Quantum Hall Skyrmions in the framework of O(4) Non-linear Sigma Model

B. Basu * S. Dhar  and P. Bandyopadhyay*
Physics and Applied Mathematics Unit
Indian Statistical Institute
Kolkata-700108

A new framework for quantum Hall skyrmions in ({4) nonlinear sigma model is studied herve.
The size and energy of the skyrmions are determined incorporating the gquartic stability term in
the Lagrangian. Moreover, the introduction of a 8-term determines the spin and statistics of these
skyrmions.
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I. INTRODUCTION

Skyrmions are penerally described by nonlinear sipma model. A smooth texturing of the spins can bhe
described by an effective nonlinear sigma model where the spin is described as a unit vector n(r). This
spin vector n lies on a sphere 52 where we may consider a magnetic monopole located at the centre.
Skyrmions are characterized by the topological charge Z = [drg(r) where ¢ = n.(3,n x d,n)/4x is the
Pontryagin density. Z is the winding number of the mapping n(r) from the compactified space 52 to the
target space of the sigma model (52 and is given by the homotopy 72(5?) = Z. The topological density
is proportional to the deviation of the electron density from its uniform value gg.

In analogy to the Ginzburg-Landau description of superconductivity, the Chern-Simons theory of
quantum Hall systems was derived by Zhang, Hansson and Kivelson [1] which was subsequently extended
by Lee and Kane [2] to describe the spin unpolarized quantum Hall liquid. In a quantum Hall fuid,
the ground state has been found to be a fully spin polarized quantum ferromapnet. By noticing that
the dynamics of quantum Hall system with a spin polarized ground state will follow that of a quantum
ferromagnet and that the skyrmion & a charged object of the system, Sondhi et.al. [3, 4] proposed a
phenomenological action which is valid for the long wave length and small frequency limit. In this scheme,
the competition between the Zeeman and Coulomb terms sets the size and energy of the skyrmions and
maodifies the detailed form of their profiles. In case the Zeeman energy and Coulomb energy are taken
to be vanishing, analytic expressions are available for the skyrmions and their energy is independent of
their size. This scale invariance is broken by the Zeeman and Coulomb terms in the Lagrangian.

. To study low energy excitations for partially polarized states a nonlinear e-maodel has been developed
[5] considering a two component quantum Hall system within a Landau-Ginzberg theory with two Chern-
Simons gange fields. It has been found that these excitations have finite energy due to the presence of the
Chern-Simons gauge field and closely resemble the skyrmions in the usnal nonlinear m-model. Skyrmions
in arbitrary polarized quantum Hall states are studied [6] employing a doublet model taking into account
two fields carrying the spin index in Chern-Simons term with a matrix valued coupling strength.

Skyrmion excitations in quantum Hall systems at v = 1, using finite size caleulations [7], is studied in
spherical peometry where electrons reside on the surface of a sphere with a monopole at the centre. For a
monopole of total magnetic flux Ny = 2u the lowest Landau level degeneracy is 2p+1. All single particle
states in lowest Landan level have fixed anpular momentum value g At filling factor ¢ = 1 corresponding
to the electron number N = 2p + 1 the pround state is spin polarized independent of the strength of
the Zeeman splitting. When an additional flux is added or removed from the system, the pround state is
a skyrmion (antiskyrmion) with topological charge (} = +1{—1). The enerpy gap is determined by the
interplay of the Zeeman energy and electron-electron interaction.

In this note, we shall study the static properties of skyrmions in spherical peometry considering a



3{4) noolinear g-model in 3 4+ 1 dimensional manifold. In some earlier papers ﬂ E we have analyzed
the hierarchy of quantum Hall states in spherical geometry from the view point of chiral anomaly and
Berry phase. In this framework it is shown that the Mapnus force acting on vortices and skyrmions
in the quantum Hall system & generated by the background field associated with the chirality of the
system . The warious polarization states of quantum Hall fluid & also studied and their low enerpy
excitations are examined using a homotopic analysis . The O{4) nonlinear g-model helps w to have
two independent subalgebras each isomorphic to a SU(2) algebra so that the left and right group can
be taken to be associated with two mutually opposite orientations of the mapgnetization vector which
resides on the 20 surface of the sphere. The homotopic analysis then suggests that for fully polarized
states the low energy excitations are skyrmions. It is here shown that the addition of the quartic stahility
term introduced by Skyrme, known as the Skyrme term in the literature, will determine the size of the
quantum Hall skyrmions in this framework. This also helps us to determine the spin and statistics of the
skyrmion through the introduction of the topological #-term in the Lapranpian.

