

Va3 bits; Va3 bits;

quadrant information: 2 bits; quadrant information: 2 bits;

This gives atotal of 9 bits, i.e., a maximum of (94 ) or 2.25
bits/pixel and a minimuwm of (98) or 1. 125 bits/pixel. One
can also find the number of bits for line segments of all
possible lengths. Here, the number of types of line segments
of different lengths is 8 — 4 + 1 = 5. Total number of pixels
for these types of line segments s 4+ 5 +6+ - + 8=
5/2(8 +4)=30. Considering all such types of line segments
are equally probable, we have an average of 5 +9/30 bits or
1.5 bits for a contour pixel on line segments.

233 Sarting pixels

For a 64 x 64 image, we consider 12 bits and for a
256 x 256 image 16 bits per starting pixel. Therefore, the
number of bits for contour pixels can be computed using the
following equations.

Josxet = N + 12N + 097N + L3N, (21)

']'?_ﬁ‘n-c_?&‘\::"lrbp + iﬁl"lr.s.lr + 0.79N. + 13N, {22}

where Ny p is the number of starting pixels on contours. Num-
ber of contour pixels on arc and line segments are repre-
sented respectively by N, and M.

234 Encoding of primary and adjacent contours using
stretehing of discrete cireular arcs Approach 2

In approach 2, a contour arc between two consecutive key
pixels is approximated by stretching a local discrete circular
arc. The stretching is done by affine transformation. In the
first order approximation of a contour arc passing through
two consecutive key pixels, we consider the affine image of
one quadrant discrete circular arc whose center is at the ori-
gin, say O, defined by the point of intersection of horizontal
and vertical lines through the two key pixels. The axes of
reference so obtained is, therefore, local to the contour arc.
The line joining the two pixels is the base of the contour arc.
Consider the right triangle in which the contour arc is con-
fined. The base of the contour arc is the hypotenuse of the
right triangle. The sides of the right triangle may be rotated
slowly towards the contour arc as long as all the pixels on
the arc remain on the same side of these lines. These lines
may be taken as the approximate tangents to the contour are
at the two consecutive positions of key pixels. We call this
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triangle the characteristic triangle of the contour arc. When
the sides of the right triangle tun out as the approximate
tangents to the contour arc, we say the tangent configuration
is known but when these lines are rotated, we say the tan-
gent configuration is unknown because the information of
their point of intersection needs to be stored. Next, we find
out the characteristic triangle for one quadrant discrete cir-
cular arc. This characteristic triangle is then mapped to the
characteristic triangle of the contour arc through an affine
transformation. To carry out the second-order approxima-
tion, the point of maximum ervor is detected in the first or-
der approximated arc. Based on this point (pixel) we get
two different sets of two characteristic triangles; one for the
first order approximated arc and other for the original arc.
Affine transformation is then used on the set of characteris-
tic triangles of the first order approximated arcs to map the
to the sets of characteristic triangles for the original arc. For
details, one can see Ref. [5].

The average number of bits for the contour pixels on arc
segments in this case can be computed in the same way
as described for Approach 1. From Ref. [5], we provide
the expression for the number of bits for the arc segments
for different type of approximation. We use the absolute
co-ordinates for the starting point and relative co-ordinates
for others (e.g., the end points of line and arc segments).
The encoding of a segment, therefore, is based on the dif-
ference of co-ordinates of the end point (x., ).} from its
previous point (xs, 1) along with their respective algebraic
signs. Given the previous point for a segment, we first en-
code the larger absolute difference between Ax{=x. — x5)
and A=y, — y,) and then the smaller one. A single bit,
we take, to indicate which one is greater. For this, the larger
absolute difference between Ax and Ay for all segments are
first computed and this value is encoded by Jog: M bits (as-
suming the size of the image is M =< M, ie., log: M bits con-
vey the information of max {Ax, A}y where § runs over
all segments. Let k = max{ Ax,, Ay} ). Then we can always
encode the larger difference of Ax and Ay for a segment
by log, & bits and the smaller one by log,(Ax + 1) bits or
log, Ay + 1) bits depending on A = Ay or Av < Ay,
respectively. The sign of Ax and Ay requires 1 bit each,
For an arc, the order of approximation and configuration of
tangents (known or unknown ) require 1 bit each while the
point (X, e ) of maximum displacement from the base of
arc requires log,(Ax + 1) and (A y + 1) bits because this
point can always be represented with respect to the origin of
the discrete circular arc. So, we summarize the bit require-
ments as

identity of segment : 1 bit,

order of approximation @ 1 bit,

tangent configuration @ 1 bit,

Ay for end point of the arc ) @ foga & bits or loga(A v+ 1)
bits depending on Ax = Ay or Av < Ay,

