The effect of the Coriolis force on Faraday waves
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Linear stability of the free surface of a thin sheet of a viscous Huid on a vertically
vibrated rigid plate, in the presence of a uniform and slow rigid body rotation about
the vertical axis, is presented. The Coriolis force delays the onset of parametrically
excited surface waves. The creation of Faraday waves is always possible by raising
the acceleration amplitude above a eritical value, if the angular frequency w, of the
vertical vibration is much larger than four times the angular velocity w,. of the rotat-
ing plate. The surface waves may be harmonic or superharmonic with the imposed
vibration in a thin sheet of slowly rotating viscous fluids at small vibration frequen-
cies. This leads to the possibility of a tri-critical point at the onset of the surface
instability in thin layers of a viscous Huid. Subharmonic, harmonic and superhar-
monic waves with different wavennmbers may coexist at the instability onset in the
presence of a small Coriolis force, which is a qualitatively pew result.
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1. Introduction

Faraday waves (Faraday 1831) appear on the free surface of a horizontal fluid layer by
subjecting the latter to asinusoidal foreing in vertical plane. These are parametrically
forced standing waves on the free surface. These waves oscillate subharmonically with
the external vibration. They are excited as the forcing amplitude is raised above
a critical value (Benjamin & Ursell 1954; Miles & Henderson 1990; Kumar 1996;
Wliles 1999: Perlin & Schultz 2000). Experiments (see, for instance, Douady 1990;
Ciliberto ef al. 1991; Fauve ef al. 1992; Edwards & Fauve 1994; Bechhoefer ef ol.
19495; Kumar & Bajaj 1995; Binks & van de Water 1997; Kudrolli ef al. 1998; Raynal
et al. 1999) in the last decade have shown a variety of interesting patterns in the
Faraday set-up. The forced surface waves could also be synchronous (Kumar 1996;
Miiller ef al. 1997; Cerda & Tirapegui 1997) with the external foreing in the presence
of larpe dissipation. This usually oecurs in thin layers of viscous fluids at low forcing
frequencies. This leads to the possibility of a bi-critical point at the instability onset,
where both subharmonic and harmonic (synchronous) surface waves can be excited
for the same value of forcing amplitude a. Although multi-critical points, where
many different solutions coexist at a given point in the parameter space, occur in
many systems in condensed matter physics (for a recent review, see Aharony 2002),
electrical cirenits (Kuznetsov ef al. 1995; Berthet ef al. 2002) and hydrodynamical
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systems (e.g. Becerril & Swift 1997; Ahlers & Bajaj 1999; Zhang & Gubbins 2000),
etc., they are rarely observed in experiments at the onset of primary instability.
The nonlinear process of pattern selection in the vieinity of a multi-critical point
in fluids may lead to superlattice patterns (see, for example, Rogers ef al. 2000)
due to the awilability of several eritical modes with different wavenumbers and
frequencies. On the other hand, the waves in rotating fiuids are known to lead to
interesting phenomena and mathematical problems (see, for example, Chandrasekhar
1961; Greenspan 1968; Barcilon 1968; Franklin 1972; Witham 1974; Whitehead ef
al. 1990; Hu ef al. 1997; Kumar et al. 2002). The Coriolis foree hreaks the mirror
symmetry of the convective flow patterns (Veronis 1957) and introduces competition
between two sets of rolls at an angle of ea. 60° to each other in the Rayleigh-Bénard
set-up (Kilppers & Lortz 1969; Donnelly 1986). The effect of Coriolis force on the
onset of Faraday waves is yet to be investigated.

