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Intelligent states in the sense of field intensity dependent squeezing for a closed and sym-
metric algebra which interpolates between the Heisenberg Weyl algpebra W and su(l, 1)
algebra are constructed. The explicit expressions of these states in terms of Laguerre
polynomials are derived and their quantum statistical properties are investigated.
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1. Introduction

Intelligent states (15) are quantum states which minimize Heisenberg uncertainty
relation for noncommuting quantum observables.' ™ In recent years there have been
many studies concerning 1S, mainly in the context of quantum optics.? One of the
principal reasons for this interest is the close relationship between 1S and squeezing, ®
In addition, the 1S often show a variety of other nonclassical properties, such as
antibunching effect, sub-Poissonian photon statistics,” and oscillatory photon count
distributions.” In fact, the generalized intelligent states for two quantum observables
can provide an arbitrarily strong squeezing in either of them.® A generalization of
squeezed states for an arbitrary dynamical symmetry group leads to the intelligent
states for the group generators.®* In particular the concept of squeezing can he
naturally extended to the intelligent states associated with the su(2) and sul, 1)
Lie algebras.'" An important possible application of squeezing properties of the
su(2) and su(l, 1) minimnm uncertainty states is the reduction of the gquantum
noise in spectroscopy'! and interferrometry. 21

On the other hand there are a large number of states in quantum optics known
as interpolating states which interpolate between two different states. A very im-
portant example of interpolating state is the Binomial state introduced by Stoler,
Saleh and Teich.' In Ref. 15 interpolating states are obtained as the coherent states
of closed and symmetric algebra which interpolates between the Heisenberg Weyl
algebra Wy and sull, 1) algebra. It was shown in Ref. 15 that these states have a
number of interesting properties.
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In the present paper intellipent states in the sense of intensity dependent
squeezing'” corresponding to this algebra are introduced and their quantum
statistical properties are investigated. The paper is organized as follows: In Sec-
tion 2 we sketch the realization of the imterpolating algebra and the eigenvalue
equation for the intelligent states. In Section 3 we solve the eigemvalue equation
and present the subset of its solutions which has a simple form. In Section 4 the
properties of these states such as squeezing effects, sub/super-Poissonian statistics
as well as their quasi-probability distribution (the Wigner functions) are discussed
and finally Section 5 is devoted to concluding remarks.

2. Interpolating Algebra and Eigenvalue Equation

In this paper we shall restrict ourselves to the generalization of su(l, 1) algebra
characterized by the set of generators

Rn=m7a+%, B = ket la; Be=avitaleLl (1)

where k is a parameter which is nonnegative and less than or equal to unity.!®
The generators {4 and Ry satisfy the following commutation relations

[Ro,Ri] = +kRy, [R4+,B_|=-2R, {2)
and the Casimir invariant is given by
3 L{1
Gﬂ=Rﬁ—E[R-~R+]+=E(§—k) (3)

where [H_, H4|; denotes anticommutation of the two operators.

The algebra (2) interpolates between the Heisenberp Weyl alpebra W; and
su(l,1) algebra as & takes the value zero and unity respectively. The method for
obtaining one algebra from another algebra is known as “contraction” and the pro-
cedure to go from su(l, 1) to Wy is known.'¥ It is worth mentioning that algebra(1)
is similar to Holstein-Primakoff realization of the su(1,1) algebra:'?

Ko=ala+j, K_=./ata+2ja, K, =al\/ala+2j (4]

with j = § and the deformation operator is v'kala + 1.
It s to be mentioned here that for the realization given in Ref. (1) the relevant
interaction is given by the Hamiltonian

Hi. =g(a_ﬂw{kam+ 1)+ oy 4/ (kata + lja). (5)

In the absence of nonlinear coupling obtained by setting & = 0 in Eq. (1), this Hamil
tonian describes the usual Jaynes—Cummings model.?® The intelligent states for
field intensity dependent squeezing are the solutions to the eigenvalue equation '®

(W1 +iWa k)| = Bl (6)
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where A is real and 3 is complex. It can be shown'® that

: i i oIt .S:'
(WIWhl) = 8., (¥Waly) = 5 (1)

where 3, = Re 3 and 3 = lm 3. Therefore [ is directly related to the expectation
values of Wy and Ws in minimum uncertainty states. Furthermore,

A .
(AW1)? = S(4IN + 5l¥),

} T, 1
(AW,)* = oy WIN + Sl

These equations confirm that A is a squeezing parameter.
The quadrature operators Wi and W5 are'”

1 ] L1
Wi = §{R+ Ry), Wa=_(Ry—R), Wa=N+_. (%)
The commutator of W, and Wi is

T
¥ 2
1
Wy, W] = i (N i 5) (10)

where N = a'a is the number operator. Consequently, they obey the uncertainty
relation

(AW HAWL)? 2 (W32 (1)
A state is said to exhibit field intensity dependent squeezing in the W direction
if
Foya ]' x
(AW)7 = E{H‘g} ;

3. Solution of Eigenvalue Equation

To solve Eq. (6) we first express it in terms of B, B as

1 1 ; .