In sec.2 we recapitulate the study of skyrmion excitations in quantum Hall fluid when the system is
described by means of the Zhanp-Hansson-Kivelson model and modified by Lee and Kane to take into
account the effect of spin. In sec.d we shall deseribe quantum Hall skyrmions in spherical peometry
considering a ({4) nonlinear s-model taking into account the Skyrme term and #-term. In sec.d we shall
determine the size and energy of the skyrmion in this formalism.

II. QUANTUM HALL SKYRMIONS IN PLANAR GEOMETRY

We here recapitulate the works on quantum Hall skyrmions on the basis of the bosonic theory of an
electron which is viewed as a composite object of a boson and a flux tube carrying an odd multiple of
flire quanta $, = h/e attached via a Chern-Simons term. We begin with the Landaw-Gingburg theory
of the Hall effect introduced by Zhang, Hansson and Kivelson [l and modified by Lee and Kane @ to
incorporate the effect of the spin. We consider the Lagrangian
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Here ¢ = (g, 2] is a two component complex scalar field. # & the statistics parameter which takes
the values # = (2r 4 1)7 so that the boson field ¢ represents a fermion, A, the external electromagnetic
field and m* is the effective mass of the electron. To determine the size and energy of the skyrmions
Zeeman and Coulomb interactions should be ncluded. However, to study the topological features we can
ignore them for the moment. We consider a solution with uniform density p = (J¢q]? + |¢2|?) = m at

filling fraction v = i‘ulT' In order to separate the amplitude and spin deprees of freedom we introduce

the CP! field z and we write

6= e (2)

The Lagrangian (1) now takes the form

L= *.i_nzT [ —ilag + edy)|z
B R [ o Tzl
Em*l[H’ ifa; + eA; )|z

A 1 L Lo ¥
_E{F = Fﬂ:'z + EH ﬂ;.:'avmn {*5:'

Here 2 is a two component complex fiel] with the constraint 27z = |22 + |22)? = 1.



One can now use the identity
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where J = (J', J?) with
J'= L (2102 — i(a, + eAy) (5)
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The local spin direction is given by

nt = Z-TII'J'“Z {ﬁ:l

and Vo = (i n,dn). The term ﬁ{?n]z corresponds to the static nonlinear sigma model.

Now introducing Hubbard-Stratanovich transformation J with the relation J; = p so that the current
Sevector (JU, J, J?) is promoted to the status of an independent dynamical variable, the Lagrangian can
be written as
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Integrating over the [J{1) phase degree of freedom in z we arrive at the current conservation law
AyJo = 0 and we have current 3-vector (p = JY, J', J?) as the curl of a three dimensional vector field.

One can set JFJJ = (pg, 0,0) equal to EI‘V”HVAEH and
JH = Jfaj =" 83, A (8]

Inteprating out the Chern-Simons field a, and vsing the relation 28pp = eB:, we can finally arrive at
the relation

L = 2vJ5(A. + A — 0004,
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is the skyrmion number current.
Defining the field strength term Fp. = 8,4, — &4, to be the dual of the electron number current

and adjusting the unit of length and time such that ¢ = +/Apy/m*, the velocity of density waves in the
absence of mapnetic field becomes unity, we can write

L = 2n78(A, +AlY) - %MWA,JW b
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It i= noted that the skyrmion number current acts as a source for a topologically massive panpe field

Ay and also sees the background field A}?l.
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Incorporating Zeeman and Coulomb terms Sondhi et al. ﬂ considered the following modified form of
the Lagrangian (1).
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Here V = e2/er is the interparticle Coulomb potential and pg is the Bohr magneton.

Noting that ¢, = /pz. where % zol Zo = 1 and using the mapping n® = 2/o”z, we can replace the
CP! field by an O(3) sipma model fiekl. Indeed, by observing that at the ground state the dynamics of
the system is that of a ferromagnet with a long range interaction arising from the Coulomb interaction
between the underlying electrons, we take into account the necessary terms and consider the Laprangian
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Here A is the vector potential of a unit magnetic monopole, p* is the spin stiffness (p° = 2/16v/ 2l
for » = 1), € is the dielectric constant and [ is the magnetic length. g(r) = nJd.n x J,n) /47 is the
topological density. This topological density is proportional to the deviation of the electron density p
from its uniform value; g = v(p— py). The topological charge is Z = [drg(r). For v = 1, skyrmions with
topological charge Z carry electric charge — Z|e|.