In this paper, we present the study of Faraday waves in a thin sheet of a viscous
fluid subjected to a uniform and slow rotation about the vertical axis. The rotation
imposes a body force (Corviolis foree), which breaks the mirror symmetry of the flow
due to parametrically excited surface waves. In addition, this provides a rare physical
system to investigate the role of Coriolis force on a multi-critical point, which may be
accessible at the instability onset. The Coriolis force delays the Faraday waves on the
free surface. However, the Faraday (subharmonic) waves can always be excited at the
onset of surface instability if the angular frequency w, of the vertical vibration is much
greater than four times the angular frequency w, of rigid-body motion of the Huid.
The surface waves may also be synchronous with the vertical vibration in a thin sheet
of viscous fluid. In addition, we observe interesting instability phenomena in a thin
layer of a slowly rotating viscous fluid (whose viscosity is approximately 10 times the
viscosity of water). Firstly, the synchronous surface waves develop an additional loeal
maxima, when a is raised above certain value. Any point on the free surface moves
up and attains two different local maxima in one period of external forcing. The
wavenumber of these waves is double that of the synchronous waves. Superharmonic
waves at the instability onset are possible in parametrically foreed viscous Huids.
Secondly, different responses (e.g. subharmonic, harmonic and superharmonic) with
different wavenumbers may coexist for the same forcing amplitude. This leads to
the interesting possibility of a tri-critical point as the primary instability, which is
rare in any physical system. We believe that the results presented here are verifiable
experimentally.

2. Hydrodynamic system

We consider a thin layer (of thickness h) of an incompressible fluid with uniform
density p and kinematic viscosity v, resting on a horizontal plate that is subjected
to a vertical sinusoidal oscillation of amplitude o and angular frequency w,. The
whole system is rotating slowly with a uniform angular velocity w, about the vertical
axis. The basic state of rest in a frame fixed with the rigid horizontal plate has the
time-dependent pressure field

P(t) = P — py(t)z — jplwe x 2/°,

where » stands for the position vector in the horizontal plane from the axis of
rotation and w, = (0,0,u,). In experiments, the side walls will create a pressure
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gradient to compensate for the effects of centrifugal force at least for small rotation
rates. The concavity of the free surface is also small, if the centrifugal force is much
smaller than the gravitational force. This may be achieved in a circular container
of diameter 20 cm rotating slowly (eo.2-16 RPM) about the vertical axis passing

through its centre. The angle
P
! = arctan (ui)
)

between the vertical and the surface normal near the edge of the circular container
is very small {up to 0.036 rad). These constraints idealize the physical situation but
allow us to investigate the role of the Coriolis force on the Faraday waves. This
approach is similar to that used by Chandrasekhar (1961, §95) to study the effect
of rotation on the Rayleigh-Taylor instability at the interface of two immiscible
ideal (zero viscosity) fluids. Under these constraints, the free surface is assumed to
be initially flat, stationary and located at z = (). The oscillation is equivalent to a
temporally modulated gravitational acceleration, g(f) = g — acos{w,f). Linearizing
about the basic state, the dimensionless perturbation eguations for relevant fields
then read

dv=—-Vp+Vie —7(e; x 1), (2.1)
Gome () (2.2)

where v(x, 1. 2, 1) = (u, v,1w) is the veloeity field, ez is a unit vector in the vertically
upward direction, p is the pressure field, and T = 2w.h®/v is the dimensionless
rotation rate. In the above, length-scales are made dimensionless by the thickness h
of the fluid layer, time by the viscous time-scale h? /i, the fluid velocity field by v /h,
the pressure field by pv/h? and the rotation rate by wv/h?. Taking the curl of the
momentum equation (2.1) twice, we obtain the following equations for the vertical
vorticity 2 and the vertical velocity w, respectively:

(6 — VHZ = rdw, (2.3)
(0, — VIVw = —18.2. (2.4)

As the fluid rests on a rigid plate, all three velocity components must vanish on the
plate. These conditions may be translated as

w=dw=Z=10 atz=-1 (2.5)

As soon as the instability sets in, the free surface is destabilized. It is then located at

z = (=, t), where 2 = (&, y), and it obeys the kinematic boundary condition (Lamb
1932, §9) given by
Gl = w|a=¢. (2.6)

Other boundary conditions can be obtained by considering the stress tensor at the
free surface, piven by

I = —pbjp + (00r + Oevj) + GIEC bk, (2.7)

