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Abstract

Planktonic blooms and its control is an intriguing problem in ecology. To investigate the oscillatory successions of blooms, three
simple phytoplankton-zooplankton systems are proposed. [t is observed that if the uptake function is linear and the process of toxin
liberation is instantaneous, the oscillatory nature of blooms is not observed. On the other hand. periodic planktonic blooms are
observed when toxin liberation process follows discrete time variation. The bloom phenomena described by this mechanism can be
controlled through toxin producing phytoplankton (TPP). Introducing environmental Auctuation in the system. a critical value of
time delay in terms of correlation time of the Aluctuation is worked out. We observed from our mathematical analysis, numerical
simulation and field observation that TPP and control of the rapidity of environmental fluctuation are key factors for the

termination of planktonic blooms.

Kevwards: Toxin producing plankton { TPP); Zooplankton; Bloom: Time delay; Colorad noise; Control

1. Introduction

The dynamics of rapid (or massive) increase or
decrease of plankton populations s an important
subject in marine plankton ecology. Generally, high
nutrient levels and favorable conditions play a key role
in rapid or massive growth of algae and low nutrient
concentration as well as unfavorable conditions inevi-
tably limit their growth. The water must contain high
levels of inorganic nutrients (nitrogen and phosphorus)
for the algae to feed on and also water temperature and
salinity levels must be within a certain range to be
conducive to planktonic growth. A frequent outcome of
planktonic bloom formation is massive cell lysis and
rapid disintegration of large planktonic populations.
This is closely followed by an equally rapid increase in
bacterial numbers, and in turn by a fast deoxygenation
of water, which could be detrimental to aquatic plants
and ammals. These blooms also reduce the chance of

growth for aquatic vegetation. Hence studies regarding
the pattern of blooms are necessary towards this serious
ecological problem. In recent years, there has been
considerable scientific attention towards harmful algal
blooms (HABs) (see, Blaxter and Southward, 1997:
Stoermer and Smol, 1999; Anderson, 1989; Smayda,
1990; Hallegraefl, 1993; Chattopadhyay et al., 2002a,
etc.). A broad classification of HAB species distin-
zuishes two groups: the toxin producers, which can
contaminate seafood or kill fish, and the high-biomass
producers, which can cause anoxia and indiscriminate
mortalities of marine life afier reaching dense concen-
trations. Some HAB species have characteristics of both
groups. The term ‘bloom” may be misleading, particu-
larly when used in reference to organisms that produce
toxin. A broader definition of the harmful marine
organisms includes (1) planktonic or benthic microalgae
that produce toxin (e.g. the motile stage of Alexandritm,
the benthic Gambierdiseus); (i) other harmful dinofla-
eellates (e.g. Pfiesteria); (i) macroalgae that resulis in
novious smells (e.g. Pilayella), (iv) a few species of
Cyanobacteria or blue green algae (e.g. Microcystis) and
(v} non-toxic microorganisms that result in hypoxic
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conditions (e.g. Chaetoceros, Mesodinium). The adverse
effects of HABs on human health, commercial fisheries,
subsistence fisheries, recreational fisheries, tourism and
coastal recreation, ecosystem and environment are well
established. Nevertheless, despite the attention towards
this issue, the mechanism for the occurrence of
planktonic blooms and its possible control strategy are
not yet well established and required special attention.
Hence experimental work as well as mathematical
modelling is necessary.

In a broad sense planktonic blooms can be derived
into two types, “spring blooms™ and “red tides™. Spring
blooms occur seasonally for the changes in temperature
or nutrient availability which are connected with
seasonal changes. Red tides are localized outbreaks
and occur due to high water temperature (see, Truscott
and Brindley, 1994). Nature of blooms, in the sense of
the rapid onset and disappearance of oscillations under
supposedly favorable environmental condition is one of
the main characteristics in plankton ecosystem. It is
convenient to define the meaning of blooms. This can be
explained by two ways, namely multistability (in which
the system tends to one of the coexisting stable
equilibria) and sustained oscillation (Hopf bifurcation,
in which the system oscillates around an unstable
equilibrium). Several researchers have tried to explain
the dynamics of the namre of blooms in planktonic
systems by different approaches: for example, nutrient
upwelling has been investigated by Edwards and
Brindley (1996), spatial patchiness by Mathews and
Brindley (1996) and species diversity by Pitchford
and Brindley (1998). Steele and Henderson (1993);
Edwards and Brindley (1996) observed that the choice
of functional form and mortality of zooplankton has a
major influence in the dynamics of excitable nature of
blooms.

Harmful phytoplankton certainly plays an important
role in the blooms and succession. Probably, the main
reason behind population succession and bloom is due
to the toxin produced by harmful phytoplankion. When
a bloom of a particular harmful phytoplankton occur,
the cumulative effect of all the toxins released may affect
the other organisms, causing mass mortality. Such
extreme concentrations or blooms are responsible for
the massive localized mortality observed in fish and
invertebrates in various places (see, Rice, 1984). Reduc-
tion of grazing pressure of zooplankion due to release of
toxic substances by phytoplankton s one of the key
parameters in this context (e.g., see Kirk and Gilbert,
1992). There s also some evidence that herbivore
{zooplankton, see Odum, 1971) grazing plays a crucial
role in the initial stages of a red tide outbreak (e.g., see
Uvye, 1986). Buskey and Stockwell (1993) have demon-
strated in their field studies that micro and meso
zooplankton populations are reduced during the blooms
of a chrysophyte Auwrecococcus anophage fferens in the

southern Texas coast. Toxicity may be a sirong
mediator of zooplankton feeding rate, as shown in both
field studies (see Mielsen et al., 1990) and laboratory
studies (see Ives, 1987; Nepstgaard and Solberg, 1996).
These observations indicate that the toxic substance
plays an important role on the growth of the zooplank-
ton population and has a great impact on phytoplank-
ton—zooplankton interactions. Researchers are trying to
establish that wviral infection on plankton plays an
important role for the termination of blooms (Sarno and
Forlani, 1999: Beltrami and Carroll, 1994). But the
identification of viruses is a difficult task and also its
control mechanism is still a matter of debate. Chatto-
padhyay et al. (2002a) established an alternative
approach (the effect of toxic chemicals on zooplankion
in contrast to viral infection on phytoplankton) to
explain the mechanism for the occurrence of planktonic
blooms and its possible control.