The Zeeman and Coulomb terms break the scale invariance. Their profiles now depend on the dimen-
sionless ratio § = (gupB)/(e?/d?) of the Zeeman energy to Coulomb energy. For Z = 1 skyrmions the
scale imvariant solution yields a Zeeman energy that diverges loparithmically with system size for any
A. This can be fixed by matching the scale invariant solution onto the exact asymptotic solution in the
outer region. This sugpest for Z = 1 the size

A = 0.558 I{g| Ing|)~*/* (14)

and energy
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Indeed at large g the quasiparticles are single particle-like and may carry charge and spin 5. = 1/2
and have size [ At small g, they still carry charpe e but diverge in size and have nontrivial spin with

a divergent z-component of spin 5. (the mumber of reversed spin) as well as divergent total spin.

III. QUANTUM HALL SKYRMIONS IN 3+ 1 DIMENSIONAL MANIFOLD

We want to study the low energy topological excitations of the quantum Hall fluid within the framework
of O4) nonlinear g-model in 3 + 1 dimensional manifold. In this geometry, electrons are placed on the
surface of a sphere under the influence of an uniform radial mapnetic field. The magnetic field is produced
by a mapnetic monopole of strenpth p placed at the centre of the sphere. Az we know, the anpular
momentum in the field of a magnetic monopole is given by

J=rxp—put (1G]



where p can take the values (0, £1/2, 41, £3/2, . Evidently, eigenvalues of J can take the values |p|,
|l +1, | +2,eees In this geometry the quantum Hall states can be depicted by a two-component spinor

. ) such that v = cos8/2 2 and v = sinf/2 ¢~/ and

i

=1} = H (v — viaey) (17
ig
is the spin polarized ground state at v = 1.
The generalized state for v = 1/m, m being an odd integer, & written as B.E

ey = H (wivy — vy )" (18)

i<

However it should be added that at ¥ = 1 we have a non-interacting spectrum which is never a
correspondence for v = 1/m, with m being an odd integer. Indeed FOH states correspond to interacting
systems.

The skyrmion state can be written as

W = ¢ ( ) ) (19)
¥ ]-;-[ rxmr) ¥

where the spin texture is included within the components vy and g and 0 < o < 1.
Actually, if a smooth and monotonical function g(#) is defined with g{0) = 0 and g{7) = 7 then the
skyrmion state can be written as

B(Q) = cos(g(f) —8) € + sin(g(8) — ) €y (20)

where €. and € are the basis vectors. The size of a skyrmion & determined by the function g{#) and
gl = 8 describes the hedgehog skyrmion with spin in the radial direction 7.

This is the skyrmion state with the constraint |${Q)] = 1.

The quantum state for the classical skyrmion ¢(£2) can be written as

sing(f)/2 eioei2 ’ ‘
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where ' is the normalization constant, P is the projection operator to the lowest Landan level and g(#)
controls the size of the skyrmion ﬁ From eqns. {I0) and {ZI) it is seen that 0 < o < 1 is determined
from g{#) and it controls the size of the skyrmion.

The size of the skyrmion can be defined by the position where spin direction is perpendicular to the
radial (and spin) direction at either pole. With this convention, the skyrmion size is

fy = 2arctan o (22)

which equals 7 /2 for the hedgehog skyrmion with o =1

Bychkov et. al. have shown E that the gquantum Hall skyrmions consist of a core whose size &
defined by the interplay between the Zeeman and Coulomb enerpies and an additional length scale [
which determines the tail of the spin distribution. This characteristic length is given by