The last term above is the stress due to surface deformation in the effective gravita-
tional acceleration G(t) = G — Acos(f2t). The parameters G = gh®/v*, A = ah® /1/*,
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and 12 = w h?/v are, respectively, the Galileo number, the dimensionless form of fore-
ing amplitude and the dimensionless vibration frequency. As there are no tangential
stress components at the free surface, for the linear problem we have [T, = IT,. =10
at z = (. Since the tangential stress vanishes everywhere at the free surface, we may
also write . I1,. = 4,1If,. =0 at z = {, which may further be reduced by using the
equation of continuity (2.2) to

(Vi — 822)0|eege = 0, (2.8)

where Vi = &, + i, is the horizontal Laplacian. The normal component of the
stress tensor at the free suwrface must be equated to the surface tension o times the
curvature of the free surface, which for the dimensionless linear problem reads

O..|see = C'VELC, (2.9)

where C = g /oh is the capillary number. Equations (2.7) and (2.9) lead to the
expression for the pressure at the free surface,

Ple=¢ = 2(8:w)|.=¢ + G(1){ — CT'VEC. (2.10)
Taking horizontal divergence of equation (2.1) we get an expression,
Vip = (0 — V8w + 12, (2.11)

for the pressure everywhere in the fluid. Elimination of the pressure field p from
equations (2.9)-(2.11) leads to the following condition at the free surface:

(O — V2 )0t smg = 2V (Betw)|amg + GIVEC —CTIVEC — T2, (2.12)

The fields are expressed in the normal modes of the horizontal plane, i.e. sin(k - 2),
where the horizontal wavenumber (k? = k2 + .i.rfrj can take any real and positive value.
We now replace wiz, z, t) by w(z, t)sin(k - 2), {{z.1) by {(t)sin(k - 2), and the dif-
ferential operator Vi by —k?. For a consistent linear stability, we compute all the
fields at the free surface by Taylor expanding them about z = () plane, and keeping
only the linear terms. The relevant equations then read

[0 — (8:2 — ED(D:2 — K20 = —10, 2, (2.13)
[@ — (0., — k%)) Z = r8.w, (2.14)
w=dw=2Z=0 atz= -1, {2.15)

Wm0 = A, (2.16)

(O + ENw=8,Z=0 atz=0, (2.17)

[(8: — 8zx + 342)0utv + 72|20 = —[G — Acos(2t) +C 1K (2.18)

The set of equations (2.13)—(2.18) constitutes the complete linear stability problem
for a laterally unbounded layer of rotating viscous Auid, under parametric oscillation.
The linear stability problem may also be written in terms of vertical velocity w and
the surface deformation ¢ by eliminating the vertical vorticity 2 and transforming
boundary conditions on the vertical vorticity in terms of the vertical velocity.
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3. Stability analysis

The stability of the system (2.13)-(2.18) is analysed by applying Floguet theory
(Kumar & Tuckerman 1994). The surface deformation {(f) and the vertical velocity
wi(z, 1) are expressed as

((t) =e* Y (ue™ T, (3.1)
wz, t) =e*t Y wp(z)e™™, (3.2)

The Floguet exponent g can be expressed as g = s +inf2, where s and o can take
any real and finite value. The solutions corresponding to o = () and o = % are referred

to as harmonic and subharmonic solutions, respectively. We arrive, with these sub-
stitutions, at the following sixth-order differential equation for w,,

(D = ¥){(D? - B2)* + 72 D} = 0, (33)
with the boundary conditions

Walime1 =0, (3.4)
Dpl|s=—1 =0, (3.5)
(D? —k*)(D? — 37) Dy |1 = 0, (3.6)
[ + i +n)12)Cn = wis=n, 13.7)
(D? + k*)wy |0 = 0, (3.8)
(D* —k*)(D? — 83 )wals=0 = 0, (3.9)

|2 - o2 -0 -2y - (2 + Z—)D]f

= [G — Acos(2t) + K*C7'[k%¢. at z =10, (3.10)

where 32 = k? + [s + i +n)82), 42 = 32 + 2k? and D = d/d=. As we are interested
in stability boundaries and critical values of the forcing amplitude A and the wave-
number k., we set 5 = () in the above system of equations. The general solution of
equation (3.3) then reads

welz) = Ay cosh gz + By, coshgez + O coshgzz + Dy, sinh gy =
+ F, sinhigaz + F, sinhigaz, (3.11)
where ¢; = qi(n) (i = 1,2,3) for each n are roots of the cubic equation
g —2i(a+n)N¢ + [ — (a +n)2 g+ T2 = 0. (3.12)