Another interesting problem is the dynamics of
externally forced systems. Natural forcing is of course
superposed by a certain environmental noise. Massive
phytoplankton blooms were observed in Seto Inland
Sea. Japan (Prakash, 1987) and in Hong Kong Harbour
{Lam and Ho, 1989) and were due to artificial
eutrophication. It has been observed that artificial
eutrophication plays an important rok for excitable
behavior of the system. It has also been suggested that
eutrophication (Smayda, 1989, 1990), changes in N:P
ratio (Egge and Heimdal, 1994) and certain contami-
nants in the marine environment (Papathanassiou et al.,
1994) affect phytoplankton succession. Richardson and
Heilmann (1993) have suggested that eutrophication
resulting from human activities has led to an increase in
phytoplankion production in Kattegat throughout the
annual period in which nutrients are predicted to be
limiting for phytoplankton growth. Thus, plankton
populations often fluctuate unpredictably due to the
fluctuating environment and the study of the dynamics
of the system under these circumsiances is necessary.

May (1973) analysed a prey-—predator sysiem under
stochastic fluctuation considering white noise for the
population and observed that when the population
deviates more from the equilibrium point, the system
shows instability e for instability of the system, the
deviations from mean population will increase. The
ecological effects for terrestrial and marine systems will
depend on the character of the physical frequency
distributions and the general qualitative response of
these systems could be inherently different. For terres-
trial system, the environmental variability is large at
both short and long time periods and could be expected
to develop internal mechanisms to the system which
would cope with short-term variability and minimize the
effects of long-term variations, hence analysis of the
system with white noise gives better results. But for
marine systems, particularly in planktonic systems, less
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robust internal processes are needed to handle the
smaller amplitude variability at short time periods
commensurate with the life span of the organisms.
Steele and Henderson (1984) observed more compli-
cated models containing specific descriptions of ecolo-
gical relations particularly with stochastic inputs for
different frequency ranges of color and white noise and
used specifically for marine plankton. They found that
for white noise the system would fluctuate irregularly at
much shorter time-scales compare to the color noise
though the comparable forcing period is much more for
the case of white noise than that of the color noise.
Marine ecological systems are more likely to have color
noise instead of white noise as compared to terrestrial
systems ( Steele, 1985; Pimm, 1982). Furthermore, several
authors (Cushing, 1989; Kierboe, 1993) have pointed out
that the growth rates of the herbivores capable of
consuming large phytoplankton cells are slow relative to
the growth rates of the algae and that there will be a
relatively long lag time between the onset of an increase
in growth rate in large phytoplankton species and a build
up in the biomass of their predators. There are also
several reports that the zooplankion mortality due to the
toxic phytoplankton bloom, occurs after some time lapse
{see, www.mote.org, www.mdsg umd.edu).

The above observations indicate that the nature of
planktonic blooms is very much complex. In this paper
we propose a simple phytoplankton—zooplankton model
with an additional factor that the release of toxic
substance by phytoplankton species reduces the growth
of zooplankton. We shall ry to explain the nature of
blooms by changing the following two constituents of
toxin liberation one at a time, (1) liberation process
is instantaneous and (2) it follows the discrete time
variation. Our theoretical result suggests that in the
latter case periodic planktonic blooms can be explained.
We shall also attempt o search a possible mechanism
for controlling the planktonic blooms by introducing
environmental stochasticity in the model system. The
main objectives of this paper are the following:

® (o find a suitable mechanism by which one can
explain the nature of periodic planktonic blooms;

® (o find a possible control mechanism by which the
planktonic blooms can be checked:

e (o find a critical value of delay factor in a noise-
induced system, which 15 not yet available in
literature.

To establish the theoretical results we shall use our field
observations. We have considered the toxin producing
plankton (TPP) species as Noctiluca scintillans and
zooplankton species as Paracalanus sp. (the taxonomical
and functional distinctions of both the species are given
in Chattopadhyay et al., 2002a). Our field study suggest
that the zooplankton population fluctuates unpredicta-
bly in the collection zone nearer to the river (where

artificial eutrophication increased due to discharge of
sewages, etc.) and the presence of TPP in this region is
much less. Hence rapid appearance and disappearance
of the zooplankton population (which may be termed as
‘blooms’) have been observed. Further in the collection
zone, which is far from the riverside, the presence of
TPP terminates the bloom of zooplankion population
after some time lag and a sustained existence of the
population has been observed without oscillation. Also,
we  observe that the blooms of the zooplankton
population near the riverside can be controlled by
introducing a random fluctuation with low intensity in
the observed data and this phenomena agrees with our
analytical study. This establishes the fact that both TPP
and control of artificial eutrophication may act as a
control for planktonic blooms.

2. Background of mathematical models

From the above discussion, it is now clear that for
termination of blooms, TPP and control of artificial
eutrophication have major role. To establish this we shall
propose some mathematical models and the findings will
be supporied through our field observations.

Monitoring of plankion population was carried out
since 1999 in the NorthWest coast of Bay of Bengal. As
we are interested to report the effect of toxin producing
phytoplankton on zooplankton, we choose Noctiluca
seintillans (TPP) and Paracalanus sp. (zooplankion) for
this study. The materials and method of the study have
been discussed elaborately in Chattopadhyay et al
{2002a). In this paper we will consider the data of the
field observation from March, 1999 to January, 2001 (30
sample collection dates). To establish our theoretical
realization we shall mainly focus on the dynamics of
TPP-zooplankion system in different collection regions,
the schematic diagram of which is given in Fig. 1. Here
stations 1, 2, 6 and 7 of the collection region (zone 1) are
nearer to the Talsari river (which are artificially
eutrophicated by the discharge of sewage etc. from the
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districts Balasore, Orissa and Midnapur, West Bengal,
India) and stations 3, 4 and 5 (zone 2) are far from the
river side (thus less affected by artificial euntrophication).

It is interesting to note that in zone 1, the presence of
TPP is much less than that of zone 2. The rapid
appearance and disappearances of zooplankton popula-
tion in zone | clearly demonstrate the bloom phenom-
ena (see, Fig. 2). We also observe that most of the
zooplankton population is above the average level of
population (calculated by the average of population
density throughout our study time). But in zone 2 most
of the zooplankton population lies below the average
level. Also the sustained oscillations which we observed
in zone 1 settled down (see, Fig. 3). Hence the role of
TPP in the termination of zooplankion bloom is clear.