Ay (for end point of the arc) : log,(Ax+ 1) bits or log, &
depending on Ay < Axv or Ay = Ax,

to indicate larger/smaller value @ 1 bit (between Ax and
Aph

sign information of Ax and Ay @ 2 bits,

point of maximum displacement (x,, and v, ) log,(Ax+
1) + log,( &y + 1) bits,

Therefore, for the first-order approximation the number of
bits for known tangent configuration : 6 + Ny, bits,
unknown tangent configuration : 6 + M, + log,( Ax +
1)+ Afy + 1) bits,
where

Nip = logs k + logs{ Ax + 1) when Ax = Ay
= log,(Ay + 1)+ log, & when Ax < Ay,

For the second-order approximation, the number of bits for
known tangent configuration is 6 + Ny, + logy{&v + 1) +
logy( Ay + 1) bits, unknown tangent configuration is 6 +
Nicp + 2log,{Ax + 1) + 2log, ( Ay + 1)

To find an average number of bits per contour pixel, we
consider log, & number of bits for both Ax+ 1 and Ay + 1.
Mote that this is worst possible case. Since fora 64 = 64
image the maximum arc length is 30, log, k = 3. Therefore,
in the first-order approximation to encode an arc we need
for known tangent configuration 5 + 5 + 5 or 15 bits (note
that instead of 6 + N, we consider 5 + Ny, because we no
more need the single bit to check which absolute difference
is larger} irrespective of its length and for unknown tangent
configuration we need 15+8 or 23 bits when Ax+ 1 £ 16
and A p+1 = 16,and 154 10 or 25 bits when the arc length
is greater than 16. MNote that decoding Ax and Ay for the
end point of the arc, one can easily find out how many bits
are required (8 or 10) to decode the point of maximum dis-
placement. Similarly, in the second-order approximation for
known tangent configuration 23 bits are required when the
arc length is less than or equal to 16 and 25 bits when the
arc length is greater than 16. For unknown tangent config-
uration we require 31 bits and 35 bits respectively for the
two different conditions of arc lengths.

Thus, for a 64 =64 image, in the first-order approximation
with known tangent configuration, the average number of
bits for a contour pixel on arc segments = 15 » 19/19 &
21 =0.71, while for unknown tangent configuration, this
requirement is (23 % 5 + 25 % 14)/19% 21 = 1.16.

In the second-order approximation with known tangent
configuration, the average number of bits for a contour pixel
on arc segments = 1.16 and with unknown tangent configu-
ration, the average number of bits = (31 5 + 35 # 14)/19 %
21 =1461.

Similarly, for a 256 = 256 image, in the first-order
approximation with known tangent configuration, the aver-
age number of bits for a contour pixel on arc segments =174
21/21 % 30 = 0.56 and with unknown tangent configuration,
the average number of bits =(27 13429 %8 /21 +30=0.92

In the second-order approximation for known tangent con-
figuration, the average number of bits for a contour pixel on
are segments = 0,92 and for unknown tangent configuration,
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the average number of bits becomes (37# 13+ 41 «8)/21 4
30 =128

For line segments, we get exactly the same number of bits
as in approach 1. Therefore, we pet,

Toaxes = Nap + 12N, + 071N gig + 116N 01y + 116N

+ I_ﬁ!,"p';n._?] + 1.5 e {B}

and for a 256 = 256 image, number of bits required for
contour pixels,

T8 e 25 =J"lr|l;|lu + I'El.l"lr”, + 056N 0 + 092N Ly 09200
+ 128N + L5Na, (24)

where, Mo 15 the number of contour pixels on arc segments
undergoing first order approximation with known tangent
configuration,

Neant the number of contour pixels on arc segments un-
dergoing first-order approximation with unknown tangent
configuration,

Mo the number of contour pixels on arc segments un-
dergoing second-order approximation with known tangent
configuration, and

Negzo the number of contour pixels on arc segments un-
dergoing second-order approximation with known tangent
configuration.