% = 24/2/n|gl(ap/I?) (23)

where 7 is the effective g factor, ag = e’ /me? is the Bohr radius, € being the dielectric constant and [
is the mapgnetic length. It is noted that as g — 0, L — oo, we can take

cotd/2 =z/zy (24)

where r and xy are two dimensionless parameters given by r = v/l and B = zgl.., R being the size of
the skyrmion core region.
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We can associate o with zo/z where 7o € 1 and 7 < 1 ie. for v far away from the exponential tail
of the skyrmion. It is pointed out that in the region rg <€ x < 1, v is far outside the skyrmion core.
In the framework of ({4) nonlinear o-model the size of the skyrmion is determined by the quartic
e ; ; ; 1
stability term, known as the Skyrme term. Indeed, taking the spin variable z = U'zy where z; = 0 )
and 7 & §T7(2), we may write the nonlinear sipma model Lagrangian in terms of the ST/{2) matrices [V
as [17

M2 oo 1 : 3
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where M iz a constant of dimension of mass and 5 is & dimensionless coupling parameter. The o
dependence may be incorporated through M and 5 where these parameters are taken as functions of .

To have a geometrical interpretation of the Skyrme term (eqn.{Z5)), we note that it effectively cor-
responds to the vorticity of the system which prevents it from shrinking it to zero size. In fact in an
axisymmetric system where the anisotropy is introduced along a particular direction through the in-
troduction of a4 mapgnetic monopole at the centre, the components of the linear momentum satisfy a
commutation relation of the form

K
e pi] = ip e .y (26)

When the position space is a 3-sphere 5% with a monopole at the centre, we can have a commutation
relation of the form

i -

[pi,p5] = T Cuk Pk (27)

where R is proportional to the radius of the §%. For a distorted sphere we can consider B as a functional
form R{#, ¢) corresponding to the core radins of the skyrmion. We can define the core size of the skyrmion
such that B = Ryl — a) where By is the size of the skyrmion having minimal energy.

In view of this, in 3 4+ 1 dimensions we can generalize the Lagrangian {[I} incorporating the Skyrme
term in the form

f2
L = 2n77 (A, + A — % Tr@UtaU) — ﬁf Tvla,Uut a,uut)? .
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Here 8 = g/c? with g = ve? /h as Hall conductivity and *F,,, is a Hodge dual given by

. 1 .
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This is associated with O{4) nonlinear sigma model where the topological current is defined as

= 1
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and AF[AL” is a four vector. It is to be mentioned that we have taken the kinematic term (second term in
equation 1 which takes into account spin waves, the Goldstone modes associated with a ferromapnetic
ground state. The SU(2) matric IV is here defined as

U=ngl+n7 (31

where the chiral fields ng,ny .00 and ng satisfy the relation Zn?‘ =,
It may be noted that in 2+1 dimension, we have the normalized 3-vector field n with 3" ni = 1 wheren;
corresponds to the local spin direction. In the O{4) model (i = 1,2, 3) corresponds to this spin direction



which live on the 2-dimensional surface of the sphere where the extra field ng helps us to consider three
"boost” penerators in (ng,n;) planes. In view of this, we can consider two types of generators such that
the generator My rotates the 3-vector n(x) to any chosen axis and the boost generators Ny would mix
nyg with the components of n. We can now construct the following algebra

[;?L.f,'.. ;?L.!r_'.] - 'ifgjk;?"fk

[AL'.. P'irj] = 'R.E,'jkhrk

[;\F‘.‘;\FJJ =?;E£_-,ikaiuk (32)

which & locally isomorphic to the Lie algebra of the (4) group. This helps us to introduce the keft and
right penerators

Ly = = (M — N}

Il
[

1
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which satify

[Li, Ly = deguda

[Ri.‘ RJ] = '?:E,'ijk

[Li, Ry] =0 (34)

Thus the alpebra has split nto two independent subalgebras each isomorphic to a ST{2) algebra and
corresponds to the chiral group SU(2), ® SU{2)g. The left and right chiral group can now be taken to
be associated with two mutually opposite orientations of the magnetization vector which resides on the
2D surface of the sphere.