5{1 — AR, + 5{1 +AR_| |3) = 8|y} . (12)
Now expanding |17} in terms of number states will lead to a three term recurrence
relation for the expansion coefficients which will be difficult to solve. Instead it is
simpler to introduce the state

W) = S(€)7" k) (13)
which is related to |17} by the squeezing transformation §(£) = eS8+~ E-) The
parameter £ will be chosen later. The state |1} can then be expanded in terms
of photon number states. It will now be shown that for a proper choice of £, the
recurrence relations determining expansion coefficients can be easily solved.

If we let £ = 7e®, then |1} satisfies

SE)7 |50 = NRy + 51+ NR- | S@) = 61¢)
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[{(1 = Ay cosh®(7vE) + (1 + Ne®® sinh®(rvE) LRy
+ (1 = Ne 2 sinh*(rvk) + (1 + A) cosh” (rvk) } R_ (14)
—{(1-Ne ™ 4+ (14 }.jﬁia}%R.]sinh{Erv@jﬂw’} = 284",
where we have used the relations

S(EIR_S(E)™ = RB_cosh®(rv'E) + Ry e?®sinh*(rv'E) — R o sinh(2rvk)

vk
R_:IIT;E_ @ sinh(2vkr) — R-';m

S(E)RpS(€)™" = Rycosh{2vlr) — e sinh( 2vEr)

S(EIRLS () = R_,.{x)ﬁhg{rﬁ:l + R_e™ %8 ginh? rv"'h ﬁ*-imh Erv'"h o
(15
We now want to choose £ so that the coefficients of £, in Eq. (14) vanishes.
The condition for this is

tanh® (r/k) = 1‘5:11“ M, (16)
For A = 1, we choose 8 = 0, and for 0 < A < 1, we take # = 3. The parameter r

is then chosen so that tanh” (rv'k) is equal to the absolute \alm of the right hand
side. With these choices, we find that

cosh(rvk) = \ (ﬂ) .

N
(17)
sinh(rvk) = (?j') D<A<1,
cosh(rvE) = (J‘—%Ll) ._
(18)

A—1
sinh(rvk) = (T) X1
These expressions can now he substituted into Eq. (14). The result for 0 < A < 1
is given by
[R_ - Ale] ') = Blv) (19)
v.rx !
while for A > 1 it i
[RoA= 22 VG| ) = 4. (20)
\.'"I ]
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We now expand |17} in terms of number states

W) =3 Caln) (21)

re=l

and smbstitute this expression into Eqs. (19) and (20). This leads to the recurrence
relations

i/ — Mj(kn+ 1)+ 8vE
Cry = i X 22
b l VEN R+ 1)y/(n + 1) h=d= (22)
and
o i VI —1)(kn + 1)+ 8vE {“ - (a3
i J'.\,-"HV"' kn 4+ 1)4/(n+1) o -

These recurrence relations can be sobved for any valoe of 3 and for A = 0. Here,
we wish to examine a particularly simple subset of solutions. This subset & found
by noting that, if 3 and A are related in the proper way, only a finite nmmber of
the coeflicients O, will be different from zero. In particular, if 0 < A < 1 and

g=- F{l — ANY2(2EM + 1) where M is a nonnegative integer, then we have
Cu:{}'\ 11_}3’!4‘1
€] i 32 1,."2\’,.-"_ Tt J A (243

= Co, m<M+1.
/Il — 1) +1”_ M—h-j_ e

Therefore

i1 — ATWER, )" M!
c?ﬂz[[h V2 oy (25)

(n— 1)+ 1]|Inl{M — n)!
where

[[F = Fr)fn—1)---F(1), [[fO))=1.

The constant Cy & chosen so as to normalise the state.
It is possible to express this state in a relatively compact form in terms of
Laguerre polynomial'" defined by

Ly(z) = i{—lj"m—‘“" "
B n=A {“!jzliﬂ\f — N .

The state [17") can be re expressed as
F'v. R
) = Caclas (/TN o) (27)

where 7y 15 a normalization constant. Hlmllarl}' for A > 1

[y = Chs Lpg ( (A ; vk __HR; = l) [0} .

BN —1)
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Therefore

lha.ae = S(E) W)

[ g N ;
Crye€B+ " RIL (Emﬁ#) 10,

‘f=»,i,.-f{l—}.2:|\,-"{£_; forQ < A< 1,

. NR
CueleRe=€ L (S iy 0

DI =T)vE
R

=3

£ for A=1.