Ome can notice that we have used an average estimate for
the number of bits in contour coding, instead of computing
actual number of bits, for the computation of compression
ratio. However, for encoding images, we have assigned the
bits as described in our methods. Providing the estimate, in-
stead of actual number of bits, is judicious because some-
times we get high compression and sometimes less due to
the nature of the coding schemes. Neither the high compres-
sion nor the low compression does really reflect the actual
merit of a scheme.

3. Quantitative assessment for reconstructed images

In order to check the quality of the reconstructed im-
ages, most of the authors compute the mean squared ervor
{MSE); though it is clear that MSE does not always reflect
the quality of visual images. A reconstructed image with
low MSE may, psvchovisually appear to be distorted com-
pared to another one with high MSE. For this reason, many
authors have felt the need of some other measures for the
image quality assessment. Since the mechanism of under-
standing image quality is not vet fully known, it is very hard
to devise a perfectly complete quantitative measure for qual-
ity judgment. But one can always consider a measure that
depends on some important attributes (depending on local
and global properties) present in the input image. We have,
therefore, proposed in our investigation, a fidelity vector F,
whose components are indices of different measures. Here,
in addition to MSE and PSNE, we use image correlation,

homogeneity, contrast and fractal dimension to assess the
quality of the reconstructed image.

We classify the quality assessment indices into two cate-
gories @ (say) x and y. The classification is based on math-
ematical and physical features. The indices based on math-
ematical features take care of accuracy in approximation
while the indices based on physical features take care of the
preservation of physical features present in the reconstructed
image. In x, we compute indices taking into account both
the images (input and reconstructed) together. MSE, PSNR
are in this category. Image correlation between the input
and reconstructed images is also included in the category of
x In v, we compute various indices, each characterizing a
different image attribute such as homogeneity, contrast and
fractal dimension for the two images separately. The above
indices are all concerned with pixel intensities of the image.

A pood quality reconstructed image should preserve all
these components in the fidelity vector of the input image.
Thus, the closeness between two such fidelity vectors for
the input and reconstructed images indicates the closeness
between them.

Different components of the fidelity vector £, are given
below.

MEE: The mean squared error

Total sguared ervor

MSE = - :
Number of data poinis

(25)

PENR: The normal procedure to evaluate the image qual-
ity is to compute the peak signal to noise ratio { PSNE ) value
of the original as well as of the reconstructed image. PSNR
value is defined as

(L—1y

P.'ih'R{dH} = |ﬂ[ﬂgm W

(26)
Correlarion: The coefficient of correlation g, for two sets
of data X ={x ¥z ....xy Jand ¥ ={w, y2..... ¥ } is given
by

N 30w — iy
Ly N a o= N ) =
V /N Z.l..]'r.' - xz‘lp'l /N E.uj Y= }.3

Py = (27}

where #=1/N 37 x and 7= 1/N 5, . The correlation
coefficient py takes on values from +1 to —1, depending
on the type and extent of correlation between the sets of
data. We use correlation measure between the input and
reconstructed image. This provides a measure of nearness
of two images.

Homogeneity index: As a measure of homogeneity we
compute an homogeneity index. This index simply calcu-
lates the second-order entropy because it provides local in-
formation about the behavior of pixel intensity change. The
gray level values in an image are not independent of each
other. One can consider the sequences of pixels to incor-
porate the dependency of pixel intensities in estimating the
entropy. In order to compute the entropy of an image, the
following theorem due to Shannon [14,18] can be stated.
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Theorem. Ler pls) be the probability of a sequence s, of
gray fevels of length I, where a sequence s, of length | is
defined as a permuiation of | gray levels Let us define

y 1
H” = —?Z pls) lﬂg: Pl ) (28)

where the summarion is talcen over all gray level sequences
of length I. Then H" is a monotonic decreasing function of
Pand HY), . =H_ the entropy of the image. For different
vafwes of 1, we get different orders of entropy.

Case 11 1=1, ie., sequence of length one. If /=1, we get
r-1
HY = —Z plog, p.
d=l]

where py is the probability of occurrence of the gray level
i. Such an entropy is a function of the histogram only and
it may be called “global entropy”™ of the image. Therefore,
different images with identical histogram would have the
same H'' value, irrespective of their content.