The application of conditions (3.4}-(3.9) to the general solution (3.11) leads to a
matrix equation for every n
B(n)¥(n) = ®(n), (3.13)
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Figure 1. Stability diagrams for four different values of the rotation parameter . The Auid
parameters chosen are relevant for a water—glycerol misture (¢ = 0.1 cm?® 571, Other parameters
are (7 = 27 = 10*, 0 = 4.7 » 1074 and 2 = 11. The zones bounded by dots and the shaded
zones are for o = 0 and o = 0.5, respectively.

where B(n) is a 6 x § matrix. The transpose of the column matrix ¥(n) is
FT (1) = (Any By Cny Doy By Fns

Similarly, the transpose of &(n) is
@' (n) = (0,0,0, i{a + n}2¢,, 0,0).

The operation by B~! on the matrix equation (3.13) converts six unknowns A,,, B,,
Cpy Dy, By and F, in terms of one unknown §, . The application of the normal stress
condition (3.10) at the free surface then leads to the recursion relation

Q.'.'c?.' T A{[::-.'—I + c.':-+I .]'- {";"l't.]

where @, for each n is known. The kinematic condition (3.7) gives wg{z = 00) = 0 for
[ + i{ex + n)] = 0. This, together with boundary and continuity conditions, ensures
that wp(z) = 0 for all possible values of :z. Therefore, for the case of harmonic
response (o =],
2 :
8 = =(GE+ 2=

The recursion relation (3.14) is equivalent to a generalized eigenvalue problem
(Kumar & Tuckerman 1994)

QX = ADX, (3.15)

where Q is a diagonal square matrix with complex elements Q,,. The matrix D is
such that D; ;7 = 1 and D41 = 1. All other elements of the banded matrix D
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Figure 2. Minima of the reduced acceleration amplitude (A, /G) for the lowest two tongues
(top) and the lowest tongue (bottom) as a function of rotation parameter v for different values
of the dimensionless vibration frequency £2. Plots are arranged by increasing values of £2. The
dashed and dotted curves show the minima of the first subharmonic and the first harmonic
tongues, wespectively. The bi-critical points shown are relevant for water—glyveerol mixture. Other
parameters are G = 2.7 = 10* and C =4.7 x 107,

are identically zero. The column matrix X consists of {,. An ordinary eigenvalue
problem can also be written from (3.15) as

(27 'DIX = 1l

A
The real eigenvalues of @~ 'D are the inverse of the forcing amplitude A. The
eigenvalues are determined mumerically with a pre-assigned accuracy. The plot of
real positive values of A with respect to & gives the marginal stability curve as the
growth rate s{A, k) = 0. By choosing o« = 0) and & = % stability zones for harmonic
and subharmonic solutions are determined. They are usually in the form of tongues
(see figure 1). The minimum of the lowest tongue gives critical value of the forcing
amplitude A, and the eritical wavenmumber &.. For computation of 4. the Floquet
series (3.1), (3.2) is truncated to some finite value. All the computations are done
here with truncation to 21 for subharmonic and 22 for harmonie solutions, although
the results converge for more than 10 terms of the series. We have computed test

cases taking 100 terms of the expansion, and we found no change in the resulis.

{3.16)

4. Subharmonic and harmonic surface waves

Figure 1 shows the effect of Coriolis force on the stability zones of the parametrically
excited waves. The regions outside the tongue-like zones correspond to a stable and
flat free surface. Inside these regions, the free surface is unstable to any perturbations.
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Figure 3. Critical wavernumbers ke corresponding to the lowest points of the first two tongues
(top) and the lowest tongue (bottom) as a function of #. All fuid pammeters and symbols are
as in figure 2.