It may be mentioned that the P and T violating #-term {—%; *FupFue) in 3 + 1 dimensions cor-
responds to the Chern-Simons term in 2 4+ 1 dimension. This term & related to chiral anomaly and we
have the Pontryagin index given by |18

1
g = 2p= T fTr*}'FVJFFVdd‘;?: (35)

It may noted that in 2 + 1 dimensions, the topological current
1 A
Jy = — Eaniun x dyn) (36)
B
may be related to the gauge field current
"r_r.n: = E;.:vlvv-'"“-l {:5?)

which helps us to write the Chern-Simons term as

I :
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Evidently this relates to the Hopf invariant which can be explicitly written in terms of SU{2) matrix
[(x) which rotates the vector n to the chosen (third) axis n.7 = U~ 'm0 and the Hopf invariant is given
by

H = ;E—"';fd%:Tr{U“:’}FUJ{II“HJ’IJ{U“E;,UJ (39)
T

which is a degree of mapping of the (2+1) dimensional space time into ST{2) and is given by the homotopy
m3(5%) = Z. In 3+ 1 dimensions, if we consider Euclidean four dimensional space-time such that 7., = 0
at all points on the boundary 5% of a certain volume V* inside which ., # 0 then the gauge potential
tends to be a pure gange in the limiting case towards the boundary ie. we have

A, =U-18,U, U e SU(2) (40

This then helps us to write the topological charge of quantum Hall skyrmions given by eqn.(38) as the
winding number

l _ . —_ T
Z wigm _L ds, (U8, DU aU)(U 8, U) (41)

which is given by the homotopy 72(5%) = Z and the electric charge is given by ve 2. We observe here that
the Pontryagin ndex given by g = 2p in eqn. ) introduces the Berry phase for quantum Hall states
as o represents magnetic monopole strength. Indeed, the flux through the sphere is 2p and the phase is
given by £'F where ¢g = 2mv (nmumber of flux quanta enclosed by the lop). When a Z = 1 skyrmion is
moved around a closed loop it acquires a Berry phase 270 N where N is the number of skyrmions enclosed
by the loop. To find the spin and statistics, we consider a process which exchanges two skyrmions in the
rest frame of one of the skyrmions. This exchanpe effectively corresponds to the other skyrmion moving
around the first in a half circle and hence it picks up a phase 7 v which is the statistical phase of a
skyrmion. For v = 1 it is a fermion and v = 1/m, m being an odd integer it corresponds to an anyon in
planar peometry. In general, the spin of the skyrmion having charge ve? is given by v Z/2.

IV, SKYHRMION SIZE AND ENERGY

From our above discussions, we now observe that the energy of a free skyrmion depends on the following
two terms in the Lagrangian {25)

M2
e t =
L 5 @)

i
3297

[@.UUt, 8, uUt)? (42)

The static nonlinear sipma model Lagrangian corresponding to eqn. [{Z) gives rise to the energy
intepral as

E= fd%{%rr{wﬁvm + 5 TroUU! UV (43)
where (i,7 =1,2,3)
To compute the energy, we take the Skyrme ansatz [ﬂ
U(z) = ezp [iF(r) 7 %] (44)
where 7 are Pauli matrices, ® = X and F(0) = 7 and F(r) — 0 as r — o0; 7 is the spherical

radius in 3-dimensional manifold. We explicitly write U = cos F{r) + i 7.%sin F(r) with cos F(r) =

R ;
%, sin Fir) = %. The energy integral becomes

E(R) =4m*M2R I, + zﬂiﬂ‘;—":q (45)



where
I = L dz[sin® F(r) + z* {@]ﬁ] = 3.0
7 Ja i
and
A 4
Ig s i dm[‘ilﬂ f{'r:l gy ‘“"2 F{Tj{@j?] = 1.5
T Ja x o
where » = v/ R This gives the expression of energy
o 3x2 ;
E(R)=12r"M"R+ _R [ 443)
The minimum of energy E{R) is found from the relation
AE(R) yis  dm
— =127"M- - =) 47
aR . 7 R? (47)
which gives for E,;,., the size as
. (48)
= 2My
and the energy
Epin = E(Rg) = 1202 M}y (49)

It is to be noted that the conpling parameters M and 5 are functions of a such that in the Emit o — 0,
M) — 0 and nla) — 0 but My is fixed.