L

4. Nonclassical Properties

We now examine if the minimum uncertainty state in the sense of intensity depen-
dent squeezing also exhibits normal squeezing. For this the quadrature operators
are

X=%{a+a1], vt pheg, (30)

i
2
They satisfy the commutation relation [X,Y] = 5 and consequently their vari-
AnCes
(AX)? = (X?) — (X},
{ﬂif:l'z = {}/2} _ {1/}‘2
obey the Heisenberg uncertainty relation

(AXPAY) 2 1. (31)
The field is said to be squeezed in the XY quadrature if
1 L

AXV2 <= [ (AY)2 <= ]).

(ax? < (@vy<q)

Now for M =1

A — 1k

) [I{}} . (—M’r) |1>} A1
') = (32)

[0y - vVa- R o<a<l,

and

(sech (rv'k)) ; S (tanh(rvE) )"
Al {33]

x [] vk(m—1) +1)(2A =1 — 2knd)|n) = [}, A=1,

=1

|1.-5‘:?1:1 =
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W . 1 o (i tanh(rvE))"
[4hx1 = Culsech (rvE)) ¢ gﬂh—m
el {:5:1:|
x J] Vlk(m—1)+1)(2— X —2knd)|n) = [¥),, O<A<L.
m=1
Far A =1
; 1 1 _s(sech 1"1.,-"{_ {tanh{rvE) )2 +2 s
(AY) =g EFF Z e T (kGm — 1) + 1)4x%*
re=ll =1
(35)

l o (sech (v ﬁjjﬂ > (tanh(ry/F))20+2
(AX) =+ f“.J 32 2 Sl

ezl
x [T (k(m— 1)+ 1)[(2A = 1 — 2\k(n + 1))?

=1
+{2A—1 — A +2)) (@A =1 —Fkm)]] (36)

e (sech r\,-"'_ i (tanh (ry/T))2n+1
1] }' = I[l'f|+-j,“_|

el
* H (Elm— 10+ 13(2A — 1 — 2EnA)(2A -1 - 2kA(n+ 1))

=1

where
{wh >, (tanh(rvE))2" T
G = Ly 33 e T k=134 1)
E ] =1
-1/
x [(ZA—1 - mnﬁ} (37)
amd for D < A < 1
-]

hirv/k)im+® TT (k(m — 1) + 1)ar2i2

a1 LToas g — (tan
(AX); = 3 +Ec.,{s«,{h{rﬁn==§ g Ll
(38)
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1 2w (tan
(AY)2 = LC3(sech (VR)E Y ¢
x[(2—= X —2kA(n +1))2 + (2 — A — 2kAn)(2 — A — 2kA(n + 2))]

s [Cﬁ{ﬁfx:h (rvE)ES

% (2— A — 2knA)2 — A —2kAn + 1))]

where

h(rv/R) 242

re=l)

==

=]

krtln!

m=1

I[tallhl[i"\-"'i::l:l?""'l )

!

a

(tanh(ry/F))2 T

Bl {{stx:h{rﬁj]ﬁ Z

re=ll

kmn!

=1

—-1/2
% (2 — }.—Elkﬂjﬂ} :

[T (k(m—1)+1)

I (k(m—1)+1)

m=1

IT(km —1)+1)

(39)

(40)

From Eqs. (35) and (38) it can be easily seen that [y (|40 ,) does not exhibit
squeezing in Y(X) direction.

We have plotted X quadrature variance for A = 1 given in Eq. (36) in Fig. 1 and

for all vales of k.

0.1

Fig. 1.

FPlot of X quadrature variance {(.ﬁ)\'}?:l — 1/4 against A (> 1) for different k.

Y guadrature variance for 0 < A < 1 given in Eq. (39) in Fig. 2 for different wlues
of k. It is seen that [0}, and [10); exhibits quite different squeezing behaviour. It is
evident from Fig. 1 that except for & = 0.25, the X -squeezing behaviour of |1 is
insensitive to the value of k& whereas Fig. 2 shows that |10), exhibits Y-squeezing
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Fig. 2. Plot of ¥ quadrature variance {(.ﬂ}’}?:l —1/4 against A (< 1) for different k.
In order to examine further nonclassical properties we shall now evaluate
(41)

Mandel’s () parameter is defined by®
AN N
i i T

AR T
If ¢} = 0, the field is called Poissonian. If () = 0(0) < () it is called super(sub)

Pokssonian respectively.
For A = 1, the Mandel parameter is found to be
A—(B)?
Q=211 (42)
where
= nA]
(sech(ryE)) & (tanh(ry/F) )2 +2
5 et (n+1) J] (k(m—1)+1)
z m=1