On the boundaries separating stable from unstable zones, the growth rates of all
perturbations are exactly zero. The possible frequencies of the growing standing
waves inside the shaded zones can only be odd multiples of £2/2. The standing waves
for parameters inside the zones marked by dots can have only those frequencies
which are integer multiples of 2. Two sets of the possible response of the Hat surface
under parametric excitation are mutually exclusive. Therefore, the two types of zones
never intersect each other. The four praphs, clockwise from the top left, are arranped
by increasing rotation rate . The first tongue, corresponding to a subharmonic
response with respect to vertical vibration, moves up faster in the A—k-plane, while
other tongues move up very slowly (see figure 2). Consequently, the onset of Faraday
waves is delayed. In the presence of Coriolis force, all the tongues also mowve leftward
to lower wavenumbers (figure 3). The second tongue, which corresponds to harmonic
surface waves, becomes the lowest tongue with increasing 7 (lower row of figure 1).
This signifies a bifurcation from subharmonic to synchronous surface waves. Just
before this bifurcation, the system poes through a bi-critical point {upper right,
figure 1). In the absence of rotation, this behaviour is possible only in highly viscous
flnids (Kumar 1996). However, rotation can foree synchronous surface waves even in
less viscous Huids like water at low frequencies.

The minima of the reduced forcing amplitude (A /7)) for the first two lowest
tongues are plotted in fipure 2 for different values of the forcing frequency 2. The
dashed curves correspond to the subharmonic response and dotted curves to syn-
chronous waves. For 2 % 27 (i.e. w, & 4w,), Faraday waves can always be excited
on the flat suwrface of a rotating viscous fuid sheet by raising the forcing amplitude
A above a eritical value A, The value of A, increases with rotation rate. This is
because the rotation generates vertical vorticity. This increases dissipation in the
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Figure 4. Critical values of (o) the reduced acceleration (A /@) and (b) critical wavenumbers ke
for the lowest two tongues as a function of rotation parameter v. The dashed and dotted curves
are for subbarmonic and harmonic waves, respectively. Other parameters are relevant for water:
G=27%x10%C=5x10""% and 2 = 60.

Table 1. Range of physical parameters used for computation

P T i h whe f2m
liguid fgem™)  (dynem™) (em®s"') (mm) Hz)  fgure no
water—glyvoerol Li-1.1 G0-75 01 2.0-3.0 14 1-3. 5
waler L0 FLIRD (.01 25310 14 4

system, making the threshold of surface waves higher. For smaller values of 2, the
surface waves may be synchronous with vertical vibration. The dependence of the
wavenumbers, corresponding to the minima of the first two tongues, as a function of
7 is shown in figure 3. The critical wavenumber k. decrease slowly with increasing
rotation rate for a fixed value of vibration frequeney. This happens until T < 2/2. For
T 3 £2/2, the critical wavenumber increase with rotation rate (see figure 4). The slow
decrease in wavenumber with increasing rotation rate for smaller values of 7 may be
due to competition among various dissipative mechanisms. Once the instability sets
in, the Coriolis force is available to enlarge the cells of Auid motion overcoming the
resistance from the rigid plate. With decreasing wavenumber, the resistance of the
bottom slowly increases and ultimately prevents any further wavermmber decrease.

Figure 4 shows the possibility of harmonic waves in a thin layer of water rotat-
ing slowly {ea 13 RPM). The lowest wavenumber corresponding to the subharmonic
response shows a dip with increasing 7. But the amplitude of the harmonic response
becomes smaller than that for the subharmonie response. The Coriolis force may
lead to the possibility of harmonic waves even in low-viscosity fluid such as water.
Table 1 lists the range of physical parameters for which the computations are carried
ont.
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Figure 5. Stability zones showing a tri-critical point and superharmonic waves in viscous sheet
of water—glyeerol mixture (G =27 = 10%, £ =4.7 x 107" and 172 = 7.5). The shaded zones and
zones bounded by dots are for o = 1/2 and o = 0, respectively. With increazing + (clockwise
from top left), harmonic response goes to a tri-critical point for + = 2.9, where surface waves
with wavenmimbers k. 1561 and 28 with &y the wavenumber of the first harmonic response
coexist at the instability onset. Further increase in v leads to superharmonic waves as primary
instability.