Motivated from the literature and our field observa-
tions, a series of dynamic models o describe bloom
phenomena have been proposed and the role of toxic
phytoplankton as well as artificial entrophication in the
termination of planktonic blooms have been observed.
Our first aim is to find a suitable model which explains
the oscillatory succession of planktonic bloom and then

propose suitable mechanisms by which the blooms thus
formed may be terminated or controlled. The following
issues have been explored in this work and the details
are given in subsections.

First, we propose a mathematical model of TPP and
zooplankton interaction. It has been already stated that
TPP population do not release toxic chemicals always,
rebease only in the presence of dense zooplankton
population around it. This phenomenon has been
included in the interaction terms as Holling type | and
type II functional forms, respectively. Our analysis
shows that this model formulation cannot explain the
bloom phenomena and hence a modified model is
needed.

To search for a mechanism of oscillatory succession in
planktonic blooms, we further develop the first model
considering the biological fact that the reduction of
grazing pressure due to toxic substance is not instanta-
neous, but is mediated by some time lag required to
release toxic substances by the phytoplankton species.
There are also several reports that the zooplankton
mortality due to toxic phytoplankton bloom, occurs
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after some time lapse (see  www.mole.org,
www. mdsg umd.edu). Our field observations (see Chat-
topadhyay et al., 2002a) also suggest that the abundance
of Paracalanus (zooplankton) population reduces after
some time lapse of the bloom of toxin producing
phytoplankton Noctiluea seintillans. This depicts the
fact that, there is a time lag between the occurrence of
harmful algal bloom and the reduction of grazing
pressure of zooplankton population. Further, Chatto-
padhyay et al. (2002b) observed that when the release of
toxic substances by phytoplankton population follows a
gamma distribution then the cyclic nature of blooms
cannot be explained by this type of distribution of toxic
substances or toxic phytoplankton. The prediction
based on the system involving distributed delay illus-
trates that concentration of toxic substances or toxic
phytoplankion eventually approach equilibrivm con-
centration and hence no periodic solutions are possible.
It is also worth noting that if the order of the delay
kernel, go to infinty while keeping the mean delay fixed,
then the distributed delay can be viewed as discrete
delay (see Cooke and Grossman, 1982). Thus, we have
considerable freedom to modify the first system by
introducing discrete time variation in the grazing term.

Thirdly, we want to explain a more realistic feature as
it is already mentioned in the introduction that
phytoplankion zooplankton interaction would be more
visible if one can study the dynamics in the presence of
externally forced system. Inter annual wariability in
phytoplankton production can to a large extent be
explained by changing weather conditions and changing
land use, as the water shed and rainfall determine the
nutrient and sediment input to coastal sea water. Thus
in arder to understand ecosystem functioning better, we
need to understand what determines phytoplankion
species composition and succession during blooms, what
happens when blooms decay, how contaminants influ-
ence hloom dynamics and what is the interplay between
nutrient enrichment (through artificial eutrophication)
and harmful algal blooms. This forcing appears rather
normally due to daly. seasonal or annual cycles,
photosynthetically active radiation, temperature, nutri-
ent availability, eutrophication, etc. and phytoplankton
populations ofien fluctuate unpredictably in numbers
{Evans and Parslow, 1985; Truscott, 1995; Popova et al.,
1997; Ryabchenko et al., 1997). Further, the historically
increased nutrient loads to estuaries have been reflected
in similar trends of increased nutrient concentrations in
at least some coastal seawater (Hickel et al., 1993: Allen
et al., 1998), raising concerns about nutrification
stimulating both primary production and nuisance
blooms of algae, not only within estuaries but also in
adjacent coastal seawater. However, trends of nutrient
increase in coastal seas have usually been confined (o
localized areas subjected to severe impact by large local
inputs, such as in German Bight by the Rhine and

Scheldt plumes (Gieskes and Kraay, 1977, Jickells,
1998). While annual loads give comparative information
between estuaries, there may be large seasonal differ-
ences in the inputs of nutrient, with consequent
ecological effects (Nedwell et al., 1999). The impact on
the estuary of nutrient load will amongst other factors,
depend on the residence time of the nutrient within the
estuary. The Freshwater Flushing Time { FWFT), which
expresses the volume of freshwater within the estuary as
a function of the freshwater input {Dyer, 1973), will be
influenced by tidal mixing and exchange and affect the
volume of freshwater remaining within the estuary. It
has been observed through the longitudinal profiles of
salinity that FWFT varied between as little as 15 days
during winter peak flows as much as 765 days in late
summer when river flow was least and the freshwater
volume in the estuary was replaced only slowly by
riverflow  (Nedwell et al., 1999). The algal bloom
formation can result from two often simultaneously
operating processes: (1) bottom-up control of photo-
synthesis and (2) top-down control of biomass. The
interplay of these factors will determine whether there is
an increase in biomass. Hence there is always a time lag
for the change of phytoplankton biomass which depends
on the nutrient concentration, light availability, grazing
and i1s also influenced by physical conditions such as
residence time of the nutrient or FWFT (Underwood
and Kromkamp, 1999). Hence, the study of the
dynamics under a certain environmental noise with the
autocorrelation time of the noise process which can be
interpreted as the residence time, is an appropriate
consideration in this context. Now, we try to explain the
development of different phases of model formulation
systematically in the following subsections:

2.1 The Mathematical model with instantaneous
toxin liberation

In the formulation of the model it has been assumed
that the growth of phytoplankion population follows
the logistic law (see, Murray, 1989; Odum, 1971) with
intrinsic growth rate v and environmental carrying
capacity ‘K°. It is mentioned in the introduction that
some phytoplankion genera release toxic substances and
thereby reduce the growth of zooplankton by decreasing
the grazing pressure. It is also stated in the previous
section that zooplankton grazing plays an important
role in the initial stages of outbreaks. Keeping these
properties of phytoplankion—zooplankion population in
mind, two different types of predational forms have
been assumed: simple law of mass action and Holling-
type response term (Holling, 1959) which is also known
from Monod or Michaelis-Menten saturation models of
enzyme kinetics (Michaelis and Menten, 1913; Monod
and Jacob, 1961). When phytoplankion populations do
not produce toxin, the predation rate will follow the
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simple law of mass action and in this case zooplankion
eating s proportional to the phytoplankton density
and thus limiting the production of the phytoplankion
{since an mdividual zooplankton encounters in direct
proportion to prey abundance, thus in the absence of
limiting factors feeding rate increases linearly with
food, see, Andersen and MNival, 1988). But as liberation
of toxin reduces the growth of zooplankton, causes
substantial mortality of zooplankton and in  this
period  phytoplankton  population 15 not  easily
available, hence a more common and intwitively obvious
choice 1s of the Holling type Il functional form to
describe the grazing phenomena in the presence of toxic
substances.

