Exact solutions of cylindrical and spherical dust ion acoustic waves
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Cylindrical and spherical modified Korteweg—de Vries (KdV) equations are derived for dust ion
acoustic waves. It is shown that a suitable coordinate transformation reduces the cylindrical Kdv
equation into the ordinary KdV equation which can be solved analytically. A completely different
analyical solution is obtained using the group analysis method. However, for cylindrical and
spherical modified KdV equations group analysis method yields trvial analytical solutions.
Numerically, solutions 1o these modified KAV equations are obtained assuming initial profiles

similar o those i one-dimensional soliton solutions,

Nonlinear waves in dusty plasma have attracted a greal
deal of interest in recent yu:lrs.'_q Dusty plasma is a fully or
partially wnized electron—ion plasma containing charged mi-
crometer sized dust particles. Dusty plasma can be found in
many parts of our cosmic environment (for a detailed survey,
see Ref. 8). Dusty plasma suppors two types of acoustic
modes: high frequency ion acoustic mode involving mobile
ions and static grains, and a low frequency dust acoustic
wave involving mobile dust grains. Both of these modes
have been observed in experiments.™" One particular field
of study which has received a lot of attention is that of soli-
tary waves and shock waves, Usopally, the reduction pertur-
bation technique (RPT) is applied o study solitary waves
iboth ion acoustic and dust acoustc solitary waves) and RPT
iRefs. 11-14) gives rise to the famous Kodeweg—de Vries
(KdWV) or modified KAV (MKJV) equation, which, have been
studied extensively. However, most of the studies are limited
o one-dimensional geometry. I the geometry 15 extended o
two and three dimensions and one assumes radial symmetry
then RPT would derive, respectively, eylindrical and spheri-
cal KdV equations. Recently Mamun and Shukla'*"® derived
the cylindrical and sphercal KdV equations for dust acoustic
waves and dust 1on acoustic waves. However, in the case of,
say, dust ion acoustic waves, the KAV equation fails o de-
scribe solitary waves, when g, the mtio of electron and ion
densities (initial) takes a particular value. For this one has 1o
consider cylindrical and spherical MKV equations. The mo-
ivation for writing the present note is twofold. First we
would denve the eylindrical and sphencal MEAY equations.
Second we would show that contrary o the observatons
made in Ref. 16 exact solutions exist for both cylindrical and
sphercal KAV equations. In these cases analytcal solutions
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can be obtained by the group analysis of the generalized
KdV  eguation, fist  discussed by Zakharov  and
Korobeinikov."” Earlier Hirota'® showed how cylindneal
KdV equation can be transformed into the usual KAV equa-
tion by coordinate transformations. Howewver, Hirota's
method cannot be applied for spherical KAV and cylindncal
or spherical MEAY equations. But the group analysis method
mives analytical solutions for the spherical KAV equation
though it does not give any nonirivial solutions for the
MEdVY equations. For the MEAY equations we use a numeri-
cal method to find solitary wave solutions.

To denve the cylindneal and spherical KdV equations
we consider a nonplanar eylindrical or spherical geometry
and swdy the nonlinear propagation of dust ion acoustic soli-
tary (DIAS) waves in an unmagnetized dusty plasma whose
constituents are inertial 1ons, Boltzmann electrons and sta-
tonary dust particles.

The nonlinear dynamics of the DIAS waves whose phase
speed is much smaller (larger) than the electron (ion) thermal
speed (in nonplanar eylindrical and spherical geometres) is
governed by
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where v=10, for one-dimensional geometry and v=1, 2 for
cyhndrical and spherical geometry, respectively, n; 15 the ion
number density normalized o its equilibrium value ngg. u; s
the ion fluid speed nomalized to C,=( KT, /m)"?, and ¢
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is the electrostatic wave potential nomalized by KzT,. /e

The time and space variables are in units of the ion plasma
penod wp, =(m/dwn e )Y and the Debye radius Ag,

a
respectively. We have denoted p
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are used o derive eylindrical and spherical KAV equations

The KdV type equation derived by using the stretched coor-

dinates (4) is given by
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and develop equations in various powers of e

To lowest order in e, Eqs (1)-13) gives n‘”—u

W= gy, and vy=1/u
To next higher order in e, we oblain a set of equations
(10)
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From (10)-(12), we get

8| oo -] + (77

(5)

()]

We see that for = ¢ eylindrical and spherical KdV solutions
collapse. One then considers cylindrical and spherical MEKAY