Case 2: 1 =12, ie., sequence of length two. Hence,

-
H':' — —5 Z P{.T.'} lﬂgl _P{-i'-'}

1
=—3 Z Pulogs py. B
Lo

where 5 is a sequence of length two and py is the prob-
ability of occwrence of the gray levels i and j. Therefore,
H can be obtained from the co-oceurrence matrix, K'Y
takes into account the spatial distribution of gray levels.
Therefore, two images with identical histogram but differ-
ent spatial distributions will result in different entropy, H"'
values, HY!. i =2 may be called local entropy. Since the
second-order entropy reflects the local behavior of image, it
is expected that for a homogeneous region/patch, this mea-
sure should be low.

Contrast measure: Image quality index (1QI)} from
Eq. (14} is used as a measure of contrast,

N

St LI ABy|B
J=1

MN - 33 By

Texture measure: To compare the texturedness of the re-
constructed image with the original image, we examine the
fractal dimension ( FI) of the reconstructed as well as of
the original images. In general, fractal dimension provides
a measure of iregularities and, therefore, it can be used
very effectively as one of the means to compare the texture
quality of two images, provided one of them is obtained
after some operation on the other. This is because two im-
ages having the same fractal dimension does not necessarily
mean that they have the same surface irregularities. In our
case, the change in fractal dimension of the reconstructed
image from that of the original image indicates the extent of

ofh =

damage in texture of the input image due to approximation.
The concept of self-similarity can be used to estimate the
fractal dimension. A bounded set 4 in Euclidian n-space is
self-similar if 4 is the union of N, distinet { non-overlapping )
copies of itself scaled up or down by a ratio #. The fractal
dimension 3 of A is given by the relation [19] 1=N.+" e,

 log(N;)
~log(1/r)’

(30)

There exist several approaches to estimate the £ of an im-
age. We have used Ref. [20] to compute the fractal dimen-
sion.

Thus, we get the fidelity vector,

F, = [MSE. PSNR. po . H'" ) . H 101 FD]" (31)

4. Results and discussion

In the sub-image based lossy image compression (SLIC)
algorithm, sub-images obtained through segmentation have
been used for gray encoding while their contour maps are
encoded after removing redundancy. For each sub-image,
the order ofthe approximating Bezier-Bernstein polynomial
is computed. We have followed the 101 based approach for
order computation because of psyvchovisual reasons. For the
Lincoln image, local correction is not needed for the resid-
ual surface of any region in any sub-image, while for both
Lena and Girl images local corrections are required. Girl
image is found to have local correction for 18 patches while
the Lena image requires local correction for 31 patches. For
the Lincoln image, we have obtained 8 sub-images corre-
sponding to seven thresholds. Orders of the polynomials for
these sub-images, computed by the 101 based approach, were
found to be 2, 2,2, 2, 2,0, 2, 2 respectively. Determina-
tion of the orders of polynomials using the classical method
requires a search for & in Eq. (12) from the data set, corre-
sponding to an & which is twice the error of approximation
{in fact, for graylevel images we require a 2-d version of the
Eq. (12} and hence a search for &, and & is required). We
have seenthat the orders computed by the classical approach
for the sub-images of Lincoln, are more or less the same to
those computed by the Q1 based approach. However, this
order, may sometimes, be higher than that computed by the
101 based approsch. This is because of the hard constraint
of con din Eq. (12).

After removing contour redundancy, knots or key pixels
were detected from the contours, and segments between two
key pixels were approximated by line or arc segments. A
line or arc segment greater than the pre-assumed length was
suitably broken up and was approximated accordingly. For
the reconstruction of coded images, we have followed two
different ways using the same polynomial order for each of
the sub-images. The main reason behind these two recon-
structions is to examine how different they are from each
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Table 1
Bit requimements: comours encoded by Approach | and Approach 2

Image P TFedwéd Total no. of bits CR CR
Recons. 1 Recons, 2 Eqgs. (21) and (23) Revcons. | Recons, 2 | 2
Eq. (1) Eq. (8)
Lincoln Th4 13 1537.56 2321.56 1873.56 BA2 10.93
Lincoln Th4 13 162998 241378 1965.98 48 1041

other as well as from the original input. Reconstructions are
based on:

{1} the estimated (in the weighted least-square sense ) con-
trol points for each sub-image resulting in a Bezier
Bernstein surface;

{2} equally spaced points on the estimated Bezier
Bernstein surface obtained in {1).