5. Tri-critical point and superharmonic waves

Figure 5 shows the stability diagram for a thin sheet of water—glycerol mixture
(v = 0.1 cm? 57!, thickness h =~ 3 mm) at dimensionless vibration frequency 2 = 7.5
(1-2 Hz) for different rotation rates. The fuid parameters are chosen such that the
surface waves are synchronous (Kumar 1996; Miiller ef al. 1997; Cerda & Tirapegui
1997) with vibration frequency in the absence of rotation. In the presence of even
small rotations, all tongues are shifted upwards. The first subharmonic tongue is
pushed up quicker than the others, as the waves with larpest wavelength (the small-
est k) face maximum resistance from the rigid bottom in a thin sheet of viscous Huid.
Other tongues move up slowly and at different rates. This leads to the interesting
possibility of observing a tri-critical point in a Faraday experiment with very slow
rotation (7 = 3, i.e. for 4-5 RPM). The surface waves with three different wavemim-
bers ky, 1.58 and 2k, where k& is critical wavenumber of first harmonic tongue,
coexist at the same foreing amplitude at the onset of surface instability in the case
of a tri-critical point. A slight increase in rotation rate (7 = 4, ie. e 6 RPM) leads
to the possibility of superharmonic surface waves with critical wavenumber ko = 20y
at the instability onset, even at very slow rotation.

Figure 6 shows the time dependence of the critical mode corresponding to the
lowest points of various tongues of fipure 5 and compares them with the sinusoidal
forcing. All the curves in this

figure are plotted over twice the time period of vibration
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Figure 6. Time dependence of the critical modes for the first harmonic (dashed curves), the
second subharmonic (dotted curves) and the superharmonic (dashed dotted curves) surface
waves for increasing values of rotation rate v. The top left shows the forcing for a comparison
of the critical modes with vertical vibration over a perdod twice the period T (= 27 /02). All
parameters are same as in figure b

T (where T = 27 /£2). Although the forcing in the vertical direction is sinsoidal, the
response at the free surface is periodic but quite distorted. The eritical mode (dashed
curve) for r = 2.3 is synchronous with the external vibration and corresponds to the
lowest point of the harmonic curve of figure 5 for the same value of 7. The dotted
curve corresponds to the lowest point of the second subharmonic tongue, for the
same value of r. That is why it shows three peaks over a period of 2T,

All three responses occur at the same value of the forcing amplitude A, for 7 = 2.9.
This leads to an interesting possibility of a tri-critical point at the instability onset
in Faraday experiment. Further increases in 7 lead to superharmonic waves at the
instability onset (lower left). The eritical mode shows two peaks over one period of
vibration. The fluid surface at a given point is raised twice by the time one vibration
is completed.

6. Conclusions

We have presented the stability analysis of the free surface of a viscous Auid under
vertical vibration and subjected it to a uniform slow rotation about the vertical
axis. The subharmonic waves are suppressed at relatively higher rotation rates. Syn-
chronous and superharmonic waves could be excited on the free surface of a thin sheet
of viscous fluid, due to Coriolis force. Superharmonic waves are likely for 4wy 3 w,.
For viscous Huids such as water—glycerol mixtures or silicon oil, these effects may be
observed at small rotation rate (a few revolutions per minute). The results predict
a new tri-critical point where swiface waves with response wavenumbers k., 1.5%,
and 2k, could be simultaneously forced at the instability onset. Superharmonie solu-
“ions and the tri-critical point at the onset of primary instability in a parametrically
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excited sheet of Aluid may be possible at low rotation rates. These results may have
interesting consequences in pattern selection in parametrically forced systems.
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of India, through its grants under the project ‘Pattern-forming instabilities and interface waves®,
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