For this we inroduce the stretched coordinates, £
=el(r—uvgt), 7=¢€'t and expand n;, u;, and ¢ in a power
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FIG. 1. Plotof ¢'" v& & for the solution (21), when g=0.4 and V=1

Combining Egs. (14)—(16), we deduce a modified KdV
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(9) To obtain an analytical solution of cylindrical KdV equa-
! tion [Eq. (5) for w=1], ket us first use Himota's
transformation'® given by
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Equation (20} is the usual KdV equation. So the solution of
Eq. (20) is given by

If vy= 1:"\# and g =1, then Eq. (13} is an identity

To next higher order in e, we obtain a set of equations
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assuming appropoate boundary conditions where Vs the
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solitary wave velocity
The exact solution of Eq. (3) is given by
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This solution is valid for 7=0. In Fig. 1 solution (21} is
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plotted for two values of 7viz., 7= 1.0 and 7=1.5 (the other
parameters are v=1, =04, V=1).

Another solution of the cylindrcal KdV equation can be
obtained by the group analysis of the generalized KdV equa-
tion, first discussed by Zakharov and Kombeinikov.!! The
details of Lie point symmeltry, which gives rise to the invari-
ants of any differential equations, are given in Ref. 19. For
the sake of brevity we just gquote the results essential w ob-
tin the analytical solutions of the cylindrcal KdV equation.

For the cylindrical KdV equation
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the generators or transform operators are given by
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Fix,t) is an invariant of the equation iff X, F=0 (i
=1,234). For example, X F=0 pgives the invariant £
=xt ' and suggests the transformation

x
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So, for the cylindrical KdV Eg. (5) we make the following
trans formation:
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Then Eg. (3) reduces 1o
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Integrating (23),
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where ¢ is an inegration constant. Equation (24) is of the
Sagdeev-type and can be solved with the help of the so-
called tanh method. ™ The solution turns out to be
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Another transformation ¢'''= (E2AT)+ U 7), givesthe
soluton as

tﬁ,,':I'J:,_,_:E_,.,_E (28)
A7 7'

where ¢ 15 an arbitmary constant.
For the sphencal KAV equaton,
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Some of the nontrivial invanant solutions are
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The solution e, when applied 1o the equation
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gives the following solution:
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The solution s, when applied to Eg. (29), gives the follow-
ing equation:
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Again the solution w3, when applied to Eq. (29), gives the
following equation:
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Analytical solutions of (31) and (32) are difficull 1o obtain.
For the cylindrical and spherical modified KAV equation
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Only trivial analytical solutions like n=ct" " and u
=n(x) can be obtaned. Next we discuss the numencal so-
lutions of cylindrical and spherical modified KdV equations.

It may be noted that Eq. (17) has the following solitary
wave solution for v=10:
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FIG. 2. Mumencal solutions for cylindrical MEdY equation for different
vilues of 7 where g=1/3
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where [7 is the soliton velocity. With this initial profile at 7
=—90 we solve the cylindrical and spherical modified Kdv
equations. Figures 2 and 3 show, respectively, the solutions
for v=1 and v=2 for several valves of 7 ranging from 7
=—6 to 7= —9 Iiis seen that as magnitude of 7 increases
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FIG. 3. Numencal solutions for sphercal MEAY equation for different val-
wes of 7, where g= I/3.

Exact solutions of cylindrcal and spherical dust . . . 4165

the solutions look like those for one-dimensional MEKAV
solitons. This is because the extra term (2270 becomes
small for large values of 7and we get back the old solution.
However, the singularities of the solution are not reflected in
the initial profile. This can be guessed from the exact ana-
Iytical solutions of cylindrical and spherical KdV equations.
All the solutions have singulanty at 7=(.

To summarize, we have denved cylindrical and sphencal
MEJV equations for dust ion acoustic waves using the re-
ductive perturbation technique. We have also found exact
analytical solutions for cylindrcal and spherical KdV equa-
tions for dust ion acoustic waves (previously derived by Ma-
mun and Shukla'®) using the group analysis method. Our
solutions are also valid for spherical and cylindrical KdV
equations for dust acoustic solitary waves derived by Mamun
and Shukla.'® For the cylindrical and spherdcal MKdV equa-
tons, however, the group analysis yields trivial results, Here
a numencal method has been apphed assuming a mmtial pro-
file similar to the one-dimensional soliton solution. It is
found that, as expected, for large values of 7 the solution is
similar o that of the one-dimensional MKAV equation.
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