Contour encoding in the two different cases of reconstruc-
tion of image remains the same. Only the gray values in
sub-images are encoded using the above two different ways.
Each control point (coefficient ), inthe first case, has beenen-
coded by 12 bits whereas in the second case, equally spaced
gray points are coded using the gray level information of
the image. The number of gray points (pixels) are exactly
equal tothe number of control points. Assuming these points
to lie on a Bezier-Bernstein surface patch, we have solved
{p+ 1)+ p+1)equations to get (p + 1}#({ p + 1) control
points of the surface. The Bezier- Bernstein swrfaces in two
cases, are not exactly identical but they are very close.

The experiments have been performed using a Silicon
CGiraphics Indy workstation running IRIX 53, The work-
station has MIPS RS4600, 9% MB memory and speed
132 MHz. The JPEG algorithm used is of version ba (7 Feb.
96). All the images in our experiments have been printed
by a HP LaserJet printer 5P with a resolution of 600 dpi.

4.4 Resule of SLIC algorithm for 64 » 64 images

Table 1 shows the number of bits and the compression
ratio required to encode the 5-bit Lincoln image when con-
tours are encoded by Approgch 1 (1-d B-B polynomial yand
by Appreach 2 (stretched discrete circular arcs). Since this
image does not have any texture blocks, the number of bits
are mainly due to gray level and contour encoding. Number
of bits, I, for gray level encoding can be computed using
Eqgs. (3) and (#) for reconstruction 1 and reconstruction 2,
while the number of bits, 764.64 for contowr encoding can
be computed using equation either (21) or {23) depending
on Appreach 1 or 2. Lincoln image was found to have 442
contour pixels on line segments and 348 contowr pixels on
arc segments. 9 status words, each 9 bits long provided re-
gion adjacency information during decoding of Lincoln im-

age, and the number of Starting pixels was found 38. So,
the overhead due to contour encoding is 9+ 9 + 12 & 38
bits or 337 bits. For gray encoding, overhead due to order
of approximation from equation (3) is f = 8+ 2 = 16 bits
{since, o =0). Number of coefficients for approximation of
Lincoln image is 64. Thus, we get the total bit requirements
and compression ratio as shown in Table 1.

From Table 1, it is seen that for reconstruction 2, the gain
in compression ratio is higher than that for reconstruction
1 roughly by 25 percent. Also, between two approaches for
contour encoding, compression ratio do not change appre-
ciably which shows both the approaches for contour coding
are almost equally efficient. One can notice the total number
of bits for contour coding is not an integer. This is because
we have computed an average estimate for them instead of
actual number of bits. Hence the total number of bits is .also
not an integer. For the quality of reconstructed images, we
consider the following tables for different values of the com-
ponents of the fidelity vectors.

From the evaluation Table 2, it is clear that the coefficient
based reconstructions for the two different approaches are
very close to each other, though the PSNR value when the
contours are encoded and reconstructed by 1-d B-B poly-
nomial is slightly higher. Other components of the fidelity
vector are practically the same. This is also true for the re-
constructions based on equispaced surface pixels. All the
reconstructed images have different values in entropy from
that of the input image. This change is due to merging of
small regions in the segmentation procedure before encod-
ing of the input image and polynomial approximation in
the reconstruction process. Fractal dimension of the recon-
structed images differ slightly from that of the input. This is
probably due to the reason that contours of the reconstructed
images are not as smooth as that of the input. Below in Fig.
4, we present reconstructed Lincoln image along with the
input for visual comparison.

4.2 Resulis of SLIC algerithm for 256 = 256 images

In this section we present the results of 8-bit 256 = 256
images where Approach | (App. 1) and Approach 2 (App.
2) refer to two different approaches for contowr encoding,
In this case, gray values are encoded (and also regenerated)
using equispaced Bezier-Bernstein surface points.
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Table 2
Evaluation of reconstructed image

Components of £ Lincoln image

Input Approach 1 Approaoh 2

Recons. | Recons. 2 Recons. | Recons. 2
MSE L] TA3E T.EE4 g061 B5E6
PSMR o0 21 388 21135 21038 20764
pry 1.0 0958 0958 0955 0955
A 3432 2693 Zdh 2696 2650
Hi2 0.1005 0144 0054 0146 0057
o]} 6059 2472 6973531 985070 H9R0.781 69491 595
FD¥ 2577 2547 2555 2538 2540

(i

i)

Fig. 4. Reconstruction of Lincoln image with contour encoding based on Approach | and Approach 2 {a)input Lincoln image (b) and (d)
recomstruction from coefficients (¢) and (¢) reconstruction from surface points.