A=C} 3z
re=ll

% (2X—1— 2Mkin + 1))°

> (tanh(ry/F) 22 o2

T (ktm —1)+ 1)

o (sech (r/E))
R Az 2 et i

=l =1

% (2A —1—2Me(n +1))2 (43)

where 'y & given by Eq. (37).
On the other hand for 0 < A < 1, the Mandel parameter is given by
T
i 5 (44)

Q=5
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where

sech (v k g nhir /) 2n+2 reztll

¢ =c2t h{pﬁ)) 3 (ta hirfj'j T .
re=(l = =1
¥ (2— X —2Me(n +1))?
(45)

sech (rvENE & (tanh(r vE) 20+2 "F0

D=Cﬁ{‘ h{”ﬁjj 3 (tanh(r'E)) Tl km=1)+1)

Lt 1aq 1
e={l ke il m=1

% (2—h—2Me(n +1))?
where Cy is given by Eq. (40).

We have plotted Mandel’s () parameter for 0 < A < 1 piven by Eq. (44) in
Fig. 3(a) and A = 1 given by Eq. (42) in Fig. 3(b) for different values of k. Fig. 3(h)
shows that ) = 0 so that the state & superpoissonian. In Fig 3(a) it s interesting to
note that for 0 < A < 1 the () parameter is decreasing which for & = (.25 is negative
indicating that the state is partly subpoissonian and partly superpoissonian. So in
this case parameter & plays a significant role. This behaviowr may also be obtained
for other values of the parameters.

Quasi-probability distributions provide insight into the nonclassical nature of
radiation fields. Of these, the Wigner function®® plays an exceptional role as it
contains complete information about the state of the system. The Wigner function is
the Fourier transform of the characteristic function, associated with the symmetrical
ordering of the annihilation and creation operators. However, instead of the phase-
space integration method, we would like to use the series representation of quasi-
probahilities® in which the Wigner function reads

W(B) = = 3(-1)5(8, kold. K (46)
Tiu
where |3 k) = D{F)|k} are the so-called displaced mumber states and D(3) =
exp(3a’ — 3*a) is the Glauber’s displacement operator.

If we now insert p = |1}y 1 (| where |10}y 1 = ¥, Culn), given by Egs. (33)

and (34) for A= 1 and for 0 < A < 1, respectively, we obtain

a4 -~ 2
2
W(3)=— Z{—l:lk ZC:{ﬂl_{i,k} (47)
c4f =1 =1
where
{“|-51 k} == Xrlk{.ﬁ:'
.|
\ L".ﬂxvi—I.filﬂfzrl.ﬂ"-*ﬁ;:'"fu.::'sF:l if n >k
n!
- (48)

!
T exp(-182/2) (B LE(81) i<k
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15

b= 25

o

(b}

Fig. 4. Plot of Mandel's (} parameter ¢ against (a}) A (< 1} for different &, (b} A (> 1} for
different k.

where
e i T {—E:ll
LY (z) = ( i ek
g m—f) [T

is the associated Lagnerre polynomial. We have studied numerically the behaviowr
of the Wigner fimction W(z) as a function of z = » + 4y for A = 1.5 and for
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P __=_.__,_,_—-—'—'_'_'_'_

aam T

k.378

k128 T

(e)

Fig. 4. Plot of Wigner function W for (a) A = 1.5 and & = (.25, (b} A = 1.5 amd k& = {15,
(c)Ad=Lband k=075 (d}A=105amd k=L
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1.373%

Fig 4. (Confinued)

different values of & The results are shown in the Figs. 4(a)-4(d). The negativity
of the Wigner function is prominent for & = 00.25. For other values of & there are
wvalleys of negative values of the Wigner function.

5. Concluding Remarks

In this paper we have constructed 15 in the sense of intensity dependent squeezing
for an algebra interpolating between the Hesenberg Weyl Wy and su(l, 1) algebra.
The interpolation is made possible by the introduction of the real parameter k
in the elements of the nonlinear realization of the su(l, 1) algebra. It & shown that
these 15 are squeezed in the normal sense and they exhibit sub or super Poissonian
photon statistics depending on the parameter k. Regarding the possibility for
the realization of these 1S, it is worth mentioning® that in Ref. 21, for example,
a method based upon a non-unitary collapse of the state vector of the cavity-
field mode via atom ground state measurement is proposed for preparing a
cavity-field mode undergoing a Jaynes—Cummings dynamics in any superposition
of a finite number of Fock states m principle. The scheme in Ref. 22, however,
uses a cavity quantum electrodynamics unitary time dependent interaction. The
method proposed in Ref. 23 is an alternative method to construct a Hamiltonian
which would allow the use of some kind of nonlinear interaction for the production
of arhitrary pure states. In Ref. 24, it is shown that arbitrary pure quantum states
can be realized by a succession of alternate state displacement and single photon
adding. Based on these significant studies it can be hoped that the 15 will be pro-
duced in the near future.
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