From the above assumptions the following differen-
tial equations can be formed:

i = n‘-'(l - P) —afPZ,
K

di
dz ; : e .
E=ﬂ.ﬂz—cz—?+‘u.«:_ (1)

Here P and Z represent the density of phytoplankton
and zooplankton population, respectively, (> 0) is the
specific predation rate and (= 0) represents the ratio of
biomass consumed per zooplankton for the production
of new zooplankton. of=0) is the mortality rate of
zooplankton. (= 0) is the rate of toxin production per
phytoplankton species and (> 0) is the half saturation
constant.

System (1) has to be analysed with the following
initial conditions:
POy =0, Ziy=10. (2)
System (1) has the following nonnegative equilibria,
namely, a trivial equilibrium £(0,0), an axial equili-

brium £,{K.0) and the interior equilibrium E*(P* Z%),
where

—~(B1— e = 0) +/(By —c — 0 +afye
2f ’

z‘*=£(1—£)_ (4)

P = (3)

K

A simple algebraic calculation shows that a necessary
and sufficient condition for the existence of positive
equilibrium £* is

¥e
f){{ﬂK+ﬂ}'—c-]—E. (3)

It is observed that the right-hand side of system (1) is
a smooth function of the variables (P.2) and the
parameters, as long as these quaniities are nonnegative,
so local existence and uniqueness properties hold in the
positive quadrant. From the first equation of system (1),
it follows that £ =0 is an invariant subset, thatis P = 0
if and only if P(¢) = 0 for some ¢ Thus, P(f)= 0 for all ¢

if £P(0) = 0. Similar argument follows for 2 = 0 from the
second equation of system (1), Now, ket us consider the
boundedness of solutions of system (1)

Lemma 2.1.1. Al the solutions which initiaie in {Rﬁ_"-,ﬂ}
are wuniformily bownded.

The proof of the lemma is given in the appendix (A).

Stability analysiv: Local stability analysis (LAS) of
system (1) around the equilibria can be studied by
computing the variational matrix. 1t is easy to see that
the trivial equilibrium £y is an unstable saddle point.
Existence of a positive interior equilibrium implies that
the axial equilibrium £, is alko an unstable saddle in
character. Non-existence of positive equilibrium ensures
that £ is locally asymptotically stable. The character-
istic equation of system (1) around the positive interior
equilibrium E¥ is given by
P —Mi+N=0, (6)
where
M= —ﬁ{{m

K :

a7
ey PO
It can be easily verified from second equation of system
(1) that #=f(y + P*)*/y can never be a solution of the
systen, hence instability, even simple bifurcation is also
not possible in this case. Now since M <0 and N =10
system (1) around E*(P*,2%) is locally asymptotcally
stable. To investigate the global behavior of system (1)
let us first prove that system (1) around E£* has no
nontrivial periodic solutions.

N= [B(y + P — ).

Lemma 2.1.2. Existence of povitive eguiibrivm  of
aywtem (1) enswres that there iy no limit cyele i the first
guadrant.

The proof of the lemma s given in Appendix A.

Theorem 2.1.1. Exisience of a positive iterior equili-
brium ensures that svstem (1) around FE*(P*, Z*%) i
globally asymptotically stable.

The proof of the theorem is given in Appendix A.
From the above observations we can now write down
the results of system (1) in the following remark.

Remark. If the growth of phytoplankion species follows
logistic law, uptake function is of linear type in the
absence of toxic substances, reduction of grazing
pressure due to toxic substances is of Holling type 11
and the distribution of toxic substance is instantaneous,
oscillatory succession of planktonic blooms is not
observed by this model formulation.
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2.2, Model with discrete time variation in toxin liberation

In this subsection we shall try establish a suitable
mechanism to explain the oscillatory succession in
planktonic blooms by introducing discrete time varia-
tion in the grazing term in system (1), We state the main
results for oscillatory successions of planktonic blooms
following the paper of Chattopadhyay et al. (2002b).
System (1) now takes the following form:

dP—P P Pz

e

dz . i 0Pt —1) .

e S, AL 7
di p & 4+ Pit—1) )

where t 1s the discrete time delay.

System (7) has the same equilibria as in the previous
case. The nature of trivial and axial equilibrium are the
same as in system (1). We now perturb system (7)
around E¥(F*, Z%) and obtain the following linearized
system of differential equations:

= A By
s X+ 8y,
Yo R, (8)
dr
where

J i
x=P-F, y=Z_-2* A =—r?, B=_aP*
o
Gt P T 9)
(r+ )

We assume a solution of the form x(f) = e¥. We have
the corresponding characteristic equation as

A, 1) = A*— AL — BC— BEe ™ = (. (10)
Mow substituting £ = % + iwin Eq. (10) and separating
the real and imaginary paris we obtain the system of
transcendental equations

:at'-iI — > — Aa; — BC — BEe ™" coswr = 0,

Qa0 — Aw 4+ BEe " sin ot = 0L {11)
The stability or instability of the system is determined by

the sign of those 4 satisfying Eq. (10} if 4 is real or the
sign of #; satisfyving Eq. (11) if £ is complex.

Theorem 2.2.1. The following are necessar y and sufficient
conditions for E* o be asymprotically swable for every

t20 (see, Saaty, 1981):

1. The real part of every root of AL 0) = 0 is negative.
2. For all real oy and t=20, Mg, )0, where

i= /=1,

Theorem 2.2.2. As A <0 and B<0, then in the parameric
region —E < C the interior equilibrium E* of system (7) is
locally asympeotically stable for O<t<n/uy.