Tahle 3
Bit requimements

Image Bar v TG 2 Total no. of bits
App. 1 App. 2 App. 1 App. 2
Eq. (%) Eq. (17} Eq. (22) Eq. (24)
Lena ek 2p122 19820 .02 201824 4818002 4537824
Girl 1742 123 17866, 14 213158 1973114 39996.58

These two images are complicated than the previous 64 x
64 images because these images have texture regions in them
and the texture blocks as seen from the Tables 3. 4 have
taken a considerably large number of bits lowering down the
compression ratio. Number of contour pixels on line and arc
segments for Lena image are respectively found to be 7398
and 3338 due to approximation by Approgch 1. For Ap-

proach2, 872 pivels were approx imated by stretched de arcs
with known tangent configuration, 2521 pixels were approx-
imated with first-order approximation with unknown tan-
gent configuration and 148 pixels were approximated with
second order approximation with unknown tangent config-
uration. Number of bits for starting pixels were found to be
5328 for 333 pixels while 600 bits were required for status
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Table 4
Comparison of compression ratio
Image Compression mtio
Approach 1 Approach 2 IPEG IPEG
result 1 result 2
Len 1088 1083 LR.1 10,492
Giirl 13.20 1311 13.12 1363

ic) k)

Fig. 5 Reconstruction of Lena image wsing surface points {a)
Approach | (h) Approach 2 (c) JPEG resalt | (d) JPEG result 2.

words, Gray level values altogether needed 111 coefficients
for global approximation and 124 coefficients for local cor-
rections. An overhead of 198 bits were required gray level
approximation. Fig. 5a, b show the reconstructed Lena im-
ages with contowr encoded using Appreach 1 and 2 for the
input image as shown in Fig. 1{a). For the Girl image (Fig.
B{a)), number of pixels approximated by line and arc seg-
ments due to Appreach 1 were 6041 and 4016, respectively.
4720 bits were required for the starting pixels while 912
bits were required for the status words. For the local correc-
tions of 1 8 patches, 72 coefficients or 576 bits were required.
When Approach 2 was used for encoding, number of pix-
els approximated by first order approximation with known
tangent configuration was 1026 while the number of pixels
approximated by first order approximation with unknown
tangent configuration was 2876, Number of pixels approx-
imated by second order approximation with unknown tan-
gent configuration was found to be 170. Thus, total number

of bits needed for approximation by arc segments became
3435.08 bits. The reconstructed images due to two different
approaches for contour encoding are shown n Figs. 6(b ) and
{c) respectively,

To examine the performance of the proposed algorithm
on 256 = 256 images, we have examined the compression
ratio as well as compared the result with that of JPEG al-
gorithm [21]. MNote that due to different versions of JPEG
algorithm, results may slightly vary. In order to compute the
compression ratio by the JPEG algorithm, we have chosen
the quality factor in such a way that the PSNR value of the
decompressed images remain as close as possible to that of
the reconstructed images due to our proposed algorithm. For
the Lena image the quality factors are 50 and 30, respec-
tively for the JPEG result 1 and JPEG result 2 (Fig. 3(c)
and (d)}, while for the Girl image the quality factors are 32
and 30 (Fig. o(d) and (&) ).

In order to evaluate the quality of the reconstructed im-
ages, we present below the values of the different indices of
the fidelity vector #:. To compare the performance of our
method we have used the JPEG algorithm. Table 5 shows
that Appreach 1 is better than the JPEG result 1 because it
has lower MSE and higher PSNR values, and same is the
case with the Approach 2. The correlation values are com-
parable for all the four images which mean all the four im-
ages are almost alike. The index FD for texture measure is
the same for all of them which means texture in all the four
images are maintained in the same way {on the average ba-
sis). Betterment is also seen in Table 6.

4.3 Effect of the increase of spatial resolution on
campression and guality

For the 8 bit Lena image, some of the researchers have
used an image size of 256 x 256 while some others have
used the size of 512 = 3512, These, two different sizes are
widely found in the literature. Due to this variation in size,
compression is, also, found to be widely different. To get
an idea how the compression and quality ave affected by the
increase of spatial resolution, we provide some of the results
on Lena image from the recent articles.