We may compare E,;,, with the scale invariant energy

VT e?
T 42 €l
which is obtained from eqn. (15) with g = 0,V = 0, in the Lagrangian {{J). In this case energy i given

by the pure nonlinear sigma model : the size of the skyrmion is infinite and the energy is independent of
the size. So we may write

E(0) (50)

T

E(Ro) = 1222 My = Y 2/d 51

() o Ja (51)
Away from g = 0, skyrmions acquire a size. Now matching this value for g < 1 so that the form of

the solution in the core region is determined by the scale mwriant term alone, we take B = Hg(l — o)

and we have

ITTQ;'
ER) = L 1]'”[{1 —rx:I +

]

(1—a)

52)
\l'll{_ &2 {
_11,-"'- & ,l"f.f = [2 + —HIIJ
We can compare this with the standard result for enerpy with 2 = 1,
VTl 249 s
E + ——(glingi)"/* 53
W =17 I[ — (3lingf) "] (53)
where 7 = (gup B)/(e’/el) so that we can equate
1 o’ 24.9 .
] (7 S D s Ik :
52+ )] = 1+ (@) (54)
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FIG. 1: The dependence of skyrmion energy on size with respect to the variation of the parameter o (egn. [Z2))
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(gling])
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FIG. 2 The relaticnship of {§|lng))'"™ with o as given by the eqo. [Z5)

which sugpests

a
(i g 24.9 i
i = =1v1 /3% -
= 2 G (55)
We must mention here that though the value of o is constrained in the region 0 < o < 1 and a0 = 1
corresponds to the hedgehop skyrmion with spin in the radial direction but eqn. [BF) suppests that o = 1

is a singularity point. Indeed, the relation B = Hy(l — o) gives a nonzero size for o = 1 when Ry is
infinite. So in this case matching the minimum energy for g = 0, V = 0 and away from g = () with
g <& 1 will not be meaningful. Indeed the solution cot8/2 = x/xy is valid except for a very narrow region
around ¥ = 1y . This implies that a small region around o = 1 will not give meaningful result for size
and energy of the skyrmion. For comparison we have computed the energies of skyrmions in terms of o
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and it is found that up to o = 0.7 we have reasonable values of § beyond which g becomes large enough
to be compatible with quantum Hall skyrmions [Fig. 1].

This sugpests that in spherical peometry within the framework of O{4) nonlinear sigma model in 3+ 1
dimensional manifold we can determine the size of the skyrmion incorporating the Skyrme term in the
Lagrangian. The ratio of the Zeeman energy and Coulomb energy can be encoded in it [Fig. 2.

It may be added here that very recently Wéjs and Quinn presented the mimerical results for the
spin excitation spectra of integral and fractional Hall systems in spherical geometry.

V. DISCUSSION

Many authors have comnsidered quantum Hall skyrmions in spherical peometry and studied different
aspects of the system in terms of O(3) nonlinear sipma model with suecess. In all these approaches,
the electrons and hence the 3 (constrained ) order parameter fields reside on the 2-dimensional surface of
the 2 + l-dimensional O(3) model. To study the static properties of the skyrmions we have used here
the 3 + l-dimensional ({4) nonlinear sigma model which actually builds on a different manifold and
possesses different number of order parameter fields. The extra order parameter field helps us to consider
two independent 5T7{2) algebras depicting two mutually opposite orientations of the magnetization vector
which lives on the 2-dimensional surface. In this framework with the homotopic analysis we have shown
the existence/non-existence of skyrmions in fully polarized, impolarized and partially polarized quantum
Hall states . The Skyrme term which gives rise to the stability of the soliton determines the size
of quantum Hall skyrmions. Indeed, the distortion of the spherical shape can be incorporated through
the anpular dependence which can be conveniently introduced through a parameter o with 0 < o < 1.
Excepting a small region around o = 1, we can compare the result with the conventional 2D formalism
when the size is determined by the Zeeman energy and Coulomb energy for small g This helps us to
encode the effect of the Zeeman energy and Coulomb enerpy in the parameter o and the size can be
determined from the relation B = Ry(1 — ) where By corresponds to the size which & characteristic of
the minimum energy E(fy). In 2D formalism this minimum enerpy corresponds to § < 1 which may
be matched with the scale invariant value when the energy is contributed by the spin stiffness term for
g=0,V =0

We have alko shown that the spin and statistics of the skyrmion is given by the fterm. The skyrmion
charge is given by veZ where Z is the winding number associated with the homotopy 73(5%) = Z and
the spin is given by vZ2/2. For Z = 1, the skyrmion, when moving around a closed loop picks up a
phase 2reN where N is the number of skyrmions enclosed by the loop. In a process which exchanpes
two skyrmions in the rest frame of one of the skyrmions, the exchange corresponds to the other skyrmion
moving about the first in a half circle and hence it picks up a phase v which is the statistical phase.
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