Mow we have the following condition under which the
system goes through a point o= ty) and o= wy) where
a Hopf-bifurcation occurs.

Lemma 22.1. If A°+2BC <0 and 0<C< — E then
there existy a wnigue pair (og,19) with oy, o=,
wyTo=2n such that Alley, tg) = 0, where wy and Ty are
given by the following formudae:

wf, =_'5|:—{.»‘I2 + 28C)

+ y’ful +2BCY — 4 BXCY - B EY|,

o =Lan:5in (_m{*}) +‘_’n—n, a=01,2,...
oy BE o

Lemma 22.2. Let A2+ 2BC<0,0=C< — E. Then the
real paris of the solutions of Eq. (11) are negative for
T g, where tg = 0 ix the smallest valwe for which there i
a selution to Eg. (10) with real part zero. For © =1y, E* is
unstable. Futher as © mereases through o, £* bifurcates
into small amplitude of periodic solutions. Chattopad-
hyay et al (2002b) alvo derived the conditions for which
swstem (7)) around E* enters into  supercritical or
suheritical bifurcation.

Note. From Lemma 22.1 we have

Ty = Lan:e:'m (_'4@) {for n =0).
ity BE

Mow as K — oo,1y—0 (since oy — a fixed positive
value). This result shows that enhancement of environ-
mental carrying capacity decreases the critical value of
the delay factor to zero. As a result the instability region
of the system increases. This observation also exhibits
the nature of blooms through periodicity.

2.3, Maodel with diserete delay and color noise

In the previous subsection we observed that oscilla-
tory succession of plankionic blooms can be explained if
the production of toxic substance follows the discrete
time variation which occurs due to time lapse required
for liberation of toxic substances when there is a dense
concentration of zooplankion population. From the
above point of view we shall again modify and study
system (7) taking into account the additive color noise
with proper choice of autocorrelation time of the noise
process as the residence time for nutrient concentration.

It is well known that the rapid perpetual, highly
irregular motions of a small particles (in this case
phytoplankion) can be described by Brownian motion.
Generally, the Wiener process is used to model
Brownian motion ie. it is chosen as a stochastic process
to represent the position of the Brownian particle. But if
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the Wiener process is used then the instantaneous
velocity is not defined in the model as the sample paths
of the Wiener process are nowhere differentiable and
the process is infinite. This difficulty can be avoided
considering the main random quantity as Uhlenbeck
and Ornstein process, which is also the appropriate
choice to model a colored noise environment in most of
the applications (see Horsthemke and Lefever, 1983).
This supporis the usefulness of the color noise idealiza-
tion in applications to the natural aquatic systems. Here
we have assumed the Stratonovich interpretation of the
stochastic differential equations, which conserves the
ordinary rule of calculus and in this case the ensemble
average of the solutions of stochastic differential
equations can generally be related to the solutions
of appropriately constructed ordinary  differential
equations.

The amm of this section 15 to find out a relationship
between the critical value of delay factor and the
correlation time, so that one can have an idea for
controlling the plankionic blooms. The dynamics of the
system in a random environment will be considered
within the frame work of the following model taking
into account the additive form of the colored noise
process:

dpP rP .
E= P(F+f'f{!]—f)—1fjﬁ,
dz 3 ; 0P — )
= fPZ — ¢Z — : 12
df B ‘ 14+ Pit—1) (12)

where the perturbed term y(f) s a colored noise or
follows Ornstein—Uhlenbeck process (Uhlenbeck and
Ornstein, 1954). The mathematical expectation and
correlation function of the process p(() are given by

{0y =0, {n(tdn(ta) > = edgexp(—dolt) — 1), (13)

where & dy = (0 are, respectively, the intensity and the
correlation time of the noise and < . represents average
over the ensemble of the stochastic process. The
correlation function p(f) is the solution of the stochastic
differential equation

dyp ails dew
e riheiay ﬂ:r\ga, (14)

where &(¢) = dw/dt denotes the standard zero mean
Gaussian white noise characterized by

CEDY =0, {EME) > = d(t — 1) (15)

with &{¢) as the Dirac delta function. Substituting X =
log Pand ¥ = log in Eq. (12), we obtain

dy ”::Jf' ¥
g RS
dy peXt—2)
e =ﬂfx —T ﬁ.
de y+ et

MNow using the transformation vt =X — X*v= ¥ —
¥*, respectively, in the above system of equations we
obtain

du i+X* g
— —r4n— — et ¥
T )

de r}e,ldr—::+k"'

s+ X
E - -& R 7 + ‘:_udr—::l+.](""

Then using Taylor series expansion up to first order of
wlf), v(t), wit — 7) and using small delay expansion in the
above system of equations we finally obtain the
linearized system as:

dv .. . M
E—H‘;F"m{!]+(ﬁ Uy ¥ )F"u

— e Py, (1)
where (P*, 2*) is the positive interior equilibrium point

of the system in the absence of noise.
By eliminating ¢ and u from (l6), respectively,

we get

dow du .
dzu de .
F+I{E+bv=h“], (17
where  Fi(1) = —don(n) + 8o/ 2800 and  Fa(0) =

(B — 7080 — Oy0) PrR(0) + Oyr P8y 2e8(D.  Here a=
(r/K + par Z5)P* and b = 2P Z%(f — o0). We are now
in a position to solve the stochastic differential equation
given in Eq. (17). To solve this system we shall follow
the approach of Hoel et al. (1993). We obtain

u(f) = (e (6) + (Do) + o),

o(f) = o(0)h (1) + (0)pa (1) + [{ﬂ — y0) P 26l (1)

_{ﬁ—r}]'—‘f}]'mﬂ]f'ﬁm“]_ (19
g
Here
W B
¢|{!]=% when, a* —4b >0
o
=e=’.{n:usﬂ’|:—%sinﬁ'|:] when o* —4b<0
[
=e¢"(1 —ry) when & —4b=0,
et — et
fil'-"z'i!]=l,—r,,l when a* —4b =0
Fy — i

!
f21 . I 5
=—sin it whena” —4b<0

i1
= te""when o — 4b =10,
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where  a= (r/K + yatZ*)P*, b =aP*Z*p — 10,
fi=(—a+va' —4b)/2r] =(—a— Vd —4h)/2, 2| =

—af2, fi=(Vab—a)/2, rn=—a/2 and u(0)=
log PI0)/ P* il (0)=r — r PIO)/ K — 2Z(0), o(0) =log Z(0)/
Z*, (0) = BP(0) — ¢ — OPO) /(3 + P(0)).