In Ref. [22] two different compression ratios correspond
to two different sizes of the structuring element used in the
work. Compression ratio is 3 100 when the structuring ele-
ment has the size 6 = 6 and 20000 when the size is 4 = 4.
PSNR values for the reconstructed images have not been
mentioned. From the Table 7, it is found that except in one
case [27], the quality { PSNR value ) of the reconstructed im-
ages due to different methods are almost the same. Insome of
the articles, the PSMNE value is not mentioned { M.M ). From
the work of Fisher etal. [24] the compression ratio is found
to be 3.10 times larger for the size of 512 = 512, while from
the work of Haziti et al., [30] and Lin and Venetsanopou-
los [ 28] we see that an increase of 4.15 times is possible. In
our opinion, one can obtain a compression ratio larger by a
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Fig. 6. Reconstruction of Girl image using surface points (a) input (b) Approach 1 (c) Approach 2 (d) JIPEG result | (2) JPEG result 2.

Table 5
Evaluation of reconstrocted Lena images

Components of & Lena image

Input App. | App. 2 IPEG mesult 1 JPEG result 2
MSE L] 96,953 131.737 129,638 142.574
PSME o 2R.265 26677 27.003 26.590
Py )] 04977 0968 949z 0989
HN 251 1,909 1EwM 2a39 2528
i 000zl 00004 00006 000007 000046
o]} Tal6 35700 37097 30097 30.372
FDy 2619 2620 261l a4 2.593
Tahble &
Evaluation of reconstrocted Girl images
Components of & Girl image
Input App. 1 App. 2 IPEG mesult 1 JPEG result 2
MSE 0 52 R48 52848 37236 Is497
PSMNR o0 31457 30500 32421 3227
pry 1.0 0987 04985 0891 0991
il 1.956 1.591 1.583 2208 20
HE 0.3 0018 0.004 0.144 0.197
(]} B5.952 115203 112572 MWalg B9.553
FDy 2607 2577 2576 2531 251
factor between 3.5 and 4.0 simply by increasing the size of 5. Conclusions

an image from 256 = 256 to 512 x 512, Thus, it is expected
that our developed method will provide a compression ratio
in the range 38 .0-43.52 for the Lena and 46.2-52.8 for Girl

image respectively.

We have developed a segmentation based lossy image
compression algorithm, SLIC. The algorithm, SLIC, uses
a new segmentation scheme, suitable for image compres-
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Table 7
Some results on Lena image due to increase in spatial resolution
Image size Article Principle of coding Compression FSMNR
ratio in dh
512 x 512 [23] Wector quantization 1230 2995
256 x 256 [22] Sketch hased 530 M.
256 x 256 [24] Fractal 1185 3058
512 % 512 [24] Fractal 3678 3071
512 x 512 [25] Fractal 40,00 3020
512 x 512 23] Segmentation using 3100 M.M
Momhology 2000 MN.M
512 % 512 [26] Block prediction 3076 3278
512 x 512 [27] Region hased frctal 4100 26.56
512 x 512 [28] Fractal 44.00 29.10
512 % 512 [29] Fractal 444 2910
256 x 256 [311] Fractal 160 3072
512 x 512 [31] Wavelet hased fractal h56e0 2990

sion. The segmentation scheme provides a number of similar
gray regions corresponding to each threshold, instead of a
single region. Consequently, a global surface fit {high pos-
sibility due to similar gray regions ) becomes most econom-
ical. When the order of a polynomial for approximating a
sub-image poes bevond a preassigned positive integer, say
. (may happen due to the physical configuration of regions
or large variation on region boundaries) we compute local
corrections over the residual surfaces for which the mean
squared error with respect to the global surface of order g
exceeds a certain limit. Computing the order of the poly-
nomial by the I based approach seems to be simple but
effective. A remarkable gain in compression ratio is found
when encoded in terms of surface points with the quality
of reconstructed images almost the same as that found for
reconstruction from control points. It is seen that texture
regions require the largest number of bits during their en-
coding {Lena and Girl images ). Examination of the quality
of reconstructed images through the fidelity vector is an at-
tempt to determine quantitatively the fidelity of images.
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