The solution without noise term takes the following
form:

ult) = w(0)eh (£) + 1 (O)gha (),
vlt) = o(Deh () + v (0heho( ). (19)

In this case the ensemble average of the population are
ziven by

{ult)y = w0) by (1) + 6 (0) ol ) )
and
(o) = Oy (D) + (0N o).

MNow for ¢ — oo, ¢ (t) > —=0and also { ¢, (8) > =0 (since
in this case a® — 4b = 0 which is Gﬂ[i‘;ftﬁd as [h.& mnditian

of the system).

Hence we get { P(1)y = P* { Z(N> = Z* and also the
deviations of both the populations 6 = 0 and 6% = 0.

Mow we are in a position to see the effect of
environmental fluctuation in the system. Recently,
Sarkar et al (2001) developed a method to estimate
the optmal values of the parameters and the safe region
for an eco-epidemiological model of Tilapia and Pelican
populations proposed by Chattopadhyay and Bairagi
{2001) and Chattopadhyay et al. (2001) successfully used
this technique to estimate the inaccessible parameters in
a plani-herbivore-parasitoid system. Here we shall use
their method to explain the dynamics of TPP—zooplank-
ton system under environmental fluctuation.

From Tchebychells inequality we have a pre-assigned
small  wvalue & =0 for which lim,_ . Prob{|F —
Fleg)=1 (as ap=0) and lim,_ .. Prob{|Z —
ZHleogg)=1 {(as oz =0) Le. the probability of F-
population and Z-population to lie inside the wlerance
intervals (P* — g, P* +5) and (Z* — g, 2 + &), re-
spectively are maximum.

Mow the question is how these tolerance intervals are
affected due to influence of stochastic fluctuations?

The solutions of the nose induced system are mven by

Pif) =-P* exp Iagﬁqb'm

P(0 )
+(r—' ;{c ]—ﬂ{ﬂ])¢:{!]+ﬂ{ﬂ],

. e[ Z(D
Zit)=Z%exp Iﬂg%q&.m

) ; ,
+(ﬂf‘{m :,+P{m)¢3“]+ﬂ{!]], (20)

where ') = n(0.0"(1) = [(f — pP* 2ed(0) — [(ff —
Oy — yT)P* [ Soln(0)]. For (= oo, we have (P()> =

P Z2(6 7y = 2% But in this case the deviations are
different from zero and are given by

ap =268y P,

2 2(f — Oydy — r};r]l

ab =2e|(f —y0)* + Pz,

i

Now for different choice of 'a:,ﬁ[em parameters when o3
is greater than & and similarly rr, is also greater than g,
both populations will deviate from the tolerance level
and the system becomes unstable around the positive
equilibrinm. In terms of system parameters the devia-
tions of two populations P and £ from the mean are,
respectively, given by

a [—m}-—c-— 0+ (B —c- uf+4m-c-]
= 2:—2‘.;} L]

ap = T

; | 2B 030 -
i — D ! -
A ﬁ"K [{‘H ¥+ 3

x [—{ﬂ}' —e=0)+\(Br—c— 07+ 4ﬁ“;c-J

ﬂ“;rr’]

2

x [EﬂK+{ﬂ}-— e — 0)

= v“f{ﬁ;- — =8P+ 4;},-:-J g (21)

Now limg,—, 0% = o0 and limg,, . 0% = o0.

S0 we can say that as dy increases the deviations also
increase and the system becomes unstable. [t is well
known that the population will remain stable if the
variances from the equilibrium level are minimum (May,
1973) ie. the probahility of the population to lie inside
the tolerance level which is described previously are
maximum. To minimize o7 and o5 and also to find out
the critical value of t we differentiate the second
equation of (21) with respect to 1 (since there is no 1
in the first equation of (21)) and we get

diz2) _ FJ_-'_ —4f — pdy — )y
dr 82t K2 dy
2 — hidy — ()
2 ”'}z;r they |:—{ﬂ}' —e—)
0

-

V=0 +ape] [k

a
+(fy—c—)- y’f{ﬂ}'— c— 0 +4ﬂ-}'r'J - (29

Now from d{a3)/dr = 0 we get

— i
T B r}]'I v =1y say). (23)
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Further we obtain
df{alel
de2 &

e (f— tyy
a2t K24,

+ /By — c— 07 + 4pyef

X [2BK +(fy—c—0)

[y — ¢ — )

3

— By —c— 07 +apye|

and using the existence condition of £* we observe that
d*(a)
dr?

It is interesting to note that

[ X

0 = Lar«:s‘e.irt (_Awﬂ) (forn=10)
BE

Lk
{from Lemma 2.2.1)
" A
~  BE
{when retaining only first order terms of wy)
_ Py (24)
Op(K — P*)

Mow from the conditions of existence of the positive
equilibrium E* we have, tg< P* (F/0p(K — P*) (from
Eq. (24)) and further from the conditions of Lemma
221 we finally have

4 2
mﬂ%-f’*l‘]‘ K. (25)

r

We can further observe that when there is no noise i.e.
when the perturbed term 5 —0 (which suggests that the
correlation time dg—0) then the stochastic threshold
reduces to

r“—»ﬂ (from Eq.(23)).

II}.I"
This result is closely resembled to the deterministic
threshold t given in Eq. (25).

Thus we can conclude that when t= 1, (1y 1 given in
{23)), the deviations of the population from mean level
are minimum. Further it is to be noted here that if we
vary only two parameters &y, tp and keeping all other
parameters fixed, we see that from Eq. (23), rp = f() —
dg (where f((1) = f /). This result shows that there is a
linear relationship between the delay factor and
correlation time with a negative slope. The delay factor
{t) of the species is an inherent property and cannot be
controlled in other way. We observe that the oscillatory
succession of the planktonic blooms may be controlled
either through toxin or correlation time of artificial
fluctuations.

3. Results and discussion

It is to be well noted that for the justification of
lincarized  stochastic  delay-differential  equations
{Eq.(16)), the delay expansion t must be small
compared to the autocorrelation time {5;'] of the noise
process (see Guillouzic et al, 1999). In our model
formulation we have considered the delay factor as time
lag required for the maturity of the phytoplankton
species to release toxic substances when there is a dense
concentration of zooplankton species. Thus to resemble
with the short lifespan of phytoplankton species it is
quite reasonable to consider the unit of the delay term
{t) in minutes. Also in our field study (see Chattopad-
hyay et al., 2002a), we observe that the blooms of
phytoplankton and zooplankton species are occurning
nearly every 7 months. The environmental variability
connected with this system i1s mainly due to artificial
euntrophication from the sewages that requires a long
time interval to dissolve and react with seawater. As a
result there is a change in the nutrient configuration of
the water (discussed thoroughly in Section 2.3). Keeping
in mind the previous history of the bloom phenomena, it
is therefore reasonable to consider the unit of the
autocorrelation time {dfj'] as per 7 months signifying
the physical reasonability of the problem. To establish
the above analytical findings numerically, we shall
use the other parameters values which are presented
and discussed elaborately in the paper of Edwards and
Brindley (1999} and also used by several authors.
Abbreviations, default values (which have been used
here) and ranges of the parameters are given in Table 1.
From the above set of parameter values it has been
observed that the numerical simulation of the solution
represented by Eq. (20), depicts the stable situation of
the system for =0 and 43 = 0.1 since the maximum
portion of the population lies inside the tolerance limit
as mentioned in the earlier section (see Fig. 4). But we
observe that the system remains stable for te(0, 170)
and above the limit the system becomes unstable
{maximum portion of the populations lie outside the
tolerance limit) around the positive interior equilibrium
point (see Figs. 5 and 6). This critical value of t; is
also very close to the numerical value obtained from
Eq.(23) for the above set of parameter values. Now if
we mcrease the value of the correlation time (8g)
from (.1 to 1, we observe that the system around the
positive interior equilibrium point becomes stable for
<125 and unstable for t> 125 (see Figs. 7 and B).
Further if we decrease the value of dy to d5 = 0.01 then
we ohserve that the system around the positive interior
equilibrium point becomes stable for < 1250 and
unstable for = 1250 (see Figs. 9 and 10). The above
numerical results also depict the fact that there exists an
opposite relation between the correlation time (dy) and
the delay factor (t). This is consistent with our analytical
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Table |
Abbreviations, defuull values and ranges of the parameters. The ranges cover values used by dilferent authors in their different models as menboned
by Edwards and Brindley {1999

Parameters Symbaols Drefault Values Reported Ranges
Girowth rate of phytoplankion population (P r 00083 00029200117
{hour ") {hour ©)
Environmental carrving capacity K 1.667
2 Cm
Grazing efficdency of zooplankton populaton {£) ] (0375 002500583
mieg 'O e Yy mieg ' e )
Growth efficency of zooplankion population {£) ] 00125 00083400208
mig 'O e Yy mig "C e Yy
Higher predation on Z or natural death rate C (000ES 0000625000625
(hour ") (hour ")
Fooplankton grazing hall saturabon coefficient ¥ 00025 000083000417
ECmH ECmH
Texin production rate ] 0167
(hour ")
R

Fliytopbanktan

Upper himil [F]

Upper limit [£]

Zooplanktan W

Populations
n

Lower limit {Z]

Leawor limil [F) £
300 4500 F000

a 400 10 1500 N 2
Time (hours}

Fiz. 4. Mumerical solutons of equation {20 depicting stable situation for tau = 0 and delta 0 = 0.1,

L]
:hphmplankmn | |Upper|imil 2] t

Populations

FAH AT

RO TP

avf Levwar [irniit {23 o L s

Time (hours)

Fig. 5. Mumerical solutions of equation (20) depicting stable situation for o = 170 and delta 0 = 0.1
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| ' I
I ] Zooplankton ||J ||,I il
JUIR F'h}"hoplanlvmn 14 |
Upper Ilmltﬂ ]

. : .'. bl ' I ‘" I apl oy [ ; ] 0 "' ) ---! ey i :-- T T R
2 Slii:l - i 1230 EE Lowar limit {P) } 2600 ' Lower limit (£] |::1.| =ma
Tirne (hours)

Fig. 6. Mumencal selutions of equation {20) depicting unstable situation for o = 180 and delta 0 = 0.1

Upper limit (F)

(AR N LU R RS B

Tima {haurs)

Fig. 7. Mumerical solutions of equation {20) depicting stable situation for o = 120 and delia 0 = L.

B B . '-: 0 I i -L-I.Jl'll i I il

Upper limit (Z)

: : iy I : ; "'” P _ytoplann '-'

TR T 1 |..[ [TRTS N T N Y
wee | LOWEK limit (2} Lenwer limit (P} ! o

Time (hours)

Fig. 8. Mumercal solutions of equation (20) depicting unstable situation For o = 130 and delta 0= 1

Upper limit (2}

Phytoplankton Upper limit [P)

Zooplankton

* IR ERN R : B L Bl LT T P T T e T

PR |-|.' ---II..- ey

P [ AT A i e ke CEFCRET  T e

5 S o i T  [LOVIET I (2] [ o JEOwar ik (P] | =i

Time (hours)

Fig. 9 Mumerical selutions of equaton (2] depicting stable situation for tan = 1240 and delta 0 = 001,
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Populations

Lowar [imit (£}

Time (hours)

Fig. 10, Mumerical solutions of equation (20) depicting unstable situation for tay =

={n xa]u u I

450000

1260 and delta 0 =001

400000 +

250000

200000

250000

200000

150000

Population (nos.Jlitre)

™ Noctiluca
100000 “

Do ﬁ.\e rage

/‘\ y, Paracalanus 5 .

\__%y“»—*

19 20 21 X2 Z3 X4 25 286 ¥ A J[ A

Collection dates

Fig. I'l. Termination of blooms of Paracalanus sp. after introduction of artficial Auctuation.

findings. Thus, we conclude that the correlation factor
may be used as a key parameter for controlling the
planktonic blooms. It is also interesting to note that the
region of stability of the system around the positive

interior equilibrium point increases due to decrease of

correlation time. This shows that, the system becomes
unstable around the positive interior equilibrivm when
the time variation (1) exceeds the critical value (z,.) but
introduction of less rapid fluctuations stabilizes the
above unstable situation.

Hence we may conclude that rapidity of artificial
eutrophication or enhancement of nutrients increase the

region of instability. On the other hand if the process of

artificial eutrophication is slow, the system exhibiis less
fluctuations. As a result the region of stahility increases.

Toestablish the above findings, we shall use our field
collected samples of zone 1 (please see, Section 2). We
incorporated a random fluctuation to each data point
of zooplankion population with very low intensity
and correlation time. This provides a negative feedback

to zooplankion population. We observed most of the
population lie inside the average level and the
rapid onset and disappearance of oscillations are settled
down (see, Fig. 11). This experimential observations
resembles our analytical results which are presented in
Section 2.3.

To explain the idea of tolerance intervals in our
study, we have considered the average level of the
zooplankion population as the upper limit of the
tolerance interval and the zero level as the lower limit
of the tolerance interval. From our field observations we
observe that in zone 1 the zooplankion population
deviates more from the average level than in zone 2. It is
also observed in the presence of artificial fluctuation the
deviations in zone 1 are less than that of zone 1 without
artificial fluctuation. The entire results have been
summarized in Table 2. These observations clearly
indicate that TPP populations in zone 2 and control of
artificial eutrophication in zone 1, may help in the
termination of blooms.
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Percentage of decrease Percentage of decrease

Tahle 2

Measure and comparison of deviations of zooplankion population i dilferent zones
Deviation of Dreviation of Deviation of
Zooplankton Zooplankton Zooplankton

population [rom average
lewel in Lone 2

population rom average
level in Fone |

population lrom average
level in Lone | under

in deviations of Zone | in deviations of Zone |

and Lone 2 and Lone | under

arbficial Auctuation

artificial Auctuation

SR017.92 46711.87 2551673

19487 % S6.019%,

4. Conclusion

This paper attempted to search a suitable mechanism
by which one can explain the oscillatory succession of
planktonic blooms and also tried to find out a possible
mechanism for controlling blooms. To explain these we
used models made up of three main constituents:
phytoplankion—zooplankion (prey-predator) coupling
with instantaneous toxin liberation, the discrete time
variation in toxin liberation and the environmental
stochasticity in the phytoplankton population as an
additive color noise. Our theoretical results show that if
the uptake function is linear in nature, reduction of
grazing pressure due to toxic substances is of type 11
functional form and the distribution of toxic substances
is instantaneouns, the oscillatory successions of plank-
tonic blooms have not been observed. But if the toxin
liberation process follows the discrete time variation
then the periodic planktonic blooms can be explained. It
is also observed that bloom phenomena described by
this mechanism can be controlled by two ways, (i)
through toxin producing phytoplankion (TPP) and (i)
through introduction of less rapid artificial eutrophica-
tion. From our analytical study we have observed that
there exist a functional relationship between the critical
value of time delay (t) and rate of toxin production ()
as well as the correlation time (dy). Hence, enhancing the
rate of toxin production one can increase the region of
stability of the system and as a result can control the
periodicity of planktonic blooms. We have observed
from our field study that when the presence of TPP is
much more then the bloom of zooplankion population
terminates (observed in zone 2 of Fig. 2). Thus the role
of TPP in termination of planktonic bloom is clear from
analytical and experimental point of view. Moreover, we
have observed that there exists a linear relationship
between the critical value of time delay and the
correlation time of the fluctuation with a negative slope.
Since correlation time measures the rapidity of environ-
mental fluctuations and delay factor is an inherent
property of the system, hence delay factor cannot be
used as a possible control mechanism. Thus control of
correlation time of environmental fluctuations may be
used as a possible control mechanism for planktonic
blooms. This mechanism has been successfully used in
our field sindy to control the blooms of zooplankion
population (observed in zone 1, see Fig. 11). Finally, we

may conclude that TPP and control of the rapidity of
environmental fluctuation are the key factors in
termination of planktonic blooms.
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Appendix A

Proof of Lemma 2.1.1. Let us define a function

W =fiP+aZ. (A1)
The time derivative of (A.1) along the solutions of (1) is
d W Boe

P ;
_d! =f'ﬂ.|u(]. _E) —IE'Z—}F+‘U£
P
h‘;_f'ﬂf'(l _E) — el

= [r'ﬂf'(l - ;) +::'ﬂ-f"] —cW.
The term [rfP(1 — %} + ¢ftF] has a maximum valuoe, so
the above expression reduces to
dd—F:(+ e =0,

where
_BK@e+y)
dr ’
Applying a theorem of differential inequality (Birkofl
and Rota, 1982), we obtain

I

0= W{P,Z]&EE{I — e 4 WP, Z0)e
-

and for t— o0, we have

0= W&:?_

Hence all the solutions of (1) that initiate in {Ri’xﬂ} are
confined in the regmon

. RN ) [
= {{P,é}ER; W =?+E }

for any ¢ =0 and for ¢ large enough. O
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Proof of Lemma 2.12. The proof is based on an
application of a divergence criterion (Hale, 1993). Let
WP Z)y=1/PZ, obviously WP, Z)=01f P=02=1(.
Let us define

P
gi{P,.Z)= r'P(l - E) — alPZ,

g P.Z) = fPZ — £ — TP

d{.‘-‘Z]—r—?{ !]+i{ h)

L0 ap LT

we find that

AP.Z) = —— (A2)

which is less than zero for all P = 0,2 = 0. Therefore by
the Bendixon—Dulac criterion, there will be no linut
cyele in the first quadrant. O

Proof of Theorem 2.1.1. The proof is based on the
following arguments:

{a) System (1) is bounded and positively invariant in
the first quadrant if 0<{fK + fy —¢)— ye/K.

(b) Trivial equilibrium £y is always an unstable saddle
point and existence of positive equilibrium confirms that
the axial equilibrium £ is also an unstable saddle point.

(c) Positive equilibrium E* is LAS.

{d) System (1) around £* has no non-trivial periodic
solutions.

Hence system (1) around the positive equilibrium is
also globally asymptotically stable. [
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